1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435 |
- """
- The weak_script annotation needs to be here instead of inside torch/jit/ so it
- can be used in other places in torch/ (namely torch.nn) without running into
- circular dependency problems
- """
- import ast
- import builtins
- import collections
- import contextlib
- import enum
- import inspect
- import io
- import pickle
- import sys
- import threading
- import typing
- import warnings
- import weakref
- from textwrap import dedent
- from typing import ( # noqa: F401
- Any,
- Callable,
- Dict,
- Final,
- Generic,
- List,
- Optional,
- Tuple,
- Type,
- TypeVar,
- Union,
- )
- import torch
- # This is needed. `torch._jit_internal` is imported before `torch.distributed.__init__`.
- # Explicitly ask to import `torch.distributed.__init__` first.
- # Otherwise, "AttributeError: module 'torch' has no attribute 'distributed'" is raised.
- import torch.distributed.rpc
- import torch.package._mangling as package_mangling
- from torch._awaits import _Await
- from torch._C import _Await as CAwait, Future as CFuture
- from torch._sources import fake_range, get_source_lines_and_file, parse_def
- from torch.futures import Future
- LockType: Type
- try:
- import _thread
- LockType = _thread.LockType
- except ImportError:
- import _dummy_thread
- LockType = _dummy_thread.LockType
- # Wrapper functions that can call either of 2 functions depending on a boolean
- # argument
- boolean_dispatched: "weakref.WeakKeyDictionary[Callable, Dict[str, Callable]]" = (
- weakref.WeakKeyDictionary()
- ) # noqa: T484
- FAKE_FILENAME_PREFIX = "__torch_jit_dataclass"
- class SourceLoader:
- def __init__(self):
- self.content = {}
- def cache(self, fn, source):
- self.content[fn] = source
- def get_source(self, fn):
- return self.content.get(fn)
- loader = SourceLoader()
- def createResolutionCallbackFromEnv(lookup_base):
- """
- Creates a resolution callback that will look up qualified names in an
- environment, starting with `lookup_base` for the base of any qualified
- names, then proceeding down the lookup chain with the resolved object.
- You should not use this directly, it should only be used from the other
- createResolutionCallbackFrom* functions.
- """
- def lookupInModule(qualified_name, module):
- if "." in qualified_name:
- parts = qualified_name.split(".")
- base = parts[0]
- remaining_pieces = ".".join(parts[1:])
- module_value = getattr(module, base)
- return lookupInModule(remaining_pieces, module_value)
- else:
- return getattr(module, qualified_name)
- def parseNestedExpr(expr, module) -> Tuple[Any, int]:
- i = 0
- while i < len(expr) and expr[i] not in (",", "[", "]"):
- i += 1
- # Special case logic for the empty Tuple as a subscript (used
- # in the type annotation `Tuple[()]`)
- if expr[:i] == "()":
- return (), i
- base = lookupInModule(expr[:i].strip(), module)
- assert base is not None, f"Unresolvable type {expr[:i]}"
- if i == len(expr) or expr[i] != "[":
- return base, i
- assert expr[i] == "["
- parts = []
- while expr[i] != "]":
- part_len = 0
- i += 1
- part, part_len = parseNestedExpr(expr[i:], module)
- parts.append(part)
- i += part_len
- if len(parts) > 1:
- return base[tuple(parts)], i + 1
- else:
- return base[parts[0]], i + 1
- def parseExpr(expr, module):
- try:
- value, len_parsed = parseNestedExpr(expr, module)
- assert len_parsed == len(
- expr
- ), "whole expression was not parsed, falling back to c++ parser"
- return value
- except Exception:
- """
- The python resolver fails in several cases in known unit tests, and is intended
- to fall back gracefully to the c++ resolver in general. For example, python 2 style
- annotations which are frequent in our unit tests often fail with types e.g. int not
- resolvable from the calling frame.
- """
- return None
- return lambda expr: parseExpr(expr, lookup_base)
- def createResolutionCallbackFromFrame(frames_up: int = 0):
- """
- Creates a function which, given a string variable name,
- returns the value of the variable in the scope of the caller of
- the function which called createResolutionCallbackFromFrame (by default).
- This is used to enable access in-scope Python variables inside
- TorchScript fragments.
- frames_up is number of additional frames to go up on the stack.
- The default value is 0, which correspond to the frame of the caller
- of createResolutionCallbackFromFrame. Also for example, if frames_up is set
- to 1, then the frame of the caller's caller of createResolutionCallbackFromFrame
- will be taken.
- For example, the following program prints 2::
- def bar():
- cb = createResolutionCallbackFromFrame(1)
- print(cb("foo"))
- def baz():
- foo = 2
- bar()
- baz()
- """
- frame = inspect.currentframe()
- i = 0
- while i < frames_up + 1:
- assert frame is not None
- frame = frame.f_back
- i += 1
- assert frame is not None
- f_locals = frame.f_locals
- f_globals = frame.f_globals
- class env:
- def __getattr__(self, key):
- if key in f_locals:
- return f_locals[key]
- elif key in f_globals:
- return f_globals[key]
- elif key in dir(builtins):
- return getattr(builtins, key)
- return createResolutionCallbackFromEnv(env())
- def get_closure(fn):
- """
- Get a dictionary of closed over variables from a function
- """
- captures = {}
- captures.update(fn.__globals__)
- for index, captured_name in enumerate(fn.__code__.co_freevars):
- captures[captured_name] = fn.__closure__[index].cell_contents
- return captures
- # [local resolution in python]
- # Depending on where a variable is defined, and where it is used, we may
- # or may not be able to recover its value when recursively compiling a
- # script function. Remember in the general case, a module or function is
- # first defined and then later scripted. This means we do not have a
- # chance to capture the active frames when the function is defined. Hence any
- # name resolution has to happen later on the created closure. The way
- # python captures type annotations restricts what we can recover. The
- # follow example illustrates the different cases:
- #
- # class MyGlobalClass:
- # ...
- # def my_local_scope():
- # @torch.jit.script
- # class MyClass:
- # ...
- # @torch.jit.script
- # class MyClassUsedAsVar:
- # ...
- # def eg(x: MyClass, y: MyGlobalClass):
- # a_local_capture : Foo
- # return MyClassUsedAsVar(x)
- #
- # MyGlobalClass is defined in the __globals__ dictionary of function
- # 'eg', so it is always recoverable. my_local_scope introduces a new local
- # variable scope in the function. Classes defined here are only visible as
- # local variables. For the case of MyClassUsedAsVar, it is captured
- # because it is used as a variable inside the body of the function, and we
- # can resolve it using the captures returned from `get_closure`. However,
- # the type annotations are not captured by the closure. In Python
- # 3.0--3.9, the _value_ of MyClass and MyGlobalClass will be available as
- # annotations on `eg``, but starting in Python 4.0, they will represented as
- # strings and no longer present. Furthermore, since the body of `eg` does
- # not reference those names, they do not appear in the list of closed over
- # variables. In Python 2.x, type annotations are in comments, leading to a
- # similar situation where their definitions are not available. We anticipate
- # that most users will not run into this issue because their modules and
- # functions will be defined at a global scope like MyGlobalClass. In cases
- # where they are not, it is possible to work around issues by declaring the
- # values global in the function.
- # In Python 3.9 declaring class as global will make it invisible to
- # `inspect.getsource`, see https://bugs.python.org/issue42666 .
- # This could be worked around by manualy adding it to `global()` dictionary.
- def createResolutionCallbackFromClosure(fn):
- """
- Create a resolutionCallback by introspecting the function instead of
- looking up the stack for the enclosing scope
- """
- closure = get_closure(fn)
- class closure_lookup:
- # This is a class since `closure` is a dict and it's easier in
- # `env_helper` if everything just works with `getattr` calls
- def __getattr__(self, key):
- if key in closure:
- return closure[key]
- elif hasattr(typing, key):
- return getattr(typing, key)
- elif hasattr(builtins, key):
- return getattr(builtins, key)
- return None
- return createResolutionCallbackFromEnv(closure_lookup())
- def can_compile_class(cls) -> bool:
- # If any of the functions on a type don't have a code object, this type can't
- # be compiled and is probably a builtin / bound from C
- if is_ignored_fn(cls):
- return False
- # Ignore the following list of built-in classes.
- ignored_builtin_classes = (torch.nn.Module, tuple, list, Exception)
- if issubclass(cls, ignored_builtin_classes):
- return False
- names = cls.__dict__
- fns = [
- getattr(cls, name)
- for name in names
- if inspect.isroutine(getattr(cls, name, None))
- ]
- has_code = [hasattr(fn, "__code__") for fn in fns]
- return all(has_code)
- def get_callable_argument_names(fn) -> List[str]:
- """
- Gets names of all POSITIONAL_OR_KEYWORD arguments for callable `fn`.
- Returns an empty list when other types of arguments are present.
- This is used by `torch.jit.trace` to assign meaningful argument names to
- traced functions and modules.
- Args:
- fn: A callable.
- Returns:
- Argument names: List[str]
- """
- # inspect.signature may fail, give up in that case.
- try:
- callable_signature = inspect.signature(fn)
- except Exception:
- return []
- argument_names = []
- for name, param in callable_signature.parameters.items():
- # All four other types of arguments do not map to individual values
- # with a keyword as name.
- if not param.kind == param.POSITIONAL_OR_KEYWORD:
- continue
- argument_names.append(name)
- return argument_names
- def get_annotation_str(annotation):
- """
- Convert an AST node containing a type annotation to the string present in the source
- that represents the same annotation.
- """
- if isinstance(annotation, ast.Name):
- return annotation.id
- elif isinstance(annotation, ast.Attribute):
- return ".".join([get_annotation_str(annotation.value), annotation.attr])
- elif isinstance(annotation, ast.Subscript):
- # In Python3.9+ subscript indicies are not wrapped in ast.Index
- subscript_slice = annotation.slice if sys.version_info >= (3, 9) else annotation.slice.value # type: ignore[attr-defined]
- return f"{get_annotation_str(annotation.value)}[{get_annotation_str(subscript_slice)}]"
- elif isinstance(annotation, ast.Tuple):
- return ",".join([get_annotation_str(elt) for elt in annotation.elts])
- elif isinstance(annotation, (ast.Constant, ast.NameConstant)):
- return f"{annotation.value}"
- # If an AST node is not handled here, it's probably handled in ScriptTypeParser.
- return None
- def get_type_hint_captures(fn):
- """
- Get a dictionary containing type resolution mappings necessary to resolve types
- for the literal annotations on 'fn'. These are not considered to be closed-over by fn
- and must be obtained separately (e.g. using this function).
- Args:
- fn: A callable.
- Returns:
- A Dict[str, Any] containing a mapping from the literal annotations used on
- fn to the Python objects they refer to.
- """
- # First, try to get the source of the function. We'll need to parse it to find the actual string names
- # that were used to annotate the types, since inspect.signature() will only return the class object that
- # the annotation refers to, not the string name. If we can't get the source, simply return an empty dict.
- # This may happen in cases where the function is synthesized dynamically at runtime.
- src = loader.get_source(fn)
- if src is None:
- src = inspect.getsource(fn)
- # Gather a dictionary of parameter name -> type, skipping any parameters whose annotated
- # types are strings. These are only understood by TorchScript in the context of a type annotation
- # that refers to a class in its own definition, but trying to include a mapping for this in the result
- # function would cause infinite recursion because the class is currently being compiled.
- # In addition, there is logic in ScriptTypeParser to handle this.
- signature = inspect.signature(fn)
- name_to_type = {
- name: parameter.annotation
- for name, parameter in signature.parameters.items()
- if parameter.annotation is not inspect.Parameter.empty
- and not isinstance(parameter.annotation, str)
- }
- # Then, get the literal type annotations from the function declaration
- # by source inspection. This accounts for the case in which aliases are used
- # to annotate the arguments (e.g device_t = torch.device, and then d: device_t).
- # frontend.py cannot be used here because it includes _jit_internal, so use ast instead.
- a = ast.parse(dedent(src))
- if len(a.body) != 1 or not isinstance(a.body[0], ast.FunctionDef):
- raise RuntimeError(f"Expected {fn} to be a function")
- f = a.body[0]
- # Prepare a dictionary of source annotation -> type, which will be the final result of this function,
- # by using the parsed AST (f) to reconstruct source annotations as strings for each parameter and mapping
- # them to the type object corresponding to the annotation via name_to_type using the parameter name.
- annotation_to_type = {}
- for arg in f.args.args:
- # Get the source type annotation string for this argument if possible.
- arg_annotation_str = (
- get_annotation_str(arg.annotation) if arg.annotation else None
- )
- # If the argument has no annotation or get_annotation_str cannot convert it to a string,
- # arg_annotation_str will be None. Skip this arg; ScriptTypeParser will probably handle
- # this in the latter case.
- if arg_annotation_str is None:
- continue
- # Insert {arg_annotation_str: type} into annotation_to_type if possible. One reason arg_name may not
- # be present in name_to_type is that the annotation itself is a string and not a type object
- # (common for self-refential annotations in classes). Once again, let ScriptTypeParser handle this.
- arg_name = arg.arg
- if arg_name in name_to_type:
- annotation_to_type[arg_annotation_str] = name_to_type[arg_name]
- # If there is a valid return annotation, include it in annotation_to_type. As with argument annotations,
- # the literal annotation has to be convertible to a string by get_annotation_str, and the actual type
- # of the annotation cannot be a string.
- literal_return_annotation = get_annotation_str(f.returns)
- valid_literal_annotation = literal_return_annotation is not None
- return_annotation = signature.return_annotation
- valid_return_annotation_type = (
- return_annotation is not inspect.Parameter.empty
- and not isinstance(return_annotation, str)
- )
- if valid_literal_annotation and valid_return_annotation_type:
- annotation_to_type[literal_return_annotation] = return_annotation
- return annotation_to_type
- def createResolutionCallbackForClassMethods(cls):
- """
- This looks at all the methods defined in a class and pulls their closed-over
- variables into a dictionary and uses that to resolve variables.
- """
- # cls is a type here, so `ismethod` is false since the methods on the type
- # aren't bound to anything, so Python treats them as regular functions
- fns = [
- getattr(cls, name)
- for name in cls.__dict__
- if inspect.isroutine(getattr(cls, name))
- ]
- # Skip built-ins, as they do not have global scope nor type hints
- # Needed to support `enum.Enum` derived classes in Python-3.11
- # That adds `_new_member_` property which is an alias to `__new__`
- fns = [fn for fn in fns if not inspect.isbuiltin(fn)]
- captures = {}
- for fn in fns:
- captures.update(get_closure(fn))
- captures.update(get_type_hint_captures(fn))
- def lookup_in_class(key):
- if key in captures:
- return captures[key]
- else:
- return getattr(builtins, key, None)
- return lookup_in_class
- def boolean_dispatch(
- arg_name, arg_index, default, if_true, if_false, module_name, func_name
- ):
- """
- Dispatches to either of 2 script functions based on a boolean argument.
- In TorchScript, the boolean argument must be constant so that the correct
- function to use can be determined at compile time.
- """
- def fn(*args, **kwargs):
- dispatch_flag = False
- if arg_name in kwargs:
- dispatch_flag = kwargs[arg_name]
- elif arg_index < len(args):
- dispatch_flag = args[arg_index]
- if dispatch_flag:
- return if_true(*args, **kwargs)
- else:
- return if_false(*args, **kwargs)
- if if_true.__doc__ is None and if_false.__doc__ is not None:
- doc = if_false.__doc__
- if_true.__doc__ = doc
- elif if_false.__doc__ is None and if_true.__doc__ is not None:
- doc = if_true.__doc__
- if_false.__doc__ = doc
- elif if_false.__doc__ is None and if_true.__doc__ is None:
- # neither function has a docstring
- doc = None
- else:
- raise RuntimeError("only one function can have a docstring")
- fn.__doc__ = doc
- if module_name is not None:
- fn.__module__ = module_name
- if func_name is not None:
- fn.__name__ = func_name
- boolean_dispatched[fn] = {
- "if_true": if_true,
- "if_false": if_false,
- "index": arg_index,
- "default": default,
- "arg_name": arg_name,
- }
- return fn
- class FunctionModifiers:
- """
- Used to denote the behavior of a function in TorchScript. See export() and
- ignore() for details.
- """
- UNUSED = "unused (ignored and replaced with raising of an exception)"
- IGNORE = "ignore (leave as a call to Python, cannot be torch.jit.save'd)"
- EXPORT = "export (compile this function even if nothing calls it)"
- DEFAULT = "default (compile if called from a exported function / forward)"
- COPY_TO_SCRIPT_WRAPPER = (
- "if this method is not scripted, copy the python method onto the scripted model"
- )
- _DROP = "_drop (function is fully ignored, declaration can be unscriptable)"
- def export(fn):
- """
- This decorator indicates that a method on an ``nn.Module`` is used as an entry point into a
- :class:`ScriptModule` and should be compiled.
- ``forward`` implicitly is assumed to be an entry point, so it does not need this decorator.
- Functions and methods called from ``forward`` are compiled as they are seen
- by the compiler, so they do not need this decorator either.
- Example (using ``@torch.jit.export`` on a method):
- .. testcode::
- import torch
- import torch.nn as nn
- class MyModule(nn.Module):
- def implicitly_compiled_method(self, x):
- return x + 99
- # `forward` is implicitly decorated with `@torch.jit.export`,
- # so adding it here would have no effect
- def forward(self, x):
- return x + 10
- @torch.jit.export
- def another_forward(self, x):
- # When the compiler sees this call, it will compile
- # `implicitly_compiled_method`
- return self.implicitly_compiled_method(x)
- def unused_method(self, x):
- return x - 20
- # `m` will contain compiled methods:
- # `forward`
- # `another_forward`
- # `implicitly_compiled_method`
- # `unused_method` will not be compiled since it was not called from
- # any compiled methods and wasn't decorated with `@torch.jit.export`
- m = torch.jit.script(MyModule())
- """
- fn._torchscript_modifier = FunctionModifiers.EXPORT
- return fn
- def unused(fn):
- """
- This decorator indicates to the compiler that a function or method should
- be ignored and replaced with the raising of an exception. This allows you
- to leave code in your model that is not yet TorchScript compatible and still
- export your model.
- Example (using ``@torch.jit.unused`` on a method)::
- import torch
- import torch.nn as nn
- class MyModule(nn.Module):
- def __init__(self, use_memory_efficient):
- super().__init__()
- self.use_memory_efficient = use_memory_efficient
- @torch.jit.unused
- def memory_efficient(self, x):
- import pdb
- pdb.set_trace()
- return x + 10
- def forward(self, x):
- # Use not-yet-scriptable memory efficient mode
- if self.use_memory_efficient:
- return self.memory_efficient(x)
- else:
- return x + 10
- m = torch.jit.script(MyModule(use_memory_efficient=False))
- m.save("m.pt")
- m = torch.jit.script(MyModule(use_memory_efficient=True))
- # exception raised
- m(torch.rand(100))
- """
- if isinstance(fn, property):
- prop = fn
- setattr( # noqa: B010
- prop.fget, "_torchscript_modifier", FunctionModifiers.UNUSED
- )
- if prop.fset:
- setattr( # noqa: B010
- prop.fset, "_torchscript_modifier", FunctionModifiers.UNUSED
- )
- return prop
- fn._torchscript_modifier = FunctionModifiers.UNUSED
- return fn
- # No op context manager from python side
- class _IgnoreContextManager(contextlib.AbstractContextManager):
- def __init__(self, **kwargs):
- pass
- def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
- pass
- def ignore(drop=False, **kwargs):
- """
- This decorator indicates to the compiler that a function or method should
- be ignored and left as a Python function. This allows you to leave code in
- your model that is not yet TorchScript compatible. If called from TorchScript,
- ignored functions will dispatch the call to the Python interpreter. Models with ignored
- functions cannot be exported; use :func:`@torch.jit.unused <torch.jit.unused>` instead.
- Example (using ``@torch.jit.ignore`` on a method)::
- import torch
- import torch.nn as nn
- class MyModule(nn.Module):
- @torch.jit.ignore
- def debugger(self, x):
- import pdb
- pdb.set_trace()
- def forward(self, x):
- x += 10
- # The compiler would normally try to compile `debugger`,
- # but since it is `@ignore`d, it will be left as a call
- # to Python
- self.debugger(x)
- return x
- m = torch.jit.script(MyModule())
- # Error! The call `debugger` cannot be saved since it calls into Python
- m.save("m.pt")
- Example (using ``@torch.jit.ignore(drop=True)`` on a method):
- .. testcode::
- import torch
- import torch.nn as nn
- class MyModule(nn.Module):
- @torch.jit.ignore(drop=True)
- def training_method(self, x):
- import pdb
- pdb.set_trace()
- def forward(self, x):
- if self.training:
- self.training_method(x)
- return x
- m = torch.jit.script(MyModule())
- # This is OK since `training_method` is not saved, the call is replaced
- # with a `raise`.
- m.save("m.pt")
- .. testcleanup::
- import os
- os.remove('m.pt')
- """
- if callable(drop):
- # used without any args, so drop is actually a function
- # @torch.jit.ignore
- # def fn(...):
- fn = drop
- fn._torchscript_modifier = FunctionModifiers.IGNORE
- return fn
- if not isinstance(drop, bool):
- raise RuntimeError(
- "Argument to @torch.jit.ignore must be a bool or "
- f"a function but got {drop}"
- )
- # for backwards compat
- drop_on_export = kwargs.pop("drop_on_export", None)
- if drop_on_export:
- warnings.warn(
- "ignore(drop_on_export=True) has been deprecated. TorchScript will now drop the function "
- "call on compilation. Use torch.jit.unused now. {}",
- category=FutureWarning,
- )
- drop = drop_on_export
- elif drop:
- warnings.warn(
- "ignore(True) has been deprecated. TorchScript will now drop the function "
- "call on compilation. Use torch.jit.unused now. {}",
- category=FutureWarning,
- )
- def decorator(fn):
- if drop:
- fn._torchscript_modifier = FunctionModifiers.UNUSED
- else:
- fn._torchscript_modifier = FunctionModifiers.IGNORE
- return fn
- return decorator
- def _drop(fn):
- fn._torchscript_modifier = FunctionModifiers._DROP
- return fn
- def _copy_to_script_wrapper(fn):
- fn._torchscript_modifier = FunctionModifiers.COPY_TO_SCRIPT_WRAPPER
- return fn
- def module_has_exports(mod):
- for name in dir(mod):
- if hasattr(mod, name):
- item = getattr(mod, name)
- if callable(item):
- if get_torchscript_modifier(item) is FunctionModifiers.EXPORT:
- return True
- return False
- # WARNING: should_drop is currently being used by our JIT code coverage plug-in to mark JIT'd code as covered. If you
- # rename this function, please update references in tools/coverage_plugins_package/src/coverage_plugins/jit_plugin.py to
- # allow JIT'd code to still be covered.
- def should_drop(fn) -> bool:
- attr = get_torchscript_modifier(fn)
- if attr is None:
- return False
- return attr is FunctionModifiers.UNUSED or attr is FunctionModifiers._DROP
- def is_ignored_fn(fn) -> bool:
- mod = get_torchscript_modifier(fn)
- return (
- mod is FunctionModifiers.UNUSED
- or mod is FunctionModifiers.IGNORE
- or mod is FunctionModifiers._DROP
- )
- def _is_drop_fn(fn) -> bool:
- mod = get_torchscript_modifier(fn)
- return mod is FunctionModifiers._DROP
- def is_static_fn(cls, fn) -> bool:
- return isinstance(inspect.getattr_static(cls, fn, default=None), staticmethod)
- def get_static_fn(cls, fn):
- return inspect.getattr_static(cls, fn).__func__
- def get_torchscript_modifier(fn):
- if not callable(fn):
- return None
- if hasattr(fn, "__func__"):
- fn = fn.__func__
- return getattr(fn, "_torchscript_modifier", FunctionModifiers.DEFAULT)
- def copy_torchscript_modifier(orig, new) -> None:
- attr = get_torchscript_modifier(orig)
- if attr is None:
- return
- new._torchscript_modifier = attr
- # overloading registration
- # overloads get registered in this file, and compiled in torch/jit/__init__.py
- # so that they can be imported in nn/functional.py without an import cycle
- # qualified_name => list[overload_functions]
- _overloaded_fns: Dict[str, List[Callable]] = {} # noqa: T484
- _OVERLOAD_EXAMPLE = """
- Example usage of overload function:
- @torch.jit._overload
- def my_function(x: type0) -> type0: # decl 1
- pass
- @torch.jit._overload
- def my_function(x: type1) -> type1: # decl 2
- pass
- def my_function(x): # implementation
- if isinstance(x, type0):
- return x
- elif isinstance(x, type1):
- return x
- """
- def get_overload_no_implementation_error_message(kind, obj):
- sourcelines, file_lineno, filename = get_source_lines_and_file(obj)
- return (
- f'Implementation for the {kind} "{_qualified_name(obj)}" is missing. Please make '
- f"sure a definition is provided and defined after all overload declarations.\n"
- f'File "{filename}", line {file_lineno}:\n'
- + "".join(sourcelines)
- + "\n"
- + _OVERLOAD_EXAMPLE
- )
- def _check_overload_body(func):
- try:
- parsed_def = parse_def(func)
- except OSError as e:
- # Parsing the function definition can raise an OSError if source is unavailable.
- # Since this is just an initial check, just raise a warning if this is the case.
- warnings.warn(
- f"Unable to retrieve source for @torch.jit._overload function: {func}."
- )
- return
- body = parsed_def.ast.body[0].body
- def is_pass(x):
- return isinstance(x, ast.Pass)
- def is_ellipsis(x):
- return isinstance(x, ast.Expr) and isinstance(x.value, ast.Ellipsis)
- if len(body) != 1 or not (is_pass(body[0]) or is_ellipsis(body[0])):
- msg = (
- "Only `pass` statement or `...` can be the body of overload declaration:\n"
- )
- msg += "\n".join(parsed_def.source.split("\n")[:3])
- msg += " <- Expecting `pass` or `...` here!\n" + _OVERLOAD_EXAMPLE
- raise RuntimeError(msg)
- def _overload(func):
- _check_overload_body(func)
- qual_name = _qualified_name(func)
- global _overloaded_fns
- fn_overload_list = _overloaded_fns.get(qual_name)
- if fn_overload_list is None:
- fn_overload_list = []
- _overloaded_fns[qual_name] = fn_overload_list
- fn_overload_list.append(func)
- return func
- def _get_fn_overloads(qual_name):
- return _overloaded_fns.get(qual_name)
- def _clear_fn_overloads(qual_name) -> None:
- del _overloaded_fns[qual_name]
- def get_class_name_lineno(method) -> Tuple[str, int]:
- current_frame = inspect.currentframe()
- # one for the get_class_name call, one for _overload_method call
- for i in range(2):
- assert (
- current_frame is not None
- ) # assert current frame is not an Optional[FrameType]
- current_frame = current_frame.f_back
- assert current_frame is not None # same here
- class_name = current_frame.f_code.co_name
- line_no = current_frame.f_code.co_firstlineno
- return class_name, line_no
- # At the the point the decorator is applied to class methods the method
- # has no reference to its owning class. _qualified_name would not include
- # the class it is defined in, so any methods with the same name in the same file
- # would have the same _qualified_name, even if they were defined in different
- # classes. This problem only exists in python 2.
- # We get around this problem by looking at the stack frame and identifying
- # the class name, and throwing an error whenever overloads are used
- # when modules of the same name are in the same file
- # qualified_name => class name => list[overload_functions]
- _overloaded_methods: Dict[str, Dict[str, List[Callable]]] = {} # noqa: T484
- # (qualified_name, class name) => class_fileno
- _overloaded_method_class_fileno = {}
- def _overload_method(func):
- _check_overload_body(func)
- qual_name = _qualified_name(func)
- global _overloaded_methods
- class_name_map = _overloaded_methods.get(qual_name, None)
- if class_name_map is None:
- class_name_map = {}
- _overloaded_methods[qual_name] = class_name_map
- class_name, line_no = get_class_name_lineno(func)
- method_overloads = class_name_map.get(class_name, None)
- if method_overloads is None:
- method_overloads = []
- class_name_map[class_name] = method_overloads
- _overloaded_method_class_fileno[(qual_name, class_name)] = line_no
- else:
- existing_lineno = _overloaded_method_class_fileno[(qual_name, class_name)]
- if existing_lineno != line_no:
- raise RuntimeError(
- "Cannot currently overload the same method name in two different"
- " classes with the same name in the same module"
- )
- method_overloads.append(func)
- return func
- def _get_overloaded_methods(method, mod_class):
- # TODO: __name__ not set for submodules in recursive script
- if not hasattr(method, "__name__"):
- return None
- qual_name = _qualified_name(method)
- class_name_map = _overloaded_methods.get(qual_name, None)
- if class_name_map is None:
- return None
- overloads = class_name_map.get(mod_class.__name__, None)
- if overloads is None:
- return None
- method_line_no = get_source_lines_and_file(method)[1]
- mod_class_fileno = get_source_lines_and_file(mod_class)[1]
- mod_end_fileno = mod_class_fileno + len(get_source_lines_and_file(mod_class)[0])
- if not (method_line_no >= mod_class_fileno and method_line_no <= mod_end_fileno):
- raise Exception(
- "Overloads are not useable when a module is redeclared within the same file: "
- + str(method)
- )
- return overloads
- def is_tuple(ann) -> bool:
- if ann is Tuple:
- raise_error_container_parameter_missing("Tuple")
- # For some reason Python 3.7 violates the Type[A, B].__origin__ == Type rule
- if not hasattr(ann, "__module__"):
- return False
- return ann.__module__ == "typing" and (
- getattr(ann, "__origin__", None) is Tuple
- or getattr(ann, "__origin__", None) is tuple
- )
- def is_list(ann) -> bool:
- if ann is List:
- raise_error_container_parameter_missing("List")
- if not hasattr(ann, "__module__"):
- return False
- return ann.__module__ == "typing" and (
- getattr(ann, "__origin__", None) is List
- or getattr(ann, "__origin__", None) is list
- )
- def is_dict(ann) -> bool:
- if ann is Dict:
- raise_error_container_parameter_missing("Dict")
- if not hasattr(ann, "__module__"):
- return False
- return ann.__module__ == "typing" and (
- getattr(ann, "__origin__", None) is Dict
- or getattr(ann, "__origin__", None) is dict
- )
- def is_union(ann):
- if ann is Union:
- raise_error_container_parameter_missing("Union")
- return (
- hasattr(ann, "__module__")
- and ann.__module__ == "typing"
- and (getattr(ann, "__origin__", None) is Union)
- )
- def is_optional(ann):
- if ann is Optional:
- raise_error_container_parameter_missing("Optional")
- def is_optional_as_optional(ann):
- return (
- hasattr(ann, "__module__")
- and ann.__module__ == "typing"
- and (getattr(ann, "__origin__", None) is Optional)
- )
- def is_union_as_optional(ann):
- ann_args = ann.__args__
- return len(ann_args) == 2 and (None in ann_args or type(None) in ann_args)
- return is_optional_as_optional(ann) or (is_union(ann) and is_union_as_optional(ann))
- def is_future(ann) -> bool:
- if ann is Future:
- raise RuntimeError(
- "Attempted to use Future without a "
- "contained type. Please add a contained type, e.g. "
- "Future[int]"
- )
- return getattr(ann, "__origin__", None) is Future
- def is_await(ann) -> bool:
- if ann is _Await:
- return True
- return getattr(ann, "__origin__", None) is _Await
- if torch.distributed.rpc.is_available():
- from torch._C._distributed_rpc import PyRRef
- from torch.distributed.rpc import RRef
- def is_rref(ann) -> bool:
- if ann is RRef:
- raise RuntimeError(
- "Attempted to use RRef without a "
- "contained type. Please add a contained type, e.g. "
- "RRef[int]"
- )
- return getattr(ann, "__origin__", None) is RRef
- def is_rref_instance(obj) -> bool:
- return isinstance(obj, PyRRef)
- else:
- def is_rref_instance(obj) -> bool:
- # If the RPC module doesn't exist then RRefs don't exist either.
- return False
- def is_final(ann) -> bool:
- return ann.__module__ in {"typing", "typing_extensions"} and (
- getattr(ann, "__origin__", None) is Final or isinstance(ann, type(Final))
- )
- # allows BroadcastingList instance to be subscriptable
- class BroadcastingListCls:
- def __getitem__(self, types):
- return
- # mypy doesn't support parameters on types, so we have to explicitly type each
- # list size
- BroadcastingList1 = BroadcastingListCls()
- for i in range(2, 7):
- globals()[f"BroadcastingList{i}"] = BroadcastingList1
- def is_scripting() -> bool:
- r"""
- Function that returns True when in compilation and False otherwise. This
- is useful especially with the @unused decorator to leave code in your
- model that is not yet TorchScript compatible.
- .. testcode::
- import torch
- @torch.jit.unused
- def unsupported_linear_op(x):
- return x
- def linear(x):
- if torch.jit.is_scripting():
- return torch.linear(x)
- else:
- return unsupported_linear_op(x)
- """
- return False
- # Retrieves a fully-qualified name (module hierarchy + classname) for a given obj.
- def _qualified_name(obj, mangle_name=True) -> str:
- # This special case allows us to override the qualified name on a type.
- # It's currently used in conjunction with tracing, where we create a
- # fake module to filter only supported attributes. However, since this
- # new type is defined as a local class, we need a mechanism to override
- # its qualname so it appears correctly in the TorchScript system. This,
- # we set '_jit_override_qualname' with the original traced module's
- # qualified name, which is picked up here
- if hasattr(obj, "_jit_override_qualname"):
- return obj._jit_override_qualname
- # short-circuit in cases where the object already has a known qualified name
- if isinstance(obj, torch._C.ScriptFunction):
- return obj.qualified_name
- if getattr(obj, "__name__", None):
- name = obj.__name__
- # Enum classes do not have `__name__` attr, instead they have `name`.
- elif isinstance(obj, enum.Enum):
- name = obj.name
- else:
- raise RuntimeError("Could not get name of python class object")
- if name == "<lambda>":
- name = "_lambda" # make name a valid identifier
- module_name = obj.__module__
- # If the module is actually a torchbind module, then we should short circuit
- if module_name == "torch._classes":
- return obj.qualified_name
- # The Python docs are very clear that `__module__` can be None, but I can't
- # figure out when it actually would be.
- if module_name is None:
- raise RuntimeError(
- f"Could not get qualified name for class '{name}': "
- "__module__ can't be None."
- )
- # if getattr(sys.modules[module_name], name) is not obj:
- # raise RuntimeError(f"Could not get qualified name for class '{name}': "
- # f"the attr {name} on module {module_name} is not the the class")
- # torch.package and TorchScript have separate mangling schemes to avoid
- # name collisions from multiple packages. To avoid them interfering with
- # each other, normalize the package manging here.
- if package_mangling.is_mangled(module_name):
- module_name = module_name.replace("<", "_")
- module_name = module_name.replace(">", "_")
- # The PythonExceptionValue C++ class in torch/csrc/jit/python/python_sugared_value.h
- # does not need mangle the python class name.
- if mangle_name:
- # __main__ is a builtin module, so rewrite it to "__torch__".
- if module_name == "__main__":
- module_name = "__torch__"
- else:
- # Everything else gets a "__torch__" prefix to avoid name collisions
- # with the names of user values.
- module_name = "__torch__." + module_name
- if "." in name:
- raise RuntimeError(
- f"Could not get qualified name for class '{name}': "
- f"'{name}' is not a valid identifier"
- )
- return module_name + "." + name
- def _try_get_dispatched_fn(fn):
- if not callable(fn):
- return None
- return boolean_dispatched.get(fn)
- def _get_named_tuple_properties(obj):
- assert issubclass(obj, tuple) and hasattr(obj, "_fields")
- if hasattr(obj, "_field_defaults"):
- defaults = [
- obj._field_defaults[field]
- for field in obj._fields
- if field in obj._field_defaults
- ]
- else:
- defaults = []
- # In 3.10 recommended way to get annotations is to call `inspect.get_annotations` function
- # Also, annotations from base class are not inherited so they need to be queried explicitly
- if sys.version_info[:2] < (3, 10):
- obj_annotations = getattr(obj, "__annotations__", {})
- else:
- obj_annotations = inspect.get_annotations(obj)
- if len(obj_annotations) == 0 and hasattr(obj, "__base__"):
- obj_annotations = inspect.get_annotations(obj.__base__)
- annotations = []
- for field in obj._fields:
- if field in obj_annotations:
- the_type = torch.jit.annotations.ann_to_type(
- obj_annotations[field], fake_range()
- )
- annotations.append(the_type)
- else:
- annotations.append(torch._C.TensorType.getInferred())
- return type(obj).__name__, obj._fields, annotations, defaults
- def _create_named_tuple(
- t, unqual_name: str, field_names: List[str], defaults: Tuple[Any, ...]
- ):
- TupleType = collections.namedtuple(unqual_name, field_names, defaults=defaults) # type: ignore[call-arg, no-redef, misc]
- return TupleType(*t)
- @contextlib.contextmanager
- def _disable_emit_hooks():
- hooks = torch._C._jit_get_emit_hooks()
- torch._C._jit_set_emit_hooks(None, None)
- yield
- torch._C._jit_set_emit_hooks(hooks[0], hooks[1])
- def _disable_emit_hooks_decorator(_DecoratorContextManager) -> None: # noqa: F811
- def __enter__(self) -> None:
- self.hooks = torch._C._jit_get_emit_hooks()
- torch._C._jit_set_emit_hooks(None, None)
- def __exit__(self, *args) -> None:
- torch._C._jit_set_emit_hooks(self.hooks[0], self.hooks[1])
- def _is_exception(obj) -> bool:
- if not inspect.isclass(obj):
- return False
- return issubclass(obj, Exception)
- def raise_error_container_parameter_missing(target_type) -> None:
- if target_type == "Dict":
- raise RuntimeError(
- "Attempted to use Dict without "
- "contained types. Please add contained type, e.g. "
- "Dict[int, int]"
- )
- raise RuntimeError(
- f"Attempted to use {target_type} without a "
- "contained type. Please add a contained type, e.g. "
- f"{target_type}[int]"
- )
- def get_origin(target_type):
- return getattr(target_type, "__origin__", None)
- def get_args(target_type):
- return getattr(target_type, "__args__", None)
- def check_args_exist(target_type) -> None:
- if target_type is List or target_type is list:
- raise_error_container_parameter_missing("List")
- elif target_type is Tuple or target_type is tuple:
- raise_error_container_parameter_missing("Tuple")
- elif target_type is Dict or target_type is dict:
- raise_error_container_parameter_missing("Dict")
- elif target_type is None or target_type is Optional:
- raise_error_container_parameter_missing("Optional")
- def check_empty_containers(obj) -> None:
- if obj == [] or obj == {} or obj == ():
- warnings.warn(
- "The inner type of a container is lost when "
- "calling torch.jit.isinstance in eager mode. For "
- "example, List[int] would become list and "
- "therefore falsely return True for List[float] or"
- " List[str]."
- )
- # supports List/Dict/Tuple and Optional types
- # TODO support future
- def container_checker(obj, target_type) -> bool:
- origin_type = get_origin(target_type)
- check_args_exist(target_type)
- if origin_type is list or origin_type is List:
- check_empty_containers(obj)
- if not isinstance(obj, list):
- return False
- arg_type = get_args(target_type)[0]
- arg_origin = get_origin(arg_type)
- for el in obj:
- # check if nested container, ex: List[List[str]]
- if arg_origin: # processes nested container, ex: List[List[str]]
- if not container_checker(el, arg_type):
- return False
- elif not isinstance(el, arg_type):
- return False
- return True
- elif origin_type is Dict or origin_type is dict:
- check_empty_containers(obj)
- if not isinstance(obj, dict):
- return False
- key_type = get_args(target_type)[0]
- val_type = get_args(target_type)[1]
- for key, val in obj.items():
- # check if keys are of right type
- if not isinstance(key, key_type):
- return False
- val_origin = get_origin(val_type)
- if val_origin:
- if not container_checker(val, val_type):
- return False
- elif not isinstance(val, val_type):
- return False
- return True
- elif origin_type is Tuple or origin_type is tuple:
- check_empty_containers(obj)
- if not isinstance(obj, tuple):
- return False
- arg_types = get_args(target_type)
- if len(obj) != len(arg_types):
- return False
- for el, el_type in zip(obj, arg_types):
- el_origin = get_origin(el_type)
- if el_origin:
- if not container_checker(el, el_type):
- return False
- elif not isinstance(el, el_type):
- return False
- return True
- elif origin_type is Union: # also handles Optional
- if obj is None: # check before recursion because None is always fine
- return True
- inner_types = get_args(target_type)
- for t in inner_types:
- t_origin = get_origin(t)
- if t_origin:
- return container_checker(obj, t)
- elif isinstance(obj, t):
- return True
- return False
- def _isinstance(obj, target_type) -> bool:
- if isinstance(target_type, collections.abc.Container):
- if not isinstance(target_type, tuple):
- raise RuntimeError(
- "The second argument to "
- "`torch.jit.isinstance` must be a type "
- "or a tuple of types"
- )
- for t_type in target_type:
- if _isinstance(obj, t_type):
- return True
- return False
- origin_type = get_origin(target_type)
- if origin_type:
- return container_checker(obj, target_type)
- # Check to handle non-typed optional origin returns as none instead
- # of as optional in 3.7-3.8
- check_args_exist(target_type)
- # handle non-containers
- return isinstance(obj, target_type)
- class _TensorExtractor(pickle.Pickler):
- def __init__(self, *args, tensors: List[torch.Tensor], **kwargs):
- super().__init__(*args, **kwargs)
- self.tensors = tensors
- def persistent_id(self, obj):
- if isinstance(obj, torch.Tensor):
- self.tensors.append(obj)
- return ""
- # Since we just want to extract tensors, we don't mind if an object is
- # unpicklable if it doesn't contain tensors, as we can just ignore/skip
- # it. To play it safe, we only do so for common objects that we're sure
- # don't contain tensors. Feel free to add new types here. Note also that
- # even if a type isn't listed here this won't block users, since thet
- # can just add a __getstate__ or __reduce__ method to their class.
- if isinstance(obj, LockType):
- return ""
- # Futures and RRefs don't technically contain a value, they just offer
- # the means to access a value.
- if isinstance(obj, CFuture) or is_rref_instance(obj):
- return ""
- if isinstance(obj, CAwait):
- return ""
- if isinstance(obj, torch.cuda.Event):
- return ""
- if isinstance(obj, threading.Thread):
- return ""
- return None
- def _extract_tensors(obj):
- r"""
- This function is exclusively called from C++.
- See ``torch/csrc/jit/python/python_ivalue.h``.
- It extracts the tensors contained in the given object, through pickling.
- """
- tensors: List[torch.Tensor] = []
- extractor = _TensorExtractor(io.BytesIO(), protocol=-1, tensors=tensors)
- extractor.dump(obj)
- return tensors
|