123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- import torch
- import torch.fx as fx
- from torch.utils._pytree import tree_flatten
- aten = torch.ops.aten
- def get_aten_target(node):
- if hasattr(node.target, 'overloadpacket'):
- return node.target.overloadpacket
- return node.target
- rand_ops = [aten.dropout, aten._fused_dropout, aten._standard_gamma,
- aten.bernoulli, aten.multinomial, aten.native_dropout,
- aten.normal, aten.poisson, aten.binomial, aten.rrelu,
- aten.rand_like, aten.rand, aten.randint, aten.randn, aten.randperm]
- # return a new copy of torch.fx.graph.Graph with CSE applied to the input graph
- def fx_graph_cse(fx_g: torch.fx.graph.Graph):
- new_graph = fx.Graph()
- env = {} # map from node in the old graph to node in the new graph
- hash_env = {} # map from hash to a node in the new graph
- token_map = {} # map from hash to token
- for n in fx_g.nodes:
- # The placeholder, output, and get_attr nodes are copied to the new grpah without change
- # do not CSE away random operations
- if n.op == 'placeholder' or n.op == 'output' or n.op == 'get_attr' or get_aten_target(n) in rand_ops:
- new_node = new_graph.node_copy(n, lambda x: env[x])
- env[n] = new_node
- else: # n.op == 'call_function', should never see n.op == 'call_module' or 'call_method'
- # substitute args and kwargs memebrs to their mapping in env if exists
- # specs can be used to reconstruct nested list/dictionaries
- def substitute(arg_list):
- arg_list, spec = tree_flatten(arg_list)
- for i in range(len(arg_list)):
- v = arg_list[i]
- if isinstance(v, torch.fx.node.Node) and v in env:
- arg_list[i] = env[v]
- return tuple(arg_list), spec
- args, args_spec = substitute(n.args)
- kwargs, kwargs_spec = substitute(n.kwargs)
- # each token corresponds to a unique node
- # nodes with the same token can be substituted
- token = {"target": n.target, "args": args, "args_spec": args_spec,
- "kwargs": kwargs, "kwargs_spec": kwargs_spec}
- # hash substituted args to a number, do not hash specs because specs are not hashable
- hash_arg = hash((args, kwargs))
- hash_val = (n.target, hash_arg)
- # check if a node has a substitute and can be eliminated
- hash_val_in_hash_env = hash_val in hash_env
- if hash_val_in_hash_env and token_map[hash_val] == token:
- env[n] = hash_env[hash_val]
- continue
- new_node = new_graph.node_copy(n, lambda x: env[x])
- env[n] = new_node
- if not hash_val_in_hash_env:
- hash_env[hash_val] = new_node
- token_map[hash_val] = token
- return new_graph
- def strip_overloads(gm):
- """
- Modifies the target of graph nodes in :attr:`gm` to strip overloads.
- Args:
- gm(fx.GraphModule): The input Fx graph module to be modified
- """
- for node in gm.graph.nodes:
- if isinstance(node.target, torch._ops.OpOverload):
- node.target = node.target.overloadpacket
- gm.recompile()
- def get_placeholders(graph):
- return list(filter(lambda x: x.op == 'placeholder', graph.nodes))
- def get_outputs(graph):
- for node in graph.nodes:
- if node.op == 'output':
- return tree_flatten(node.args[0])[0]
- raise AssertionError("No output node found")
|