__init__.pyi 128 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944
  1. # @generated from torch/_C/__init__.pyi.in
  2. import torch
  3. from torch.package import PackageExporter
  4. from torch import Tensor, inf
  5. from torch.autograd.graph import Node as _Node
  6. from enum import Enum
  7. from pathlib import Path
  8. from typing import (
  9. Any, BinaryIO, Callable, ContextManager, Dict, Iterable, Iterator, List,
  10. NamedTuple, Optional, overload, Sequence, Tuple, TypeVar, Type, Union,
  11. Literal, Generic, Set, AnyStr)
  12. from torch.types import (
  13. _int, _float, _bool, _dtype, _device, _qscheme, _size, _layout, Device, Number, Storage, SymInt, _dispatchkey
  14. )
  15. from torch.storage import TypedStorage
  16. import builtins
  17. # This module is defined in torch/csrc/Module.cpp
  18. from . import _nn as _nn
  19. from . import _onnx as _onnx
  20. from . import _VariableFunctions as _VariableFunctions
  21. from . import _functorch as _functorch
  22. from . import _lazy as _lazy
  23. from . import _lazy_ts_backend as _lazy_ts_backend
  24. T = TypeVar('T')
  25. S = TypeVar("S", bound="torch.Tensor")
  26. # Defined in torch/csrc/Device.cpp
  27. class device:
  28. type: str # THPDevice_type
  29. index: _int # THPDevice_index
  30. def __get__(self, instance, owner=None) -> device: ...
  31. # THPDevice_pynew
  32. @overload
  33. def __init__(self, device: Union[_device, _int, str]) -> None: ...
  34. @overload
  35. def __init__(self, type: str, index: _int) -> None: ...
  36. # Uncomment if we ever make torch.device a decorator
  37. # def __call__(self, func: T) -> T: ...
  38. def __enter__(self) -> "device": ...
  39. def __exit__(self, exc_type, exc_val, exc_tb) -> None: ...
  40. def __reduce__(self) -> Tuple[Any, ...]: ... # THPDevice_reduce
  41. # Defined in torch/csrc/Stream.cpp
  42. class Stream:
  43. stream_id: _int # Stream id
  44. device_index: _int
  45. device_type: _int
  46. device: device # The device of the stream
  47. ...
  48. # Defined in torch/csrc/Size.cpp
  49. class Size(Tuple[_int, ...]):
  50. # TODO: __reduce__
  51. @overload # type: ignore[override]
  52. def __getitem__(self: Size, key: _int) -> _int: ...
  53. @overload
  54. def __getitem__(self: Size, key: slice) -> Size: ...
  55. def numel(self: Size) -> _int: ...
  56. ...
  57. # Defined in torch/csrc/Dtype.cpp
  58. class dtype:
  59. # TODO: __reduce__
  60. is_floating_point: _bool
  61. is_complex: _bool
  62. is_signed: _bool
  63. ...
  64. # Defined in torch/csrc/TypeInfo.cpp
  65. class iinfo:
  66. bits: _int
  67. min: _int
  68. max: _int
  69. dtype: str
  70. def __init__(self, dtype: _dtype) -> None: ...
  71. class finfo:
  72. bits: _int
  73. min: _float
  74. max: _float
  75. eps: _float
  76. tiny: _float
  77. smallest_normal: _float
  78. resolution: _float
  79. dtype: str
  80. @overload
  81. def __init__(self, dtype: _dtype) -> None: ...
  82. @overload
  83. def __init__(self) -> None: ...
  84. float32: dtype = ...
  85. float: dtype = ...
  86. float64: dtype = ...
  87. double: dtype = ...
  88. float16: dtype = ...
  89. bfloat16: dtype = ...
  90. half: dtype = ...
  91. uint8: dtype = ...
  92. int8: dtype = ...
  93. int16: dtype = ...
  94. short: dtype = ...
  95. int32: dtype = ...
  96. int: dtype = ...
  97. int64: dtype = ...
  98. long: dtype = ...
  99. complex32: dtype = ...
  100. complex64: dtype = ...
  101. cfloat: dtype = ...
  102. complex128: dtype = ...
  103. cdouble: dtype = ...
  104. quint8: dtype = ...
  105. qint8: dtype = ...
  106. qint32: dtype = ...
  107. bool: dtype = ...
  108. quint4x2: dtype = ...
  109. quint2x4: dtype = ...
  110. # Defined in torch/csrc/Layout.cpp
  111. class layout:
  112. ...
  113. # Defined in torch/csrc/utils/disable_torch_function.cpp
  114. def DisableTorchFunction(): ...
  115. def DisableTorchFunctionSubclass(): ...
  116. # Defined in torch/csrc/utils/tensor_layouts.cpp
  117. strided : layout = ...
  118. sparse_coo : layout = ...
  119. sparse_csr : layout = ...
  120. sparse_csc : layout = ...
  121. sparse_bsr : layout = ...
  122. sparse_bsc : layout = ...
  123. _mkldnn : layout = ...
  124. # Defined in torch/csrc/MemoryFormat.cpp
  125. class memory_format: ...
  126. # Defined in torch/csrc/utils/tensor_memoryformats.cpp
  127. contiguous_format: memory_format = ...
  128. channels_last: memory_format = ...
  129. channels_last_3d: memory_format = ...
  130. preserve_format: memory_format = ...
  131. # Defined in torch/csrc/QScheme.cpp
  132. class qscheme: ...
  133. # Defined in torch/csrc/utils/tensor_qschemes.h
  134. per_tensor_affine: qscheme = ...
  135. per_channel_affine: qscheme = ...
  136. per_tensor_symmetric: qscheme = ...
  137. per_channel_symmetric: qscheme = ...
  138. per_channel_affine_float_qparams: qscheme = ...
  139. # Defined in torch/csrc/autograd/python_function.cpp
  140. class _FunctionBase:
  141. ...
  142. # Defined in torch/csrc/autograd/python_legacy_variable.cpp
  143. class _LegacyVariableBase(Tensor): # inherits from Tensor to appease mypy
  144. def __init__(
  145. self,
  146. data: Optional[Tensor]=...,
  147. requires_grad: Optional[_bool]=...,
  148. volatile: Optional[_bool]=...,
  149. _grad_fn: Optional[_FunctionBase]=...
  150. ) -> None: ...
  151. # Defined in torch/csrc/jit/python/init.cpp
  152. class IODescriptor: ...
  153. class JITException: ...
  154. class Future:
  155. def __init__(self, devices: List[device]) -> None: ...
  156. def done(self) -> _bool: ...
  157. def value(self) -> Any: ...
  158. def wait(self) -> Any: ...
  159. def add_done_callback(self, callback: Callable) -> None: ...
  160. def then(self, callback: Callable) -> Future: ...
  161. def set_result(self, result: Any) -> None: ...
  162. def _set_unwrap_func(self, callback: Callable) -> None: ...
  163. class _Await:
  164. def __init__(self) -> None: ...
  165. def fn(self) -> Callable: ...
  166. def args(self) -> Tuple[Any, ...]: ...
  167. def is_nowait(self) -> _bool: ...
  168. def _jit_set_num_profiled_runs(num: _size) -> _size: ...
  169. # Defined in torch/csrc/jit/passes/mobile_optimizer_type.h
  170. class _MobileOptimizerType:
  171. ...
  172. CONV_BN_FUSION: _MobileOptimizerType
  173. INSERT_FOLD_PREPACK_OPS: _MobileOptimizerType
  174. REMOVE_DROPOUT: _MobileOptimizerType
  175. FUSE_ADD_RELU: _MobileOptimizerType
  176. HOIST_CONV_PACKED_PARAMS: _MobileOptimizerType
  177. VULKAN_AUTOMATIC_GPU_TRANSFER: _MobileOptimizerType
  178. def fork(*args: Any, **kwargs: Any) -> Future: ...
  179. def wait(fut: Future) -> Any: ...
  180. def _awaitable(*args: Any, **kwargs: Any) -> _Await: ...
  181. def _awaitable_wait(aw: _Await) -> Any: ...
  182. def _awaitable_nowait(x: Any) -> _Await: ...
  183. def _collect_all(futures: List[Future]) -> Future: ...
  184. def _set_print_stack_traces_on_fatal_signal(print: _bool) -> None: ...
  185. def unify_type_list(types: List[JitType]) -> JitType: ...
  186. def _freeze_module(module: ScriptModule,
  187. preserved_attrs: List[str] = [],
  188. freeze_interfaces: _bool = True,
  189. preserveParameters: _bool = True) -> ScriptModule: ...
  190. def _jit_pass_optimize_frozen_graph(Graph, optimize_numerics: _bool = True) -> None: ...
  191. def _jit_pass_optimize_for_inference(module: 'torch.jit.ScriptModule',
  192. other_methods: List[str] = []) -> None: ...
  193. def _jit_pass_fold_frozen_conv_bn(graph: Graph): ...
  194. def _jit_pass_fold_frozen_conv_add_or_sub(graph: Graph): ...
  195. def _jit_pass_fold_frozen_conv_mul_or_div(graph: Graph): ...
  196. def _jit_pass_fuse_frozen_conv_add_relu(graph: Graph): ...
  197. def _jit_pass_concat_frozen_linear(graph: Graph): ...
  198. def _jit_pass_convert_frozen_ops_to_mkldnn(graph: Graph): ...
  199. def _jit_pass_transpose_frozen_linear(graph:Graph): ...
  200. def _jit_pass_remove_dropout(module: 'torch.jit.ScriptModule'): ...
  201. def _is_tracing() -> _bool: ...
  202. def _jit_init() -> _bool: ...
  203. def _jit_flatten(arg: Any) -> Tuple[List[Tensor], IODescriptor]: ...
  204. def _jit_unflatten(vars: List[Tensor], desc: IODescriptor) -> Any: ...
  205. def _jit_get_operation(op_name: str) -> Tuple[Callable, List[str]]: ...
  206. def _get_operation_overload(op_name: str, op_overload_name: str) -> Tuple[Callable, Callable, List[Any]]: ...
  207. def _get_schema(op_name: str, overload_name: str) -> FunctionSchema: ...
  208. def _jit_pass_optimize_for_mobile(module: 'torch.jit.ScriptModule',
  209. optimization_blocklist: Set[_MobileOptimizerType],
  210. preserved_methods: List[AnyStr]) -> 'torch.jit.ScriptModule': ...
  211. def _clone_module_with_class(module: 'torch.jit.ScriptModule',
  212. ignored_methods: List[AnyStr],
  213. ignored_attributes: List[AnyStr]) -> 'torch.jit.ScriptModule': ...
  214. def _jit_pass_vulkan_optimize_for_mobile(module: 'torch.jit.ScriptModule',
  215. optimization_blocklist: Set[_MobileOptimizerType],
  216. preserved_methods: List[AnyStr]) -> 'torch.jit.ScriptModule': ...
  217. def _jit_pass_metal_optimize_for_mobile(module: 'torch.jit.ScriptModule',
  218. preserved_methods: List[AnyStr]) -> 'torch.jit.ScriptModule': ...
  219. def _jit_pass_inline(Graph) -> None: ...
  220. def _jit_pass_constant_propagation(Graph) -> None: ...
  221. def _jit_pass_propagate_shapes_on_graph(Graph) -> None: ...
  222. def _jit_register_decomposition_for_schema(schema: FunctionSchema, Graph) -> None: ...
  223. def _jit_erase_non_input_shape_information(Graph) -> None: ...
  224. def _jit_get_schemas_for_operator(name :str) -> List[FunctionSchema]: ...
  225. def _jit_get_all_schemas() -> List[FunctionSchema]: ...
  226. def _jit_check_alias_annotation(g: Graph, args: Tuple[Any, ...], unqualified_op_name: str): ...
  227. def _jit_can_fuse_on_cpu() -> _bool: ...
  228. def _jit_can_fuse_on_gpu() -> _bool: ...
  229. def _jit_can_fuse_on_cpu_legacy() -> _bool: ...
  230. def _debug_get_fusion_group_inlining() -> _bool: ...
  231. def _debug_set_fusion_group_inlining(enable: _bool): ...
  232. def _jit_texpr_fuser_enabled() -> _bool: ...
  233. def _jit_nvfuser_enabled() -> _bool: ...
  234. def _jit_llga_enabled() -> _bool: ...
  235. def _jit_set_llga_enabled(enable: _bool): ...
  236. def _llvm_enabled() -> _bool: ...
  237. def _jit_override_can_fuse_on_cpu(override: _bool): ...
  238. def _jit_override_can_fuse_on_gpu(override: _bool): ...
  239. def _jit_override_can_fuse_on_cpu_legacy(override: _bool): ...
  240. def _jit_set_symbolic_shapes_test_mode(override: _bool): ...
  241. def _jit_symbolic_shapes_test_mode_enabled() -> _bool: ...
  242. def _jit_set_texpr_fuser_enabled(enable: _bool): ...
  243. def _jit_set_te_must_use_llvm_cpu(use_llvm: _bool): ...
  244. def _jit_set_nvfuser_enabled(enable: _bool) -> _bool: ...
  245. def _jit_cat_wo_conditionals(optimize_cat: _bool): ...
  246. def _jit_opt_conditionals(opt_conds: _bool): ...
  247. def _jit_pass_canonicalize(graph: Graph, keep_unique_names: _bool = True): ...
  248. def _jit_pass_erase_shape_information(graph: Graph): ...
  249. def _jit_pass_fold_convbn(module: 'torch.jit.ScriptModule'): ...
  250. def _jit_pass_insert_observers(module: 'torch.jit.ScriptModule',
  251. method_name: str,
  252. qconfig_dict: Dict[str, Any],
  253. inplace: _bool,
  254. quant_type: _int): ...
  255. def _jit_pass_insert_quant_dequant(module: 'torch.jit.ScriptModule',
  256. method_name: str,
  257. inplace: _bool,
  258. debug: _bool,
  259. quant_type: _int): ...
  260. def _jit_pass_insert_quant_dequant_for_ondevice_ptq(module: 'torch.jit.ScriptModule',
  261. method_name: str,
  262. inplace: _bool,
  263. debug: _bool,
  264. quant_type: _int): ...
  265. def _jit_pass_quant_finalize(module: 'torch.jit.ScriptModule',
  266. quant_type: _int,
  267. preserved_attrs: Sequence[str]): ...
  268. def _jit_pass_quant_finalize_for_ondevice_ptq(module: 'torch.jit.ScriptModule',
  269. quant_type: _int,
  270. method_name: str): ...
  271. def _jit_pass_insert_observer_method_for_ondevice_ptq(module: 'torch.jit.ScriptModule',
  272. method_name: str,
  273. qconfig_dict: Dict[str, Any],
  274. inplace: _bool,
  275. quant_type: _int): ...
  276. def _jit_set_profiling_executor(profiling_flag: _bool) -> _bool: ...
  277. def _jit_set_profiling_mode(profiling_flag: _bool) -> _bool: ...
  278. def _jit_set_fusion_strategy(strategy: List[Tuple[str, _int]]) -> List[Tuple[str, _int]]: ...
  279. def _jit_try_infer_type(obj: Any) -> InferredType: ...
  280. def _jit_get_trigger_value(trigger_name: str) -> _int: ...
  281. # Defined in torch/csrc/jit/python/script_init.cpp
  282. ResolutionCallback = Callable[[str], Callable[..., Any]]
  283. # Defined in torch/csrc/jit/python/script_init.cpp
  284. # and torch/csrc/jit/python/init.cpp
  285. def _create_function_from_graph(qualname: str, graph: Graph) -> ScriptFunction: ...
  286. def _debug_set_autodiff_subgraph_inlining(disabled: _bool) -> None: ...
  287. def _ivalue_tags_match(lhs: ScriptModule, rhs: ScriptModule) -> _bool: ...
  288. def _jit_assert_is_instance(obj: Any, type: JitType): ...
  289. def _jit_clear_class_registry() -> None: ...
  290. def _jit_set_emit_hooks(ModuleHook: Optional[Callable], FunctionHook: Optional[Callable]) -> None: ...
  291. def _jit_get_emit_hooks() -> Tuple[Callable, Callable]: ...
  292. def _load_for_lite_interpreter(filename: Union[str, Path], map_location: Union[_device, str, None]): ...
  293. def _load_for_lite_interpreter_from_buffer(buffer: BinaryIO, map_location: Union[_device, str, None]): ...
  294. def _export_operator_list(module: LiteScriptModule): ...
  295. def _quantize_ondevice_ptq_dynamic(module: LiteScriptModule, method_name: str): ...
  296. def _get_model_bytecode_version(filename: Union[str, Path]) -> _int: ...
  297. def _get_model_bytecode_version_from_buffer(buffer: BinaryIO) -> _int: ...
  298. def _backport_for_mobile(filename_input: Union[str, Path], filename_output: Union[str, Path], to_version: _int) -> None: ...
  299. def _backport_for_mobile_from_buffer(buffer: BinaryIO, filename_output: Union[str, Path], to_version: _int) -> None: ...
  300. def _backport_for_mobile_to_buffer(filename_input: Union[str, Path], to_version: _int) -> bytes:...
  301. def _backport_for_mobile_from_buffer_to_buffer(buffer: BinaryIO, to_version: _int) -> bytes:...
  302. def _get_model_ops_and_info(filename: Union[str, Path]): ...
  303. def _get_model_ops_and_info_from_buffer(buffer: BinaryIO): ...
  304. def _get_mobile_model_contained_types(filename: Union[str, Path]): ...
  305. def _get_mobile_model_contained_types_from_buffer(buffer: BinaryIO): ...
  306. def _logging_set_logger(logger: LoggerBase) -> LoggerBase: ...
  307. def _get_graph_executor_optimize(optimize: Optional[_bool] = None) -> _bool: ...
  308. def _set_graph_executor_optimize(optimize: _bool): ...
  309. def _export_opnames(module: ScriptModule) -> List[str]: ...
  310. def _create_function_from_trace(
  311. qualname: str,
  312. func: Callable[..., Any],
  313. input_tuple: Tuple[Any, ...],
  314. var_lookup_fn: Callable[[Tensor], str],
  315. strict: _bool,
  316. force_outplace: _bool,
  317. argument_names: List[str]
  318. ) -> Tuple[Graph, Stack]: ...
  319. def _create_function_from_trace_with_dict(
  320. qualname: str,
  321. func: Callable[..., Any],
  322. input_dict: Dict[str, Any],
  323. var_lookup_fn: Callable[[Tensor], str],
  324. strict: _bool,
  325. force_outplace: _bool,
  326. argument_names: List[str]
  327. ) -> Tuple[Graph, Stack]: ...
  328. def _jit_is_script_object(obj: Any) -> _bool: ...
  329. def _last_executed_optimized_graph() -> Graph: ...
  330. def parse_type_comment(comment: str) -> Decl: ...
  331. def _get_upgraders_map_size() -> _int: ...
  332. def _dump_upgraders_map() -> Dict[str, str]: ...
  333. def _test_only_populate_upgraders(content: Dict[str, str]) -> None: ...
  334. def _test_only_remove_upgraders(content: Dict[str, str]) -> None: ...
  335. def merge_type_from_type_comment(decl: Decl, type_annotation_decl: Decl, is_method: _bool) -> Decl: ...
  336. def parse_ir(input: str, parse_tensor_constants: _bool) -> Graph: ...
  337. def parse_schema(schema: str) -> FunctionSchema: ...
  338. def get_device(input: Tensor) -> _int: ...
  339. def _resolve_type_from_object(obj: Any, range: SourceRange, rcb: ResolutionCallback) -> JitType: ...
  340. def _create_module_with_type(ty: JitType) -> ScriptModule: ...
  341. def _create_object_with_type(ty: ClassType) -> ScriptObject: ...
  342. def _run_emit_module_hook(m: ScriptModule): ...
  343. def _replace_overloaded_method_decl(overload_decl: Decl, implementation_def: Def, new_name: str) -> Def: ...
  344. def _jit_pass_lower_all_tuples(graph: Graph) -> None: ...
  345. def _jit_pass_onnx_set_dynamic_input_shape(graph: Graph, dynamic_axes: Dict[str, Dict[_int, str]], input_names: List[str]) -> None: ...
  346. def _jit_pass_onnx_graph_shape_type_inference(graph: Graph, params_dict: Dict[str, IValue], opset_version: _int) -> None: ...
  347. def _jit_pass_onnx_assign_output_shape(graph: Graph, tensors: List[Tensor], desc: IODescriptor, onnx_shape_inference: _bool, is_script: _bool, opset_version: _int) -> None: ...
  348. def _jit_pass_onnx_remove_inplace_ops_for_onnx(graph: Graph, module: Optional[ScriptModule] = None) -> None: ...
  349. def _jit_pass_remove_inplace_ops(graph: Graph) -> None: ...
  350. def _jit_pass_canonicalize_graph_fuser_ops(graph: Graph) -> None: ...
  351. def _jit_pass_peephole(graph: Graph, disable_shape_peepholes: _bool = False) -> None: ...
  352. def _jit_pass_onnx_autograd_function_process(graph: Graph) -> None: ...
  353. def _jit_pass_fuse_addmm(graph: Graph) -> None: ...
  354. def _jit_pass_onnx_preprocess(graph: Graph) -> None: ...
  355. def _jit_pass_prepare_division_for_onnx(graph: Graph) -> None: ...
  356. def _jit_pass_onnx_remove_print(graph: Graph) -> None: ...
  357. def _jit_pass_onnx_preprocess_caffe2(graph: Graph) -> None: ...
  358. def _jit_pass_onnx_unpack_quantized_weights(
  359. graph: Graph,
  360. paramsDict: Dict[str, IValue],
  361. caffe2: _bool
  362. ) -> Dict[str, IValue]: ...
  363. def _jit_pass_onnx_quantization_insert_permutes(
  364. graph: Graph,
  365. paramsDict: Dict[str, IValue]
  366. ) -> Dict[str, IValue]: ...
  367. def _jit_pass_custom_pattern_based_rewrite_graph(pattern: str, fused_node_name: str, graph: Graph) -> None: ...
  368. def _jit_onnx_list_model_parameters(module: ScriptModule) -> Tuple[ScriptModule, List[IValue]]: ...
  369. def _jit_pass_erase_number_types(graph: Graph) -> None: ...
  370. def _jit_pass_onnx_lint(graph: Graph) -> None: ...
  371. def _jit_pass_onnx(graph: Graph, _jit_pass_onnx: _onnx.OperatorExportTypes) -> Graph: ...
  372. def _jit_pass_onnx_scalar_type_analysis(graph: Graph, lowprecision_cast: _bool, opset_version: _int) -> None: ...
  373. def _jit_pass_onnx_peephole(graph: Graph, opset_version: _int, fixed_batch_size: _bool) -> None: ...
  374. def _jit_pass_dce_allow_deleting_nodes_with_side_effects(graph: Graph) -> None: ...
  375. def _jit_pass_onnx_function_substitution(graph: Graph) -> None: ...
  376. def _jit_pass_onnx_function_extraction(graph: Graph, module_names : Set[str], param_names : List[str]) -> Dict[Node, Dict[str, str]]: ...
  377. def _jit_pass_onnx_clear_scope_records() -> None: ...
  378. def _jit_pass_onnx_track_scope_attributes(graph: Graph, onnx_attrs: Dict[str, Any]) -> None: ...
  379. def _jit_is_onnx_log_enabled() -> _bool: ...
  380. def _jit_set_onnx_log_enabled(enabled: _bool) -> None: ...
  381. def _jit_set_onnx_log_output_stream(stream_name: str) -> None: ...
  382. def _jit_onnx_log(*args: Any) -> None: ...
  383. def _jit_pass_lower_graph(graph: Graph, m: Module) -> Tuple[Graph, List[IValue]]: ...
  384. def _jit_pass_inline_fork_wait(graph: Graph) -> None: ...
  385. def _jit_pass_onnx_deduplicate_initializers(graph: Graph, params_dict: Dict[str, IValue], is_train: _bool) -> Dict[str, IValue]: ...
  386. def _jit_pass_onnx_eval_peephole(graph: Graph, paramsDict: Dict[str, IValue]) -> Dict[str, IValue]: ...
  387. def _jit_pass_onnx_constant_fold(graph: Graph, paramsDict: Dict[str, IValue], opset_version: _int) -> Dict[str, IValue]: ...
  388. def _jit_pass_onnx_eliminate_unused_items(graph: Graph, paramsDict: Dict[str, IValue]) -> Dict[str, IValue]: ...
  389. def _jit_pass_onnx_cast_all_constant_to_floating(graph: Graph) -> None: ...
  390. def _jit_pass_filter_non_tensor_arguments(params: Dict[str, IValue]) -> Dict[str, Tensor]: ...
  391. def _jit_decay_packed_param_input_types(graph: Graph) -> None: ...
  392. def _jit_pass_onnx_node_shape_type_inference(n: Node, paramsDict: Dict[str, IValue], opset_version: _int) -> None: ...
  393. def _jit_onnx_convert_pattern_from_subblock(block: Block, n: Node, env: Dict[Value, Value]) -> List[Value]: ...
  394. def _jit_pass_onnx_block(
  395. old_block: Block,
  396. new_block: Block,
  397. operator_export_type: _onnx.OperatorExportTypes,
  398. env: Dict[Value, Value],
  399. is_sub_block: _bool
  400. ) -> Dict[Value, Value]: ...
  401. def _jit_pass_onnx_assign_scoped_names_for_node_and_value(graph: Graph) -> None: ...
  402. def _jit_pass_fixup_onnx_controlflow_node(n: Node, opset_version: _int) -> List[Value]: ...
  403. def _jit_onnx_create_full_scope_name(class_name: str, variable_name: str) -> str: ...
  404. def _compile_graph_to_code_table(name: str, graph: Graph) -> IValue: ...
  405. def _generate_upgraders_graph() -> Dict[str, Graph]: ...
  406. def _calculate_package_version_based_on_upgraders(val: _bool): ...
  407. def _get_version_calculator_flag() -> _bool: ...
  408. def _jit_script_interface_compile(name: str, class_def: ClassDef, rcb: ResolutionCallback, is_module: _bool): ...
  409. def _jit_script_compile_overload(
  410. qualname: str,
  411. overload_decl: Decl,
  412. implementation_def: Def,
  413. rcb: ResolutionCallback,
  414. implementation_defaults: Dict[str, Any],
  415. signature: Any
  416. ): ...
  417. def _jit_script_compile(
  418. qual_name: str,
  419. definition: Def,
  420. rcb: ResolutionCallback,
  421. defaults: Dict[str, Any]
  422. ): ...
  423. def _jit_script_class_compile(
  424. qual_name: str,
  425. definition: ClassDef,
  426. defaults: Dict[str, Dict[str, Any]],
  427. rcb: ResolutionCallback
  428. ): ...
  429. def _parse_source_def(src: str) -> Def: ...
  430. def import_ir_module(
  431. cu: CompilationUnit,
  432. filename: Union[str, Path],
  433. map_location: Union[_device, str, None],
  434. extra_files: Dict[str, Any]
  435. ) -> ScriptModule: ...
  436. def import_ir_module_from_buffer(
  437. cu: CompilationUnit,
  438. buffer: BinaryIO,
  439. map_location: Union[_device, str, None],
  440. extra_files: Dict[str, Any]
  441. ) -> ScriptModule: ...
  442. def _import_ir_module_from_package(
  443. cu: CompilationUnit,
  444. reader: PyTorchFileReader,
  445. storage_context: DeserializationStorageContext,
  446. map_location: Union[_device, str, None],
  447. ts_id: str
  448. ) -> ScriptModule: ...
  449. def _assign_output_shapes(graph: Graph, inputs: List[Tensor]) -> Graph: ...
  450. def _check_onnx_proto(proto: str) -> None: ...
  451. def _propagate_and_assign_input_shapes(
  452. graph: Graph,
  453. inputs: Tuple[Tensor, ...],
  454. param_count_list: List[_int],
  455. with_grad: _bool,
  456. propagate: _bool
  457. ) -> Graph: ...
  458. # Defined in torch/csrc/jit/runtime/graph_executor.h
  459. class GraphExecutorState:
  460. ...
  461. # Defined in torch/torch/csrc/jit/ir/alias_analysis.h
  462. class AliasDb:
  463. def __str__(self) -> str: ...
  464. ...
  465. class _InsertPoint:
  466. def __enter__(self) -> None: ...
  467. def __exit__(self, *args) -> None: ...
  468. # Defined in torch/csrc/jit/ir/ir.h
  469. class Use:
  470. @property
  471. def user(self) -> Node: ...
  472. @property
  473. def offset(self) -> _int: ...
  474. def isAfter(self, other: Use) -> _bool: ...
  475. ...
  476. # Defined in torch/csrc/jit/ir/ir.h
  477. class Value:
  478. def type(self)-> JitType: ...
  479. def setType(self, t: JitType) -> Value: ...
  480. def setTypeAs(self, other: Value) -> Value: ...
  481. def inferTypeFrom(self, t: Tensor) -> None: ...
  482. def debugName(self) -> str: ...
  483. def setDebugName(self, name: str) -> None: ...
  484. def unique(self) -> _int: ...
  485. def offset(self) -> _int: ...
  486. def node(self) -> Node: ...
  487. def uses(self) -> List[Use]: ...
  488. def replaceAllUsesWith(self, val: Value) -> None: ...
  489. def replaceAllUsesAfterNodeWith(self, node: Node, val: Value) -> None: ...
  490. def requires_grad(self) -> _bool: ...
  491. def requiresGrad(self) -> _bool: ...
  492. def copyMetadata(self, other: Value) -> Value: ...
  493. def isCompleteTensor(self) -> _bool: ...
  494. def toIValue(self) -> IValue: ...
  495. ...
  496. # Defined in torch/csrc/jit/ir/ir.h
  497. class Block:
  498. def inputs(self) -> Iterator[Value]: ...
  499. def outputs(self) -> Iterator[Value]: ...
  500. def nodes(self) -> Iterator[Node]: ...
  501. def paramNode(self) -> Node: ...
  502. def returnNode(self) -> Node: ...
  503. def owningNode(self) -> Node: ...
  504. def registerOutput(self, n: Value) -> _int: ...
  505. def addNode(self, name: str, inputs: Sequence[Value]) -> Node: ...
  506. ...
  507. # Defined in torch/csrc/jit/ir/ir.h
  508. class Node:
  509. def __getitem__(self, key: str) -> Any: ...
  510. def schema(self) -> str: ...
  511. def input(self) -> Value: ...
  512. def inputs(self) -> Iterator[Value]: ...
  513. def inputsAt(self, idx: _int) -> Value: ...
  514. def inputsSize(self) -> _int: ...
  515. def output(self) -> Value: ...
  516. def outputs(self) -> Iterator[Value]: ...
  517. def outputsAt(self, idx: _int) -> Value: ...
  518. def outputsSize(self) -> _int: ...
  519. def hasMultipleOutputs(self) -> _bool: ...
  520. def blocks(self) -> List[Block]: ...
  521. def addBlock(self) -> Block: ...
  522. def mustBeNone(self) -> _bool: ...
  523. def matches(self, pattern: str) -> _bool: ...
  524. def kind(self) -> str: ...
  525. def kindOf(self, name: str) -> str: ...
  526. def addInput(self, name: str) -> Value: ...
  527. def replaceInput(self, i: _int, newValue: Value) -> Value: ...
  528. def replaceInputWith(self, from_: Value, to: Value) -> None: ...
  529. def replaceAllUsesWith(self, n: Node) -> None: ...
  530. def insertBefore(self, n: Node) -> Node: ...
  531. def insertAfter(self, n: Node) -> Node: ...
  532. def isBefore(self, n: Node) -> _bool: ...
  533. def isAfter(self, n: Node) -> _bool: ...
  534. def moveBefore(self, n: Node) -> None: ...
  535. def moveAfter(self, n: Node) -> None: ...
  536. def removeInput(self, i: _int) -> None: ...
  537. def removeAllInputs(self, i: _int) -> None: ...
  538. def hasUses(self) -> _bool: ...
  539. def eraseOutput(self, i: _int) -> None: ...
  540. def addOutput(self) -> Value: ...
  541. def scopeName(self) -> str: ...
  542. def isNondeterministic(self) -> _bool: ...
  543. def copyAttributes(self, rhs: Node) -> Node: ...
  544. def copyMetadata(self, rhs: Node) -> Node: ...
  545. def hasAttributes(self) -> _bool: ...
  546. def hasAttribute(self, name: str) -> _bool: ...
  547. def removeAttribute(self, attr: str) -> Node: ...
  548. def namedInput(self, name: str) -> Value: ...
  549. def sourceRange(self) -> SourceRange: ...
  550. def owningBlock(self) -> Block: ...
  551. def findNode(self, kind: str, recurse: _bool = True) -> Node: ...
  552. def findAllNodes(self, kind: str, recurse: _bool = True) -> List[Node]: ...
  553. def getModuleHierarchy(self) -> str: ...
  554. def prev(self) -> Node: ...
  555. def destroy(self) -> None: ...
  556. def attributeNames(self) -> List[str]: ...
  557. # Accessors for attributes as types.
  558. def f(self, name: str) -> _float: ...
  559. def f_(self, name: str, val: _float) -> Node: ...
  560. def fs(self, name: str) -> List[_float]: ...
  561. def fs_(self, name: str, val: List[_float]) -> Node: ...
  562. def c(self, name: str) -> complex: ...
  563. def c_(self, name: str, val: complex) -> Node: ...
  564. def s(self, name: str) -> str: ...
  565. def s_(self, name: str, val: str) -> Node: ...
  566. def ss(self, name: str) -> List[str]: ...
  567. def ss_(self, name: str, val: List[str]) -> Node: ...
  568. def i(self, name: str) -> _int: ...
  569. def i_(self, name: str, val: _int) -> Node: ...
  570. # Cannot define "is" like this because it's a reserved keyword in python.
  571. # def is(self, name: str) -> List[_int]: ...
  572. # def is_(self, name: str, val: List[_int]) -> Node: ...
  573. def g(self, name: str) -> Graph: ...
  574. def g_(self, name: str, val: Graph) -> Node: ...
  575. def gs(self, name: str) -> List[Graph]: ...
  576. def gs_(self, name: str, val: List[Graph]) -> Node: ...
  577. def ival(self, name: str) -> IValue: ...
  578. def ival_(self, name: str, val: IValue) -> Node: ...
  579. def t(self, name: str) -> Tensor: ...
  580. def t_(self, name: str, val: Tensor) -> Node: ...
  581. def ts(self, name: str) -> List[Tensor]: ...
  582. def ts_(self, name: str, val: List[Tensor]) -> Node: ...
  583. def ty(self, name: str) -> JitType: ...
  584. def ty_(self, name: str, val: JitType) -> Node: ...
  585. def tys(self, name: str) -> List[JitType]: ...
  586. def tys_(self, name: str, val: List[JitType]) -> Node: ...
  587. ...
  588. # Defined in torch/torch/csrc/jit/ir/ir.h
  589. class Graph:
  590. def inputs(self) -> Iterator[Value]: ...
  591. def outputs(self) -> Iterator[Value]: ...
  592. def nodes(self) -> Iterator[Node]: ...
  593. def param_node(self) -> Node: ...
  594. def return_node(self) -> Node: ...
  595. def addInput(self, name: str = "") -> Value: ...
  596. def eraseInput(self, i: _int) -> None: ...
  597. def registerOutput(self, n: Value) -> _int: ...
  598. def eraseOutput(self, i: _int) -> None: ...
  599. def create(self, name: str, args, num_outputs: _int) -> Node: ...
  600. def appendNode(self, n: Node) -> Node: ...
  601. def prependNode(self, n: Node) -> Node: ...
  602. def insertNode(self, n: Node) -> Node: ...
  603. def block(self) -> Block: ...
  604. def lint(self) -> None: ...
  605. def alias_db(self) -> AliasDb: ...
  606. def setInsertPoint(self, n: Union[Block, Node]) -> None: ...
  607. def insert_point_guard(self, n: Union[Block, Node]) -> _InsertPoint: ...
  608. def insertPoint(self) -> Node: ...
  609. def insertGraph(self, callee: Graph, inputs: List[Value]) -> List[Value]: ...
  610. def makeMultiOutputIntoTuple(self) -> None: ...
  611. def copy(self) -> Graph: ...
  612. ...
  613. # Defined in torch/aten/src/ATen/core/alias_info.h
  614. class AliasInfo:
  615. is_write: _bool
  616. before_set: Set[str]
  617. after_set: Set[str]
  618. # Defined in torch/aten/src/ATen/core/function_schema.h
  619. class Argument:
  620. name: str
  621. type: JitType
  622. default_value: Optional[Any]
  623. def has_default_value(self) -> _bool: ...
  624. kwarg_only : _bool
  625. is_out: _bool
  626. alias_info: Optional[AliasInfo]
  627. ...
  628. class FunctionSchema:
  629. arguments: List[Argument]
  630. returns: List[Argument]
  631. name: str
  632. overload_name: str
  633. ...
  634. class _UpgraderEntry:
  635. bumped_at_version: _int
  636. upgrader_name: str
  637. old_schema: str
  638. def __init__(self, bumped_at_version: _int, upgrader_name: str, old_schema: str) -> None: ...
  639. class _UpgraderRange:
  640. min_version: _int
  641. max_version: _int
  642. def _get_max_operator_version() -> _int: ...
  643. def _get_operator_version_map() -> Dict[str, List[_UpgraderEntry]]: ...
  644. def _get_upgrader_ranges(name: str) -> List[_UpgraderRange]: ...
  645. def _test_only_add_entry_to_op_version(op_name: str, entry: _UpgraderEntry) -> None: ...
  646. def _test_only_remove_entry_to_op_version(op_name: str) -> None: ...
  647. # Defined in torch/csrc/jit/python/script_init.cpp
  648. class ScriptModuleSerializer:
  649. def __init__(self, export_writer: PyTorchFileWriter) -> None: ...
  650. def serialize(self, model: ScriptModule, script_module_id: _int) -> None: ...
  651. def write_files(self) -> None: ...
  652. def storage_context(self) -> SerializationStorageContext: ...
  653. ...
  654. # Defined in torch/csrc/jit/python/script_init.cpp
  655. class SerializationStorageContext:
  656. def __init__(self) -> None: ...
  657. def has_storage(self, storage: Storage) -> _bool: ...
  658. def get_or_add_storage(self, storage: Storage) -> _int: ...
  659. ...
  660. # Defined in torch/csrc/jit/python/script_init.cpp
  661. class DeserializationStorageContext:
  662. def __init__(self) -> None: ...
  663. def get_storage(self, name: str, dtype: _dtype) -> Tensor: ...
  664. def has_storage(self, name: str) -> _bool: ...
  665. def add_storage(self, name: str, tensor: Tensor) -> _int: ...
  666. ...
  667. # Defined in torch/csrc/jit/python/script_init.cpp
  668. class ConcreteModuleTypeBuilder:
  669. def __init__(self, obj: Any) -> None: ...
  670. def set_module_dict(self): ...
  671. def set_module_list(self): ...
  672. def set_parameter_list(self): ...
  673. def set_parameter_dict(self): ...
  674. def add_attribute(self, name: str, ty: JitType, is_param: _bool, is_buffer: _bool): ...
  675. def add_module(self, name: str, meta: ConcreteModuleType): ...
  676. def add_constant(self, name: str, value: Any): ...
  677. def add_overload(self, method_name: str, overloaded_method_names: List[str]): ...
  678. def add_builtin_function(self, name: str, symbol_name: str): ...
  679. def add_failed_attribute(self, name: str, failure_reason: str): ...
  680. def add_function_attribute(self, name: str, ty: JitType, func: Callable[..., Any]): ...
  681. def add_ignored_attribute(self, name: str): ...
  682. def add_ignored_attributes(self, names: List[str]): ...
  683. def add_forward_hook(self, hook: Callable[..., Any]): ...
  684. def add_forward_pre_hook(self, pre_hook: Callable[..., Any]): ...
  685. class ConcreteModuleType:
  686. def get_constants(self) -> Dict[str, Any]: ...
  687. def equals(self, other: 'ConcreteModuleType') -> _bool: ...
  688. @staticmethod
  689. def from_jit_type(ty: JitType) -> ConcreteModuleType: ...
  690. class CallStack:
  691. def __init__(self, name: str, range: SourceRange): ...
  692. class ErrorReport:
  693. def __init__(self, range: SourceRange) -> None: ...
  694. def what(self) -> str: ...
  695. @staticmethod
  696. def call_stack() -> str: ...
  697. class CompilationUnit:
  698. def __init__(self, lang: str=..., _frames_up: _int=...) -> None: ...
  699. def find_function(self, name: str) -> ScriptFunction: ...
  700. def __getattr__(self, name: str) -> ScriptFunction: ...
  701. def define(self, script: str, rcb: ResolutionCallback=..., _frames_up: _int=...): ...
  702. def get_interface(self, name: str) -> InterfaceType: ...
  703. def get_functions(self) -> List[ScriptFunction]: ...
  704. def create_function(self, name: str, graph: Graph, shouldMangle: _bool=...) -> ScriptFunction: ...
  705. def get_class(self, name: str) -> ClassType: ...
  706. class ScriptObject:
  707. def setattr(self, name: str, value: Any): ...
  708. class ScriptModule(ScriptObject):
  709. def _method_names(self) -> List[str]: ...
  710. def _get_method(self, name: str) -> ScriptMethod: ...
  711. class LiteScriptModule:
  712. def __call__(self, *input): ...
  713. def find_method(self, method_name: str): ...
  714. def forward(self, *input) -> List[str]: ...
  715. def run_method(self, method_name: str, *input): ...
  716. class ScriptFunction:
  717. def __call__(self, *args, **kwargs) -> Tensor: ...
  718. def save(self, filename: str, _extra_files: Dict[str, bytes]) -> None: ...
  719. def save_to_buffer(self, _extra_files: Dict[str, bytes]) -> bytes: ...
  720. @property
  721. def graph(self) -> Graph: ...
  722. def inlined_graph(self) -> Graph: ...
  723. def schema(self) -> FunctionSchema: ...
  724. def code(self) -> str: ...
  725. def name(self) -> str: ...
  726. @property
  727. def qualified_name(self) -> str: ...
  728. class ScriptMethod:
  729. graph: Graph
  730. @property
  731. def owner(self) -> ScriptModule: ...
  732. @property
  733. def name(self) -> str: ...
  734. class ModuleDict:
  735. def __init__(self, mod: ScriptModule) -> None: ...
  736. def items(self) -> List[Tuple[str, Any]]: ...
  737. class ParameterDict:
  738. def __init__(self, mod: ScriptModule) -> None: ...
  739. class BufferDict:
  740. def __init__(self, mod: ScriptModule) -> None: ...
  741. # Defined in torch/csrc/jit/api/module.h
  742. class Module:
  743. ...
  744. # Defined in torch/csrc/Module.cpp
  745. def _initExtension(shm_manager_path: str) -> None: ... # THPModule_initExtension
  746. def _autograd_init() -> _bool: ... # THPAutograd_initExtension
  747. def _add_docstr(obj: T, doc_obj: str) -> T: ... # THPModule_addDocStr
  748. def _init_names(arg: Sequence[Type]) -> None: ... # THPModule_initNames
  749. def _has_distributed() -> _bool: ... # THPModule_hasDistributed
  750. def _set_default_tensor_type(type) -> None: ... # THPModule_setDefaultTensorType
  751. def _set_default_dtype(d: _dtype) -> None: ... # THPModule_setDefaultDtype
  752. def _infer_size(arg1: Size, arg2: Size) -> Size: ... # THPModule_inferSize
  753. def _crash_if_csrc_asan() -> _int: ... # THPModule_crashIfCsrcASAN
  754. def _crash_if_csrc_ubsan() -> _int: ... # THPModule_crashIfCsrcUBSAN
  755. def _crash_if_aten_asan() -> _int: ... # THPModule_crashIfATenASAN
  756. def _show_config() -> str: ... # THPModule_showConfig
  757. def _cxx_flags() -> str: ... # THPModule_cxxFlags
  758. def _parallel_info() -> str: ... # THPModule_parallelInfo
  759. def _set_backcompat_broadcast_warn(arg: _bool) -> None: ... # THPModule_setBackcompatBroadcastWarn
  760. def _get_backcompat_broadcast_warn() -> _bool: ... # THPModule_getBackcompatBroadcastWarn
  761. def _set_backcompat_keepdim_warn(arg: _bool) -> None: ... # THPModule_setBackcompatKeepdimWarn
  762. def _get_backcompat_keepdim_warn() -> _bool: ... # THPModule_getBackcompatKeepdimWarn
  763. def get_num_thread() -> _int: ... # THPModule_getNumThreads
  764. def set_num_threads(nthreads: _int) -> None: ... # THPModule_setNumThreads
  765. def get_num_interop_threads() -> _int: ... # THPModule_getNumInteropThreads
  766. def set_num_interop_threads(nthreads: _int) -> None: ... # THPModule_setNumInteropThreads
  767. def _get_cudnn_enabled() -> _bool: ... # THPModule_userEnabledCuDNN
  768. def _set_cudnn_enabled(arg: _bool) -> None: ... # THPModule_setUserEnabledCuDNN
  769. def _get_flash_sdp_enabled() -> _bool: ... # THPModule_userEnabledFusedSDP
  770. def _set_sdp_use_flash(arg: _bool) -> None: ... # THPModule_setSDPUseFlash
  771. def _get_mem_efficient_sdp_enabled() -> _bool: ... # THPModule_userEnabledMathSDP
  772. def _set_sdp_use_mem_efficient(arg: _bool) -> None: ... # THPModule_setSDPUseMemEfficient
  773. def _get_math_sdp_enabled() -> _bool: ... # THPModule_userEnabledMathSDP
  774. def _set_sdp_use_math(arg: _bool) -> None: ... # THPModule_setSDPUseMath
  775. def _get_mkldnn_enabled() -> _bool: ... # THPModule_userEnabledMkldnn
  776. def _set_mkldnn_enabled(arg: _bool) -> None: ... # THPModule_setUserEnabledMkldnn
  777. def _get_cudnn_benchmark() -> _bool: ... # THPModule_benchmarkCuDNN
  778. def _set_cudnn_benchmark(arg: _bool) -> None: ... # THPModule_setBenchmarkCuDNN
  779. def _get_cudnn_deterministic() -> _bool: ... # THPModule_deterministicCuDNN
  780. def _set_cudnn_deterministic(arg: _bool) -> None: ... # THPModule_setDeterministicCuDNN
  781. def _get_deterministic_algorithms() -> _bool: ... # THPModule_deterministicAlgorithms
  782. def _get_deterministic_algorithms_warn_only() -> _bool: ... # THPModule_deterministicAlgorithmsWarnOnly
  783. def _set_deterministic_algorithms(mode: _bool, *, warn_only: _bool=...) -> None: ... # THPModule_setDeterministicAlgorithms
  784. def _get_warnAlways() -> _bool: ... # THPModule_warnAlways
  785. def _set_warnAlways(arg: _bool) -> None: ... # THPModule_setWarnAlways
  786. def _get_cudnn_allow_tf32() -> _bool: ... # THPModule_allowTF32CuDNN
  787. def _set_cudnn_allow_tf32(arg: _bool) -> None: ... # THPModule_setAllowTF32CuDNN
  788. def _get_cublas_allow_tf32() -> _bool: ... # THPModule_allowTF32CuBLAS
  789. def _set_cublas_allow_tf32(arg: _bool) -> None: ... # THPModule_setAllowTF32CuBLAS
  790. def _get_float32_matmul_precision() -> str: ... #THPModule_float32MatmulPrecision
  791. def _set_float32_matmul_precision(arg: str) -> None: ... #THPModule_setFloat32MatmulPrecision
  792. def _get_cublas_allow_fp16_reduced_precision_reduction() -> _bool: ... #THPModule_allowFP16ReductionCuBLAS
  793. def _set_cublas_allow_fp16_reduced_precision_reduction(arg: _bool) -> None: ... #THPModule_setAllowFP16ReductionCuBLAS
  794. def _get_cublas_allow_bf16_reduced_precision_reduction() -> _bool: ... #THPModule_allowBF16ReductionCuBLAS
  795. def _set_cublas_allow_bf16_reduced_precision_reduction(arg: _bool) -> None: ... #THPModule_setAllowBF16ReductionCuBLAS
  796. def _set_conj(x: Tensor, conj: _bool) -> None: ...
  797. def _set_neg(x: Tensor, neg: _bool) -> None: ...
  798. def _set_meta_in_tls_dispatch_include(meta_in_tls: _bool) -> None: ...
  799. def _meta_in_tls_dispatch_include() -> _bool: ...
  800. def _select_conv_backend(*args, **kwargs) -> ConvBackend: ...
  801. def _conv_determine_backend_memory_format(input: Tensor, weight: Tensor, backend: ConvBackend) -> memory_format: ...
  802. def _has_storage(x: Tensor) -> _bool: ...
  803. def _should_allow_numbers_as_tensors(func_name: str) -> _bool: ...
  804. # NB: There is no Capsule type in typing, see
  805. # https://code.activestate.com/lists/python-dev/139675/
  806. def _to_dlpack(data: Tensor) -> Any: ... # THPModule_toDLPack
  807. def _from_dlpack(data: Any) -> Tensor: ... # THPModule_fromDLPack
  808. def _get_cpp_backtrace(frames_to_skip: _int, maximum_number_of_frames: _int) -> str: ... # THPModule_getCppBacktrace
  809. def set_flush_denormal(arg: _bool) -> _bool: ... # THPModule_setFlushDenormal
  810. def get_default_dtype() -> _dtype: ... # THPModule_getDefaultDtype
  811. def _get_default_device() -> str: ... # THPModule_getDefaultDevice
  812. def _get_qengine() -> _int: ... # THPModule_qEngine
  813. def _set_qengine(qegine: _int) -> None: ... # THPModule_setQEngine
  814. def _supported_qengines() -> List[_int]: ... # THPModule_supportedQEngines
  815. def _is_xnnpack_enabled() -> _bool: ... # THPModule_isEnabledXNNPACK
  816. def _check_sparse_tensor_invariants() -> _bool: ... # THPModule_checkSparseTensorInvariants
  817. def _set_check_sparse_tensor_invariants(arg: _bool) -> None: ... # THPModule_setCheckSparseTensorInvariants
  818. def _set_default_mobile_cpu_allocator() -> None: ... # THPModule_setDefaultMobileCPUAllocator
  819. def _unset_default_mobile_cpu_allocator() -> None: ... # THPModule_unsetDefaultMobileCPUAllocator
  820. def _is_torch_function_enabled() -> _bool: ... # THPModule_isEnabledTorchFunction
  821. def _has_torch_function(args: Iterable[Any]) -> _bool: ... # THPModule_has_torch_function
  822. def _has_torch_function_unary(Any) -> _bool: ... # THPModule_has_torch_function_unary
  823. def _has_torch_function_variadic(*args: Any) -> _bool: ... # THPModule_has_torch_function_variadic
  824. def _vmapmode_increment_nesting() -> _int: ... # THPModule_vmapmode_increment_nesting
  825. def _vmapmode_decrement_nesting() -> _int: ... # THPModule_vmapmode_decrement_nesting
  826. def _log_api_usage_once(str) -> None: ... # LogAPIUsageOnceFromPython
  827. def _demangle(str) -> str: ... # c10::demangle
  828. def _disabled_torch_function_impl(func: Callable, types: Iterable[Type], args: Tuple, kwargs: Dict) -> Any: ... # THPModule_disable_torch_function
  829. def _disabled_torch_dispatch_impl(func: Callable, types: Iterable[Type], args: Tuple, kwargs: Dict) -> Any: ... # THPModule_disable_dispatch_function
  830. def _get_linalg_preferred_backend() -> torch._C._LinalgBackend: ...
  831. def _set_linalg_preferred_backend(arg: torch._C._LinalgBackend): ...
  832. class _LinalgBackend:
  833. Default: _LinalgBackend
  834. Cusolver: _LinalgBackend
  835. Magma: _LinalgBackend
  836. class ConvBackend(Enum):
  837. ...
  838. # Defined in `valgrind.h` and `callgrind.h` respecitively.
  839. def _valgrind_supported_platform() -> _bool: ... # NVALGRIND
  840. def _valgrind_toggle() -> None: ... # CALLGRIND_TOGGLE_COLLECT
  841. def _valgrind_toggle_and_dump_stats() -> None: ... # CALLGRIND_TOGGLE_COLLECT and CALLGRIND_DUMP_STATS
  842. has_openmp: _bool
  843. has_mkl: _bool
  844. has_mps: _bool
  845. has_lapack: _bool
  846. has_cuda: _bool
  847. has_mkldnn: _bool
  848. has_cudnn: _bool
  849. has_spectral: _bool
  850. _GLIBCXX_USE_CXX11_ABI: _bool
  851. default_generator: Generator
  852. # Defined in torch/csrc/autograd/init.cpp
  853. def _set_grad_enabled(enabled: _bool) -> None: ...
  854. def is_grad_enabled() -> _bool: ...
  855. def _set_fwd_grad_enabled(enabled: _bool) -> None: ...
  856. def _is_fwd_grad_enabled() -> _bool: ...
  857. def is_inference_mode_enabled() -> _bool: ...
  858. def set_autocast_enabled(enabled: _bool) -> None: ...
  859. def is_autocast_enabled() -> _bool: ...
  860. def clear_autocast_cache() -> None: ...
  861. def set_autocast_cpu_enabled(enabled: _bool) -> None: ...
  862. def is_autocast_cpu_enabled() -> _bool: ...
  863. def set_autocast_cpu_dtype(dtype: _dtype) -> None: ...
  864. def set_autocast_gpu_dtype(dtype: _dtype) -> None: ...
  865. def get_autocast_cpu_dtype() -> _dtype: ...
  866. def get_autocast_gpu_dtype() -> _dtype: ...
  867. def autocast_increment_nesting() -> _int: ...
  868. def autocast_decrement_nesting() -> _int: ...
  869. def is_autocast_cache_enabled() -> _bool: ...
  870. def set_autocast_cache_enabled(enabled: _bool) -> None: ...
  871. def set_anomaly_enabled(enabled: _bool, check_nan: _bool = True) -> None: ...
  872. def is_anomaly_enabled() -> _bool: ...
  873. def is_anomaly_check_nan_enabled() -> _bool: ...
  874. def _enter_dual_level() -> _int: ...
  875. def _exit_dual_level(level: _int) -> None: ...
  876. def _make_dual(tensor: Tensor, tangent: Tensor, level: _int) -> Tensor: ...
  877. def _unpack_dual(tensor: Tensor, level: _int) -> Tensor: ...
  878. def __set_forward_AD_enabled(enabled: _bool) -> None: ...
  879. def __is_forward_AD_enabled() -> _bool: ...
  880. def _register_default_hooks(pack_hook: Callable, unpack_hook: Callable) -> None: ...
  881. def _reset_default_hooks() -> None: ...
  882. def _is_torch_function_mode_enabled()-> _bool: ...
  883. def _set_torch_function_mode(cls: Any) -> None: ...
  884. def _push_on_torch_function_stack(cls: Any) -> None: ...
  885. def _pop_torch_function_stack() -> Any: ...
  886. def _get_function_stack_at(idx: _int) -> Any: ...
  887. def _len_torch_function_stack() -> _int: ...
  888. def _set_torch_dispatch_mode(cls: Any) -> None: ...
  889. def _push_on_torch_dispatch_stack(cls: Any) -> None: ...
  890. def _pop_torch_dispatch_stack() -> Any: ...
  891. def _get_dispatch_stack_at(idx: _int) -> Any: ...
  892. def _len_torch_dispatch_stack() -> _int: ...
  893. class _InferenceMode:
  894. def __init__(self, mode: _bool) -> None: ...
  895. class _DisableFuncTorch:
  896. def __init__(self) -> None: ...
  897. class _EnableTorchFunction:
  898. def __init__(self) -> None: ...
  899. class _MultithreadingEnabled:
  900. def __init__(self, mode: _bool) -> None: ...
  901. class _ViewReplayEnabled:
  902. def __init__(self, mode: _bool) -> None: ...
  903. # Defined in torch/csrc/jit/python/script_init.cpp
  904. class LoggerBase:
  905. ...
  906. class NoopLogger(LoggerBase):
  907. ...
  908. class LockingLogger(LoggerBase):
  909. ...
  910. class AggregationType(Enum):
  911. SUM = 0
  912. AVG = 1
  913. class FileCheck:
  914. def run(self, test_string: str) -> None: ...
  915. def check(self, test_string: str) -> 'FileCheck': ...
  916. def check_not(self, test_string: str) -> 'FileCheck': ...
  917. def check_same(self, test_string: str) -> 'FileCheck': ...
  918. def check_next(self, test_string: str) -> 'FileCheck': ...
  919. def check_count(self, test_string: str, count: _int, exactly: _bool = False) -> 'FileCheck': ...
  920. def check_dag(self, test_string: str) -> 'FileCheck': ...
  921. def check_source_highlighted(self, test_string: str) -> 'FileCheck': ...
  922. ...
  923. # Defined in torch/csrc/jit/python/init.cpp
  924. class PyTorchFileReader:
  925. @overload
  926. def __init__(self, name: str) -> None: ...
  927. @overload
  928. def __init__(self, buffer: BinaryIO) -> None: ...
  929. def get_record(self, name: str) -> bytes: ...
  930. ...
  931. class PyTorchFileWriter:
  932. @overload
  933. def __init__(self, name: str) -> None: ...
  934. @overload
  935. def __init__(self, buffer: BinaryIO) -> None: ...
  936. def write_record(self, name: str, data: Union[bytes, _int], size: _int) -> None: ...
  937. def write_end_of_file(self) -> None: ...
  938. def set_min_version(self, version: _int) -> None: ...
  939. def get_all_written_records(self) -> List[str]: ...
  940. def archive_name(self) -> str: ...
  941. ...
  942. def _jit_get_inline_everything_mode() -> _bool: ...
  943. def _jit_set_inline_everything_mode(enabled: _bool) -> None: ...
  944. def _jit_get_logging_option() -> str: ...
  945. def _jit_set_logging_option(option: str) -> None: ...
  946. def _jit_set_logging_stream(stream_name: str) -> None: ...
  947. def _jit_pass_cse(Graph) -> _bool: ...
  948. def _jit_pass_dce(Graph) -> None: ...
  949. def _jit_pass_lint(Graph) -> None: ...
  950. # Defined in torch/csrc/jit/python/python_custome_class.cpp
  951. def _get_custom_class_python_wrapper(name: str, attr: str) -> Any: ...
  952. # Defined in torch/csrc/Module.cpp
  953. def _rename_privateuse1_backend(backend: str) -> None: ...
  954. # Defined in torch/csrc/Generator.cpp
  955. class Generator:
  956. device: _device
  957. def __init__(self, device: Union[_device, str, None] = None) -> None: ...
  958. def get_state(self) -> Tensor: ...
  959. def set_state(self, _new_state: Tensor) -> Generator: ...
  960. def manual_seed(self, seed: _int) -> Generator: ...
  961. def seed(self) -> _int: ...
  962. def initial_seed(self) -> _int: ...
  963. # Defined in torch/csrc/utils/python_dispatch.cpp
  964. class _DispatchOperatorHandle:
  965. def schema(self) -> FunctionSchema: ...
  966. class _DispatchModule:
  967. def def_(self, schema: str, alias: str = "") -> _DispatchModule: ...
  968. def def_legacy(self, schema: str) -> _DispatchModule: ...
  969. def def_name_t_t(self, name: str, dispatch: str, debug: str = "default_def_name_t_t") -> _DispatchModule: ...
  970. def def_schema_t_t(self, schema: str, dispatch: str, alias: str, debug: str = "default_def_schema_t_t") -> _DispatchModule: ...
  971. def impl_t_t(self, name: str, dispatch: str, debug: str = "impl_t_t") -> _DispatchModule: ...
  972. def impl(self, name: str, dispatch: str, func: Callable) -> _DispatchModule: ...
  973. def define(self, schema: str, alias: str = "") -> _DispatchModule: ...
  974. def fallback_fallthrough(self, dispatch: str = "") -> _DispatchModule: ...
  975. def _dispatch_library(kind: str, name: str, dispatch: str, file: str = "", linenum: Any = 0) -> _DispatchModule: ...
  976. def _dispatch_dump(name: str) -> str: ...
  977. def _dispatch_dump_table(name: str) -> str: ...
  978. def _dispatch_check_invariants(name: str) -> None: ...
  979. def _dispatch_check_all_invariants() -> None: ...
  980. def _dispatch_has_kernel(name: str) -> _bool: ...
  981. def _dispatch_has_kernel_for_dispatch_key(name: str, dispatch: _dispatchkey) -> _bool: ...
  982. def _dispatch_has_kernel_for_any_dispatch_key(name: str, dispatch_key_set: DispatchKeySet) -> _bool: ...
  983. def _dispatch_has_computed_kernel_for_dispatch_key(name: str, dispatch: _dispatchkey) -> _bool: ...
  984. def _dispatch_find_dangling_impls() -> List[str]: ...
  985. def _dispatch_get_all_op_names() -> List[str]: ...
  986. def _dispatch_tls_set_dispatch_key_excluded(dispatch: _dispatchkey, val: _bool) -> None: ...
  987. def _dispatch_tls_is_dispatch_key_excluded(dispatch: _dispatchkey) -> _bool: ...
  988. def _dispatch_tls_set_dispatch_key_included(dispatch: _dispatchkey, val: _bool) -> None: ...
  989. def _dispatch_tls_is_dispatch_key_included(dispatch: _dispatchkey) -> _bool: ...
  990. def _dispatch_isTensorSubclassLike(tensor: Tensor) -> _bool: ...
  991. def _dispatch_key_name(dispatch: _dispatchkey) -> str: ...
  992. def _dispatch_key_parse(dispatch: _dispatchkey) -> DispatchKey: ...
  993. def _dispatch_num_backends() -> _int: ...
  994. def _functionalization_reapply_views_tls() -> _bool: ...
  995. class DispatchKey(Enum):
  996. Undefined: DispatchKey = ...
  997. FPGA: DispatchKey = ...
  998. ORT: DispatchKey = ...
  999. Vulkan: DispatchKey = ...
  1000. Metal: DispatchKey = ...
  1001. MKLDNN: DispatchKey = ...
  1002. OpenGL: DispatchKey = ...
  1003. OpenCL: DispatchKey = ...
  1004. IDEEP: DispatchKey = ...
  1005. CustomRNGKeyId: DispatchKey = ...
  1006. MkldnnCPU: DispatchKey = ...
  1007. Sparse: DispatchKey = ...
  1008. SparseCsrCPU: DispatchKey = ...
  1009. SparseCsrCUDA: DispatchKey = ...
  1010. Python: DispatchKey = ...
  1011. FuncTorchDynamicLayerBackMode: DispatchKey = ...
  1012. ZeroTensor: DispatchKey = ...
  1013. BackendSelect: DispatchKey = ...
  1014. Named: DispatchKey = ...
  1015. AutogradOther: DispatchKey = ...
  1016. AutogradFunctionality: DispatchKey = ...
  1017. AutogradNestedTensor: DispatchKey = ...
  1018. Tracer: DispatchKey = ...
  1019. Autocast: DispatchKey = ...
  1020. Batched: DispatchKey = ...
  1021. VmapMode: DispatchKey = ...
  1022. FuncTorchDynamicLayerFrontMode: DispatchKey = ...
  1023. Functionalize: DispatchKey = ...
  1024. TESTING_ONLY_GenericWrapper: DispatchKey = ...
  1025. TESTING_ONLY_GenericMode: DispatchKey = ...
  1026. ADInplaceOrView: DispatchKey = ...
  1027. Autograd: DispatchKey = ...
  1028. CompositeImplicitAutograd: DispatchKey = ...
  1029. CompositeImplicitAutogradNestedTensor: DispatchKey = ...
  1030. CompositeExplicitAutograd: DispatchKey = ...
  1031. CompositeExplicitAutogradNonFunctional: DispatchKey = ...
  1032. CPU: DispatchKey = ...
  1033. CUDA: DispatchKey = ...
  1034. HIP: DispatchKey = ...
  1035. XLA: DispatchKey = ...
  1036. MPS: DispatchKey = ...
  1037. IPU: DispatchKey = ...
  1038. XPU: DispatchKey = ...
  1039. HPU: DispatchKey = ...
  1040. VE: DispatchKey = ...
  1041. Lazy: DispatchKey = ...
  1042. Meta: DispatchKey = ...
  1043. PrivateUse1: DispatchKey = ...
  1044. PrivateUse2: DispatchKey = ...
  1045. PrivateUse3: DispatchKey = ...
  1046. QuantizedCPU: DispatchKey = ...
  1047. QuantizedCUDA: DispatchKey = ...
  1048. QuantizedHIP: DispatchKey = ...
  1049. QuantizedXLA: DispatchKey = ...
  1050. QuantizedMPS: DispatchKey = ...
  1051. QuantizedIPU: DispatchKey = ...
  1052. QuantizedXPU: DispatchKey = ...
  1053. QuantizedHPU: DispatchKey = ...
  1054. QuantizedVE: DispatchKey = ...
  1055. QuantizedLazy: DispatchKey = ...
  1056. QuantizedMeta: DispatchKey = ...
  1057. QuantizedPrivateUse1: DispatchKey = ...
  1058. QuantizedPrivateUse2: DispatchKey = ...
  1059. QuantizedPrivateUse3: DispatchKey = ...
  1060. SparseCPU: DispatchKey = ...
  1061. SparseCUDA: DispatchKey = ...
  1062. SparseHIP: DispatchKey = ...
  1063. SparseXLA: DispatchKey = ...
  1064. SparseMPS: DispatchKey = ...
  1065. SparseIPU: DispatchKey = ...
  1066. SparseXPU: DispatchKey = ...
  1067. SparseHPU: DispatchKey = ...
  1068. SparseVE: DispatchKey = ...
  1069. SparseLazy: DispatchKey = ...
  1070. SparseMeta: DispatchKey = ...
  1071. SparsePrivateUse1: DispatchKey = ...
  1072. SparsePrivateUse2: DispatchKey = ...
  1073. SparsePrivateUse3: DispatchKey = ...
  1074. NestedTensorCPU: DispatchKey = ...
  1075. NestedTensorCUDA: DispatchKey = ...
  1076. NestedTensorHIP: DispatchKey = ...
  1077. NestedTensorXLA: DispatchKey = ...
  1078. NestedTensorMPS: DispatchKey = ...
  1079. NestedTensorIPU: DispatchKey = ...
  1080. NestedTensorXPU: DispatchKey = ...
  1081. NestedTensorHPU: DispatchKey = ...
  1082. NestedTensorVE: DispatchKey = ...
  1083. NestedTensorLazy: DispatchKey = ...
  1084. NestedTensorMeta: DispatchKey = ...
  1085. NestedTensorPrivateUse1: DispatchKey = ...
  1086. NestedTensorPrivateUse2: DispatchKey = ...
  1087. NestedTensorPrivateUse3: DispatchKey = ...
  1088. AutogradCPU: DispatchKey = ...
  1089. AutogradCUDA: DispatchKey = ...
  1090. AutogradHIP: DispatchKey = ...
  1091. AutogradXLA: DispatchKey = ...
  1092. AutogradMPS: DispatchKey = ...
  1093. AutogradIPU: DispatchKey = ...
  1094. AutogradXPU: DispatchKey = ...
  1095. AutogradHPU: DispatchKey = ...
  1096. AutogradVE: DispatchKey = ...
  1097. AutogradLazy: DispatchKey = ...
  1098. AutogradMeta: DispatchKey = ...
  1099. AutogradPrivateUse1: DispatchKey = ...
  1100. AutogradPrivateUse2: DispatchKey = ...
  1101. AutogradPrivateUse3: DispatchKey = ...
  1102. class DispatchKeySet:
  1103. def __or__(self, other: DispatchKeySet) -> DispatchKeySet: ...
  1104. def __sub__(self, other: DispatchKeySet) -> DispatchKeySet: ...
  1105. def __and__(self, other: DispatchKeySet) -> DispatchKeySet: ...
  1106. def highestPriorityTypeId(self) -> DispatchKey: ...
  1107. def has(self, k: _dispatchkey) -> _bool: ...
  1108. def __repr__(self) -> str: ...
  1109. _dispatch_autogradother_backends: DispatchKeySet
  1110. def _dispatch_has_backend_fallback(dispatch: _dispatchkey) -> _bool: ...
  1111. def _dispatch_keyset_full_after(t: _dispatchkey) -> DispatchKeySet: ...
  1112. def _dispatch_keyset_to_string(keyset: DispatchKeySet) -> str: ...
  1113. def _dispatch_get_backend_keyset_from_autograd(dispatch: _dispatchkey) -> DispatchKeySet: ...
  1114. def _dispatch_keys(tensor: Tensor) -> DispatchKeySet: ...
  1115. def _dispatch_tls_local_exclude_set() -> DispatchKeySet: ...
  1116. def _dispatch_tls_local_include_set() -> DispatchKeySet: ...
  1117. def _dispatch_is_included_in_alias(dispatch_a: _dispatchkey, dispatch_b: _dispatchkey) -> _bool: ...
  1118. class ExcludeDispatchKeyGuard:
  1119. pass
  1120. class _AutoDispatchBelowAutograd:
  1121. pass
  1122. def _dispatch_print_registrations_for_dispatch_key(dispatch_key: str = "") -> None: ...
  1123. def _dispatch_get_registrations_for_dispatch_key(dispatch_key: str = "") -> List[str]: ...
  1124. def _are_functorch_transforms_active() -> _bool: ...
  1125. # Define in torch/csrc/autograd/init.cpp
  1126. class _DisablePythonDispatcher:
  1127. pass
  1128. class _EnablePythonDispatcher:
  1129. pass
  1130. def _set_python_dispatcher(dispatcher: object) -> None: ...
  1131. # Defined in torch/csrc/utils/init.cpp
  1132. class BenchmarkConfig:
  1133. num_calling_threads: _int
  1134. num_worker_threads: _int
  1135. num_warmup_iters: _int
  1136. num_iters: _int
  1137. profiler_output_path: str
  1138. class BenchmarkExecutionStats:
  1139. latency_avg_ms: _float
  1140. num_iters: _int
  1141. class ThroughputBenchmark:
  1142. def __init__(self, module: Any) -> None: ...
  1143. def add_input(self, *args: Any, **kwargs: Any) -> None: ...
  1144. def run_once(self, *args: Any, **kwargs: Any) -> Any: ...
  1145. def benchmark(self, config: BenchmarkConfig) -> BenchmarkExecutionStats: ...
  1146. # Defined in torch/csrc/Storage.cpp
  1147. class StorageBase(object): ...
  1148. # TODO: where
  1149. class DoubleTensor(Tensor): ...
  1150. class FloatTensor(Tensor): ...
  1151. class LongTensor(Tensor): ...
  1152. class IntTensor(Tensor): ...
  1153. class ShortTensor(Tensor): ...
  1154. class HalfTensor(Tensor): ...
  1155. class CharTensor(Tensor): ...
  1156. class ByteTensor(Tensor): ...
  1157. class BoolTensor(Tensor): ...
  1158. # Defined in torch/csrc/autograd/python_engine.cpp
  1159. class _ImperativeEngine:
  1160. def queue_callback(self, callback: Callable[[], None]) -> None: ...
  1161. def run_backward(self, *args: Any, **kwargs: Any) -> Tuple[Tensor, ...]: ...
  1162. def is_checkpoint_valid(self) -> _bool: ...
  1163. # Defined in torch/csrc/autograd/python_variable.cpp
  1164. class _TensorMeta(type):
  1165. pass
  1166. # Defined in torch/csrc/autograd/python_variable.cpp
  1167. class _TensorBase(metaclass=_TensorMeta):
  1168. requires_grad: _bool
  1169. shape: Size
  1170. data: Tensor
  1171. names: List[str]
  1172. device: _device
  1173. dtype: _dtype
  1174. layout: _layout
  1175. real: Tensor
  1176. imag: Tensor
  1177. T: Tensor
  1178. H: Tensor
  1179. mT: Tensor
  1180. mH: Tensor
  1181. ndim: _int
  1182. output_nr: _int
  1183. _version: _int
  1184. _base: Optional[Tensor]
  1185. _cdata: _int
  1186. grad_fn: _Node
  1187. _grad_fn: Any
  1188. _grad: Optional[Tensor]
  1189. grad: Optional[Tensor]
  1190. _backward_hooks: Optional[Dict[_int, Callable[[Tensor], Optional[Tensor]]]]
  1191. def __abs__(self) -> Tensor: ...
  1192. def __add__(self, other: Any) -> Tensor: ...
  1193. @overload
  1194. def __and__(self, other: Tensor) -> Tensor: ...
  1195. @overload
  1196. def __and__(self, other: Number) -> Tensor: ...
  1197. @overload
  1198. def __and__(self, other: Any) -> Tensor: ...
  1199. def __bool__(self) -> builtins.bool: ...
  1200. def __complex__(self) -> builtins.complex: ...
  1201. def __div__(self, other: Any) -> Tensor: ...
  1202. def __eq__(self, other: Any) -> Tensor: ... # type: ignore[override]
  1203. def __float__(self) -> builtins.float: ...
  1204. def __floordiv__(self, other: Any) -> Tensor: ...
  1205. def __ge__(self, other: Any) -> Tensor: ...
  1206. def __getitem__(self, indices: Union[None, _int, slice, Tensor, List, Tuple]) -> Tensor: ...
  1207. def __gt__(self, other: Any) -> Tensor: ...
  1208. def __iadd__(self, other: Any) -> Tensor: ...
  1209. @overload
  1210. def __iand__(self, other: Tensor) -> Tensor: ...
  1211. @overload
  1212. def __iand__(self, other: Number) -> Tensor: ...
  1213. @overload
  1214. def __iand__(self, other: Any) -> Tensor: ...
  1215. def __idiv__(self, other: Any) -> Tensor: ...
  1216. def __ifloordiv__(self, other: Any) -> Tensor: ...
  1217. @overload
  1218. def __ilshift__(self, other: Tensor) -> Tensor: ...
  1219. @overload
  1220. def __ilshift__(self, other: Number) -> Tensor: ...
  1221. @overload
  1222. def __ilshift__(self, other: Any) -> Tensor: ...
  1223. def __imod__(self, other: Any) -> Tensor: ...
  1224. def __imul__(self, other: Any) -> Tensor: ...
  1225. def __index__(self) -> builtins.int: ...
  1226. @overload
  1227. def __init__(self, *args: Any, device: Device=None) -> None: ...
  1228. @overload
  1229. def __init__(self, storage: Storage) -> None: ...
  1230. @overload
  1231. def __init__(self, other: Tensor) -> None: ...
  1232. @overload
  1233. def __init__(self, size: _size, *, device: Device=None) -> None: ...
  1234. def __int__(self) -> builtins.int: ...
  1235. def __invert__(self) -> Tensor: ...
  1236. @overload
  1237. def __ior__(self, other: Tensor) -> Tensor: ...
  1238. @overload
  1239. def __ior__(self, other: Number) -> Tensor: ...
  1240. @overload
  1241. def __ior__(self, other: Any) -> Tensor: ...
  1242. @overload
  1243. def __irshift__(self, other: Tensor) -> Tensor: ...
  1244. @overload
  1245. def __irshift__(self, other: Number) -> Tensor: ...
  1246. @overload
  1247. def __irshift__(self, other: Any) -> Tensor: ...
  1248. def __isub__(self, other: Any) -> Tensor: ...
  1249. @overload
  1250. def __ixor__(self, other: Tensor) -> Tensor: ...
  1251. @overload
  1252. def __ixor__(self, other: Number) -> Tensor: ...
  1253. @overload
  1254. def __ixor__(self, other: Any) -> Tensor: ...
  1255. def __le__(self, other: Any) -> Tensor: ...
  1256. def __long__(self) -> builtins.int: ...
  1257. @overload
  1258. def __lshift__(self, other: Tensor) -> Tensor: ...
  1259. @overload
  1260. def __lshift__(self, other: Number) -> Tensor: ...
  1261. @overload
  1262. def __lshift__(self, other: Any) -> Tensor: ...
  1263. def __lt__(self, other: Any) -> Tensor: ...
  1264. def __matmul__(self, other: Any) -> Tensor: ...
  1265. def __mod__(self, other: Any) -> Tensor: ...
  1266. def __mul__(self, other: Any) -> Tensor: ...
  1267. def __ne__(self, other: Any) -> Tensor: ... # type: ignore[override]
  1268. def __neg__(self) -> Tensor: ...
  1269. def __nonzero__(self) -> builtins.bool: ...
  1270. @overload
  1271. def __or__(self, other: Tensor) -> Tensor: ...
  1272. @overload
  1273. def __or__(self, other: Number) -> Tensor: ...
  1274. @overload
  1275. def __or__(self, other: Any) -> Tensor: ...
  1276. def __pow__(self, other: Any) -> Tensor: ...
  1277. def __radd__(self, other: Any) -> Tensor: ...
  1278. def __rand__(self, other: Any) -> Tensor: ...
  1279. def __rfloordiv__(self, other: Any) -> Tensor: ...
  1280. def __rmul__(self, other: Any) -> Tensor: ...
  1281. def __ror__(self, other: Any) -> Tensor: ...
  1282. def __rpow__(self, other: Any) -> Tensor: ...
  1283. @overload
  1284. def __rshift__(self, other: Tensor) -> Tensor: ...
  1285. @overload
  1286. def __rshift__(self, other: Number) -> Tensor: ...
  1287. @overload
  1288. def __rshift__(self, other: Any) -> Tensor: ...
  1289. def __rsub__(self, other: Any) -> Tensor: ...
  1290. def __rtruediv__(self, other: Any) -> Tensor: ...
  1291. def __rxor__(self, other: Any) -> Tensor: ...
  1292. def __setitem__(self, indices: Union[None, _int, slice, Tensor, List, Tuple], val: Union[Tensor, Number]) -> None: ...
  1293. def __sub__(self, other: Any) -> Tensor: ...
  1294. def __truediv__(self, other: Any) -> Tensor: ...
  1295. @overload
  1296. def __xor__(self, other: Tensor) -> Tensor: ...
  1297. @overload
  1298. def __xor__(self, other: Number) -> Tensor: ...
  1299. @overload
  1300. def __xor__(self, other: Any) -> Tensor: ...
  1301. def _addmm_activation(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1, use_gelu: _bool=False) -> Tensor: ...
  1302. def _autocast_to_full_precision(self, cuda_enabled: _bool, cpu_enabled: _bool) -> Tensor: ...
  1303. def _autocast_to_reduced_precision(self, cuda_enabled: _bool, cpu_enabled: _bool, cuda_dtype: _dtype, cpu_dtype: _dtype) -> Tensor: ...
  1304. def _coalesced_(self, coalesced: _bool) -> Tensor: ...
  1305. def _conj(self) -> Tensor: ...
  1306. def _conj_physical(self) -> Tensor: ...
  1307. def _dimI(self) -> _int: ...
  1308. def _dimV(self) -> _int: ...
  1309. def _indices(self) -> Tensor: ...
  1310. def _is_all_true(self) -> Tensor: ...
  1311. def _is_any_true(self) -> Tensor: ...
  1312. def _is_view(self) -> _bool: ...
  1313. def _is_zerotensor(self) -> _bool: ...
  1314. def _make_subclass(cls, data: Tensor, require_grad: _bool = False, dispatch_strides: _bool=False, dispatch_device: _bool=False, device_for_backend_keys: Optional[_device] = None) -> Tensor: ...
  1315. def _neg_view(self) -> Tensor: ...
  1316. def _nested_tensor_size(self) -> Tensor: ...
  1317. def _nested_tensor_strides(self) -> Tensor: ...
  1318. def _nnz(self) -> _int: ...
  1319. def _to_dense(self, dtype: Optional[_dtype]=None) -> Tensor: ...
  1320. def _values(self) -> Tensor: ...
  1321. def abs(self) -> Tensor: ...
  1322. def abs_(self) -> Tensor: ...
  1323. def absolute(self) -> Tensor: ...
  1324. def absolute_(self) -> Tensor: ...
  1325. def acos(self) -> Tensor: ...
  1326. def acos_(self) -> Tensor: ...
  1327. def acosh(self) -> Tensor: ...
  1328. def acosh_(self) -> Tensor: ...
  1329. def add(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, alpha: Optional[Number]=1, out: Optional[Tensor]=None) -> Tensor: ...
  1330. def add_(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, alpha: Optional[Number]=1) -> Tensor: ...
  1331. def addbmm(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
  1332. def addbmm_(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
  1333. def addcdiv(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
  1334. def addcdiv_(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
  1335. def addcmul(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
  1336. def addcmul_(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
  1337. def addmm(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
  1338. def addmm_(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
  1339. def addmv(self, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
  1340. def addmv_(self, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
  1341. def addr(self, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
  1342. def addr_(self, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
  1343. def adjoint(self) -> Tensor: ...
  1344. def align_as(self, other: Tensor) -> Tensor: ...
  1345. @overload
  1346. def align_to(self, order: Sequence[Union[str, ellipsis, None]], ellipsis_idx: _int) -> Tensor: ...
  1347. @overload
  1348. def align_to(self, names: Sequence[Union[str, ellipsis, None]]) -> Tensor: ...
  1349. @overload
  1350. def all(self) -> Tensor: ...
  1351. @overload
  1352. def all(self, dim: _int, keepdim: _bool=False) -> Tensor: ...
  1353. @overload
  1354. def all(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> Tensor: ...
  1355. def allclose(self, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: _bool=False) -> _bool: ...
  1356. def amax(self, dim: Union[_int, _size]=(), keepdim: _bool=False) -> Tensor: ...
  1357. def amin(self, dim: Union[_int, _size]=(), keepdim: _bool=False) -> Tensor: ...
  1358. def aminmax(self, *, dim: Optional[_int]=None, keepdim: _bool=False) -> torch.return_types.aminmax: ...
  1359. def angle(self) -> Tensor: ...
  1360. @overload
  1361. def any(self) -> Tensor: ...
  1362. @overload
  1363. def any(self, dim: _int, keepdim: _bool=False) -> Tensor: ...
  1364. @overload
  1365. def any(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> Tensor: ...
  1366. def apply_(self, callable: Callable) -> Tensor: ...
  1367. def arccos(self) -> Tensor: ...
  1368. def arccos_(self) -> Tensor: ...
  1369. def arccosh(self) -> Tensor: ...
  1370. def arccosh_(self) -> Tensor: ...
  1371. def arcsin(self) -> Tensor: ...
  1372. def arcsin_(self) -> Tensor: ...
  1373. def arcsinh(self) -> Tensor: ...
  1374. def arcsinh_(self) -> Tensor: ...
  1375. def arctan(self) -> Tensor: ...
  1376. def arctan2(self, other: Tensor) -> Tensor: ...
  1377. def arctan2_(self, other: Tensor) -> Tensor: ...
  1378. def arctan_(self) -> Tensor: ...
  1379. def arctanh(self) -> Tensor: ...
  1380. def arctanh_(self) -> Tensor: ...
  1381. def argmax(self, dim: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
  1382. def argmin(self, dim: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
  1383. @overload
  1384. def argsort(self, *, stable: _bool, dim: _int=-1, descending: _bool=False) -> Tensor: ...
  1385. @overload
  1386. def argsort(self, dim: _int=-1, descending: _bool=False) -> Tensor: ...
  1387. @overload
  1388. def argsort(self, dim: Union[str, ellipsis, None], descending: _bool=False) -> Tensor: ...
  1389. def argwhere(self) -> Tensor: ...
  1390. def as_strided(self, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], storage_offset: Optional[Union[_int, SymInt]]=None) -> Tensor: ...
  1391. def as_strided_(self, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], storage_offset: Optional[Union[_int, SymInt]]=None) -> Tensor: ...
  1392. def as_strided_scatter(self, src: Tensor, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], storage_offset: Optional[Union[_int, SymInt]]=None) -> Tensor: ...
  1393. def as_subclass(self, cls: Type[S]) -> S: ...
  1394. def asin(self) -> Tensor: ...
  1395. def asin_(self) -> Tensor: ...
  1396. def asinh(self) -> Tensor: ...
  1397. def asinh_(self) -> Tensor: ...
  1398. def atan(self) -> Tensor: ...
  1399. def atan2(self, other: Tensor) -> Tensor: ...
  1400. def atan2_(self, other: Tensor) -> Tensor: ...
  1401. def atan_(self) -> Tensor: ...
  1402. def atanh(self) -> Tensor: ...
  1403. def atanh_(self) -> Tensor: ...
  1404. def baddbmm(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
  1405. def baddbmm_(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
  1406. @overload
  1407. def bernoulli(self, *, generator: Optional[Generator]=None) -> Tensor: ...
  1408. @overload
  1409. def bernoulli(self, p: _float, *, generator: Optional[Generator]=None) -> Tensor: ...
  1410. @overload
  1411. def bernoulli_(self, p: Tensor, *, generator: Optional[Generator]=None) -> Tensor: ...
  1412. @overload
  1413. def bernoulli_(self, p: _float=0.5, *, generator: Optional[Generator]=None) -> Tensor: ...
  1414. def bfloat16(self) -> Tensor: ...
  1415. def bincount(self, weights: Optional[Tensor]=None, minlength: _int=0) -> Tensor: ...
  1416. @overload
  1417. def bitwise_and(self, other: Tensor) -> Tensor: ...
  1418. @overload
  1419. def bitwise_and(self, other: Number) -> Tensor: ...
  1420. @overload
  1421. def bitwise_and_(self, other: Tensor) -> Tensor: ...
  1422. @overload
  1423. def bitwise_and_(self, other: Number) -> Tensor: ...
  1424. @overload
  1425. def bitwise_left_shift(self, other: Tensor) -> Tensor: ...
  1426. @overload
  1427. def bitwise_left_shift(self, other: Number) -> Tensor: ...
  1428. @overload
  1429. def bitwise_left_shift_(self, other: Tensor) -> Tensor: ...
  1430. @overload
  1431. def bitwise_left_shift_(self, other: Number) -> Tensor: ...
  1432. def bitwise_not(self) -> Tensor: ...
  1433. def bitwise_not_(self) -> Tensor: ...
  1434. @overload
  1435. def bitwise_or(self, other: Tensor) -> Tensor: ...
  1436. @overload
  1437. def bitwise_or(self, other: Number) -> Tensor: ...
  1438. @overload
  1439. def bitwise_or_(self, other: Tensor) -> Tensor: ...
  1440. @overload
  1441. def bitwise_or_(self, other: Number) -> Tensor: ...
  1442. @overload
  1443. def bitwise_right_shift(self, other: Tensor) -> Tensor: ...
  1444. @overload
  1445. def bitwise_right_shift(self, other: Number) -> Tensor: ...
  1446. @overload
  1447. def bitwise_right_shift_(self, other: Tensor) -> Tensor: ...
  1448. @overload
  1449. def bitwise_right_shift_(self, other: Number) -> Tensor: ...
  1450. @overload
  1451. def bitwise_xor(self, other: Tensor) -> Tensor: ...
  1452. @overload
  1453. def bitwise_xor(self, other: Number) -> Tensor: ...
  1454. @overload
  1455. def bitwise_xor_(self, other: Tensor) -> Tensor: ...
  1456. @overload
  1457. def bitwise_xor_(self, other: Number) -> Tensor: ...
  1458. def bmm(self, mat2: Tensor) -> Tensor: ...
  1459. def bool(self) -> Tensor: ...
  1460. @overload
  1461. def broadcast_to(self, size: Sequence[Union[_int, SymInt]]) -> Tensor: ...
  1462. @overload
  1463. def broadcast_to(self, *size: _int) -> Tensor: ...
  1464. def byte(self) -> Tensor: ...
  1465. def cauchy_(self, median: _float=0, sigma: _float=1, *, generator: Optional[Generator]=None) -> Tensor: ...
  1466. def ccol_indices(self) -> Tensor: ...
  1467. def ceil(self) -> Tensor: ...
  1468. def ceil_(self) -> Tensor: ...
  1469. def chalf(self, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
  1470. def char(self) -> Tensor: ...
  1471. def cholesky(self, upper: _bool=False) -> Tensor: ...
  1472. def cholesky_inverse(self, upper: _bool=False) -> Tensor: ...
  1473. def cholesky_solve(self, input2: Tensor, upper: _bool=False) -> Tensor: ...
  1474. def chunk(self, chunks: _int, dim: _int=0) -> List[Tensor]: ...
  1475. @overload
  1476. def clamp(self, min: Optional[Tensor]=None, max: Optional[Tensor]=None) -> Tensor: ...
  1477. @overload
  1478. def clamp(self, min: Optional[Number]=None, max: Optional[Number]=None) -> Tensor: ...
  1479. @overload
  1480. def clamp_(self, min: Optional[Tensor]=None, max: Optional[Tensor]=None) -> Tensor: ...
  1481. @overload
  1482. def clamp_(self, min: Optional[Number]=None, max: Optional[Number]=None) -> Tensor: ...
  1483. @overload
  1484. def clamp_max(self, max: Tensor) -> Tensor: ...
  1485. @overload
  1486. def clamp_max(self, max: Number) -> Tensor: ...
  1487. @overload
  1488. def clamp_max_(self, max: Tensor) -> Tensor: ...
  1489. @overload
  1490. def clamp_max_(self, max: Number) -> Tensor: ...
  1491. @overload
  1492. def clamp_min(self, min: Tensor) -> Tensor: ...
  1493. @overload
  1494. def clamp_min(self, min: Number) -> Tensor: ...
  1495. @overload
  1496. def clamp_min_(self, min: Tensor) -> Tensor: ...
  1497. @overload
  1498. def clamp_min_(self, min: Number) -> Tensor: ...
  1499. @overload
  1500. def clip(self, min: Optional[Tensor]=None, max: Optional[Tensor]=None) -> Tensor: ...
  1501. @overload
  1502. def clip(self, min: Optional[Number]=None, max: Optional[Number]=None) -> Tensor: ...
  1503. @overload
  1504. def clip_(self, min: Optional[Tensor]=None, max: Optional[Tensor]=None) -> Tensor: ...
  1505. @overload
  1506. def clip_(self, min: Optional[Number]=None, max: Optional[Number]=None) -> Tensor: ...
  1507. def clone(self, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
  1508. def coalesce(self) -> Tensor: ...
  1509. def col_indices(self) -> Tensor: ...
  1510. def conj(self) -> Tensor: ...
  1511. def conj_physical(self) -> Tensor: ...
  1512. def conj_physical_(self) -> Tensor: ...
  1513. def contiguous(self, memory_format=torch.contiguous_format) -> Tensor: ...
  1514. def copy_(self, src: Tensor, non_blocking: _bool=False) -> Tensor: ...
  1515. @overload
  1516. def copysign(self, other: Tensor) -> Tensor: ...
  1517. @overload
  1518. def copysign(self, other: Number) -> Tensor: ...
  1519. @overload
  1520. def copysign_(self, other: Tensor) -> Tensor: ...
  1521. @overload
  1522. def copysign_(self, other: Number) -> Tensor: ...
  1523. def corrcoef(self) -> Tensor: ...
  1524. def cos(self) -> Tensor: ...
  1525. def cos_(self) -> Tensor: ...
  1526. def cosh(self) -> Tensor: ...
  1527. def cosh_(self) -> Tensor: ...
  1528. @overload
  1529. def count_nonzero(self, dim: Optional[_int]=None) -> Tensor: ...
  1530. @overload
  1531. def count_nonzero(self, dim: _size) -> Tensor: ...
  1532. @overload
  1533. def count_nonzero(self, *dim: _int) -> Tensor: ...
  1534. def cov(self, *, correction: _int=1, fweights: Optional[Tensor]=None, aweights: Optional[Tensor]=None) -> Tensor: ...
  1535. def cpu(self) -> Tensor: ...
  1536. def cross(self, other: Tensor, dim: Optional[_int]=None) -> Tensor: ...
  1537. def crow_indices(self) -> Tensor: ...
  1538. def cuda(self, device: Optional[Union[_device, _int, str]]=None, non_blocking: _bool=False) -> Tensor: ...
  1539. @overload
  1540. def cummax(self, dim: _int) -> torch.return_types.cummax: ...
  1541. @overload
  1542. def cummax(self, dim: Union[str, ellipsis, None]) -> torch.return_types.cummax: ...
  1543. @overload
  1544. def cummin(self, dim: _int) -> torch.return_types.cummin: ...
  1545. @overload
  1546. def cummin(self, dim: Union[str, ellipsis, None]) -> torch.return_types.cummin: ...
  1547. @overload
  1548. def cumprod(self, dim: _int, *, dtype: Optional[_dtype]=None) -> Tensor: ...
  1549. @overload
  1550. def cumprod(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
  1551. @overload
  1552. def cumprod_(self, dim: _int, *, dtype: Optional[_dtype]=None) -> Tensor: ...
  1553. @overload
  1554. def cumprod_(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
  1555. @overload
  1556. def cumsum(self, dim: _int, *, dtype: Optional[_dtype]=None) -> Tensor: ...
  1557. @overload
  1558. def cumsum(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
  1559. @overload
  1560. def cumsum_(self, dim: _int, *, dtype: Optional[_dtype]=None) -> Tensor: ...
  1561. @overload
  1562. def cumsum_(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
  1563. def data_ptr(self) -> _int: ...
  1564. def deg2rad(self) -> Tensor: ...
  1565. def deg2rad_(self) -> Tensor: ...
  1566. def dense_dim(self) -> _int: ...
  1567. def dequantize(self) -> Tensor: ...
  1568. def det(self) -> Tensor: ...
  1569. def detach(self) -> Tensor: ...
  1570. def detach_(self) -> Tensor: ...
  1571. def diag(self, diagonal: _int=0) -> Tensor: ...
  1572. def diag_embed(self, offset: _int=0, dim1: _int=-2, dim2: _int=-1) -> Tensor: ...
  1573. def diagflat(self, offset: _int=0) -> Tensor: ...
  1574. @overload
  1575. def diagonal(self, *, outdim: Union[str, ellipsis, None], dim1: Union[str, ellipsis, None], dim2: Union[str, ellipsis, None], offset: _int=0) -> Tensor: ...
  1576. @overload
  1577. def diagonal(self, offset: _int=0, dim1: _int=0, dim2: _int=1) -> Tensor: ...
  1578. def diagonal_scatter(self, src: Tensor, offset: _int=0, dim1: _int=0, dim2: _int=1) -> Tensor: ...
  1579. def diff(self, n: _int=1, dim: _int=-1, prepend: Optional[Tensor]=None, append: Optional[Tensor]=None) -> Tensor: ...
  1580. def digamma(self) -> Tensor: ...
  1581. def digamma_(self) -> Tensor: ...
  1582. def dim(self) -> _int: ...
  1583. def dist(self, other: Tensor, p: Number=2) -> Tensor: ...
  1584. def div(self, other: Union[Tensor, Number], *, rounding_mode: Optional[str] = None) -> Tensor: ...
  1585. def div_(self, other: Union[Tensor, Number], *, rounding_mode: Optional[str] = None) -> Tensor: ...
  1586. @overload
  1587. def divide(self, other: Tensor) -> Tensor: ...
  1588. @overload
  1589. def divide(self, other: Tensor, *, rounding_mode: Optional[str]) -> Tensor: ...
  1590. @overload
  1591. def divide(self, other: Number, *, rounding_mode: Optional[str]) -> Tensor: ...
  1592. @overload
  1593. def divide(self, other: Number) -> Tensor: ...
  1594. @overload
  1595. def divide_(self, other: Tensor) -> Tensor: ...
  1596. @overload
  1597. def divide_(self, other: Tensor, *, rounding_mode: Optional[str]) -> Tensor: ...
  1598. @overload
  1599. def divide_(self, other: Number, *, rounding_mode: Optional[str]) -> Tensor: ...
  1600. @overload
  1601. def divide_(self, other: Number) -> Tensor: ...
  1602. def dot(self, tensor: Tensor) -> Tensor: ...
  1603. def double(self) -> Tensor: ...
  1604. @overload
  1605. def dsplit(self, sections: _int) -> List[Tensor]: ...
  1606. @overload
  1607. def dsplit(self, indices: _size) -> List[Tensor]: ...
  1608. @overload
  1609. def dsplit(self, *indices: _int) -> List[Tensor]: ...
  1610. def element_size(self) -> _int: ...
  1611. @overload
  1612. def eq(self, other: Tensor) -> Tensor: ...
  1613. @overload
  1614. def eq(self, other: Number) -> Tensor: ...
  1615. @overload
  1616. def eq_(self, other: Tensor) -> Tensor: ...
  1617. @overload
  1618. def eq_(self, other: Number) -> Tensor: ...
  1619. def equal(self, other: Tensor) -> _bool: ...
  1620. def erf(self) -> Tensor: ...
  1621. def erf_(self) -> Tensor: ...
  1622. def erfc(self) -> Tensor: ...
  1623. def erfc_(self) -> Tensor: ...
  1624. def erfinv(self) -> Tensor: ...
  1625. def erfinv_(self) -> Tensor: ...
  1626. def exp(self) -> Tensor: ...
  1627. def exp2(self) -> Tensor: ...
  1628. def exp2_(self) -> Tensor: ...
  1629. def exp_(self) -> Tensor: ...
  1630. @overload
  1631. def expand(self, size: Sequence[Union[_int, SymInt]], *, implicit: _bool=False) -> Tensor: ...
  1632. @overload
  1633. def expand(self, *size: _int, implicit: _bool=False) -> Tensor: ...
  1634. def expand_as(self, other: Tensor) -> Tensor: ...
  1635. def expm1(self) -> Tensor: ...
  1636. def expm1_(self) -> Tensor: ...
  1637. def exponential_(self, lambd: _float=1, *, generator: Optional[Generator]=None) -> Tensor: ...
  1638. @overload
  1639. def fill_(self, value: Tensor) -> Tensor: ...
  1640. @overload
  1641. def fill_(self, value: Number) -> Tensor: ...
  1642. def fill_diagonal_(self, fill_value: Number, wrap: _bool=False) -> Tensor: ...
  1643. def fix(self) -> Tensor: ...
  1644. def fix_(self) -> Tensor: ...
  1645. @overload
  1646. def flatten(self, start_dim: _int=0, end_dim: _int=-1) -> Tensor: ...
  1647. @overload
  1648. def flatten(self, start_dim: _int, end_dim: _int, out_dim: Union[str, ellipsis, None]) -> Tensor: ...
  1649. @overload
  1650. def flatten(self, start_dim: Union[str, ellipsis, None], end_dim: Union[str, ellipsis, None], out_dim: Union[str, ellipsis, None]) -> Tensor: ...
  1651. @overload
  1652. def flatten(self, dims: Sequence[Union[str, ellipsis, None]], out_dim: Union[str, ellipsis, None]) -> Tensor: ...
  1653. @overload
  1654. def flip(self, dims: _size) -> Tensor: ...
  1655. @overload
  1656. def flip(self, *dims: _int) -> Tensor: ...
  1657. def fliplr(self) -> Tensor: ...
  1658. def flipud(self) -> Tensor: ...
  1659. def float(self) -> Tensor: ...
  1660. @overload
  1661. def float_power(self, exponent: Tensor) -> Tensor: ...
  1662. @overload
  1663. def float_power(self, exponent: Number) -> Tensor: ...
  1664. @overload
  1665. def float_power_(self, exponent: Tensor) -> Tensor: ...
  1666. @overload
  1667. def float_power_(self, exponent: Number) -> Tensor: ...
  1668. def floor(self) -> Tensor: ...
  1669. def floor_(self) -> Tensor: ...
  1670. def floor_divide(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, out: Optional[Tensor]=None) -> Tensor: ...
  1671. def floor_divide_(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat]) -> Tensor: ...
  1672. def fmax(self, other: Tensor) -> Tensor: ...
  1673. def fmin(self, other: Tensor) -> Tensor: ...
  1674. @overload
  1675. def fmod(self, other: Tensor) -> Tensor: ...
  1676. @overload
  1677. def fmod(self, other: Number) -> Tensor: ...
  1678. @overload
  1679. def fmod_(self, other: Tensor) -> Tensor: ...
  1680. @overload
  1681. def fmod_(self, other: Number) -> Tensor: ...
  1682. def frac(self) -> Tensor: ...
  1683. def frac_(self) -> Tensor: ...
  1684. def frexp(self) -> torch.return_types.frexp: ...
  1685. @overload
  1686. def gather(self, dim: _int, index: Tensor, *, sparse_grad: _bool=False) -> Tensor: ...
  1687. @overload
  1688. def gather(self, dim: Union[str, ellipsis, None], index: Tensor, *, sparse_grad: _bool=False) -> Tensor: ...
  1689. def gcd(self, other: Tensor) -> Tensor: ...
  1690. def gcd_(self, other: Tensor) -> Tensor: ...
  1691. @overload
  1692. def ge(self, other: Tensor) -> Tensor: ...
  1693. @overload
  1694. def ge(self, other: Number) -> Tensor: ...
  1695. @overload
  1696. def ge_(self, other: Tensor) -> Tensor: ...
  1697. @overload
  1698. def ge_(self, other: Number) -> Tensor: ...
  1699. def geometric_(self, p: _float, *, generator: Optional[Generator]=None) -> Tensor: ...
  1700. def geqrf(self) -> torch.return_types.geqrf: ...
  1701. def ger(self, vec2: Tensor) -> Tensor: ...
  1702. def get_device(self) -> _int: ...
  1703. @overload
  1704. def greater(self, other: Tensor) -> Tensor: ...
  1705. @overload
  1706. def greater(self, other: Number) -> Tensor: ...
  1707. @overload
  1708. def greater_(self, other: Tensor) -> Tensor: ...
  1709. @overload
  1710. def greater_(self, other: Number) -> Tensor: ...
  1711. @overload
  1712. def greater_equal(self, other: Tensor) -> Tensor: ...
  1713. @overload
  1714. def greater_equal(self, other: Number) -> Tensor: ...
  1715. @overload
  1716. def greater_equal_(self, other: Tensor) -> Tensor: ...
  1717. @overload
  1718. def greater_equal_(self, other: Number) -> Tensor: ...
  1719. @overload
  1720. def gt(self, other: Tensor) -> Tensor: ...
  1721. @overload
  1722. def gt(self, other: Number) -> Tensor: ...
  1723. @overload
  1724. def gt_(self, other: Tensor) -> Tensor: ...
  1725. @overload
  1726. def gt_(self, other: Number) -> Tensor: ...
  1727. def half(self) -> Tensor: ...
  1728. def hardshrink(self, lambd: Number=0.5) -> Tensor: ...
  1729. def has_names(self) -> _bool: ...
  1730. def heaviside(self, values: Tensor) -> Tensor: ...
  1731. def heaviside_(self, values: Tensor) -> Tensor: ...
  1732. def histc(self, bins: _int=100, min: Number=0, max: Number=0) -> Tensor: ...
  1733. @overload
  1734. def histogram(self, bins: Tensor, *, weight: Optional[Tensor]=None, density: _bool=False) -> torch.return_types.histogram: ...
  1735. @overload
  1736. def histogram(self, bins: _int=100, *, range: Optional[Sequence[_float]]=None, weight: Optional[Tensor]=None, density: _bool=False) -> torch.return_types.histogram: ...
  1737. @overload
  1738. def hsplit(self, sections: _int) -> List[Tensor]: ...
  1739. @overload
  1740. def hsplit(self, indices: _size) -> List[Tensor]: ...
  1741. @overload
  1742. def hsplit(self, *indices: _int) -> List[Tensor]: ...
  1743. def hypot(self, other: Tensor) -> Tensor: ...
  1744. def hypot_(self, other: Tensor) -> Tensor: ...
  1745. def i0(self) -> Tensor: ...
  1746. def i0_(self) -> Tensor: ...
  1747. def igamma(self, other: Tensor) -> Tensor: ...
  1748. def igamma_(self, other: Tensor) -> Tensor: ...
  1749. def igammac(self, other: Tensor) -> Tensor: ...
  1750. def igammac_(self, other: Tensor) -> Tensor: ...
  1751. @overload
  1752. def index_add(self, dim: _int, index: Tensor, source: Tensor, *, alpha: Number=1) -> Tensor: ...
  1753. @overload
  1754. def index_add(self, dim: Union[str, ellipsis, None], index: Tensor, source: Tensor, *, alpha: Number=1) -> Tensor: ...
  1755. def index_add_(self, dim: _int, index: Tensor, source: Tensor, *, alpha: Number=1) -> Tensor: ...
  1756. @overload
  1757. def index_copy(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
  1758. @overload
  1759. def index_copy(self, dim: Union[str, ellipsis, None], index: Tensor, source: Tensor) -> Tensor: ...
  1760. @overload
  1761. def index_copy_(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
  1762. @overload
  1763. def index_copy_(self, dim: Union[str, ellipsis, None], index: Tensor, source: Tensor) -> Tensor: ...
  1764. @overload
  1765. def index_fill(self, dim: _int, index: Tensor, value: Tensor) -> Tensor: ...
  1766. @overload
  1767. def index_fill(self, dim: Union[str, ellipsis, None], index: Tensor, value: Tensor) -> Tensor: ...
  1768. @overload
  1769. def index_fill(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
  1770. @overload
  1771. def index_fill(self, dim: Union[str, ellipsis, None], index: Tensor, value: Number) -> Tensor: ...
  1772. @overload
  1773. def index_fill_(self, dim: _int, index: Tensor, value: Tensor) -> Tensor: ...
  1774. @overload
  1775. def index_fill_(self, dim: Union[str, ellipsis, None], index: Tensor, value: Tensor) -> Tensor: ...
  1776. @overload
  1777. def index_fill_(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
  1778. @overload
  1779. def index_fill_(self, dim: Union[str, ellipsis, None], index: Tensor, value: Number) -> Tensor: ...
  1780. def index_put(self, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False) -> Tensor: ...
  1781. def index_put_(self, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False) -> Tensor: ...
  1782. def index_reduce(self, dim: _int, index: Tensor, source: Tensor, reduce: str, *, include_self: _bool=True) -> Tensor: ...
  1783. def index_reduce_(self, dim: _int, index: Tensor, source: Tensor, reduce: str, *, include_self: _bool=True) -> Tensor: ...
  1784. @overload
  1785. def index_select(self, dim: _int, index: Tensor) -> Tensor: ...
  1786. @overload
  1787. def index_select(self, dim: Union[str, ellipsis, None], index: Tensor) -> Tensor: ...
  1788. def indices(self) -> Tensor: ...
  1789. def inner(self, other: Tensor) -> Tensor: ...
  1790. def int(self) -> Tensor: ...
  1791. def int_repr(self) -> Tensor: ...
  1792. def inverse(self) -> Tensor: ...
  1793. def is_coalesced(self) -> _bool: ...
  1794. def is_complex(self) -> _bool: ...
  1795. def is_conj(self) -> _bool: ...
  1796. def is_contiguous(self, memory_format=torch.contiguous_format) -> _bool: ...
  1797. is_cuda: _bool
  1798. def is_distributed(self) -> _bool: ...
  1799. def is_floating_point(self) -> _bool: ...
  1800. def is_inference(self) -> _bool: ...
  1801. is_ipu: _bool
  1802. is_leaf: _bool
  1803. is_meta: _bool
  1804. is_mkldnn: _bool
  1805. is_mps: _bool
  1806. def is_neg(self) -> _bool: ...
  1807. is_nested: _bool
  1808. def is_nonzero(self) -> _bool: ...
  1809. is_ort: _bool
  1810. def is_pinned(self, device: Optional[Union[_device, str, None]]=None) -> _bool: ...
  1811. is_quantized: _bool
  1812. def is_same_size(self, other: Tensor) -> _bool: ...
  1813. def is_set_to(self, tensor: Tensor) -> _bool: ...
  1814. def is_signed(self) -> _bool: ...
  1815. is_sparse: _bool
  1816. is_sparse_csr: _bool
  1817. is_vulkan: _bool
  1818. def isclose(self, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: _bool=False) -> Tensor: ...
  1819. def isfinite(self) -> Tensor: ...
  1820. def isinf(self) -> Tensor: ...
  1821. def isnan(self) -> Tensor: ...
  1822. def isneginf(self) -> Tensor: ...
  1823. def isposinf(self) -> Tensor: ...
  1824. def isreal(self) -> Tensor: ...
  1825. def istft(self, n_fft: _int, hop_length: Optional[_int]=None, win_length: Optional[_int]=None, window: Optional[Tensor]=None, center: _bool=True, normalized: _bool=False, onesided: Optional[_bool]=None, length: Optional[_int]=None, return_complex: _bool=False) -> Tensor: ...
  1826. def item(self) -> Number: ...
  1827. def kron(self, other: Tensor) -> Tensor: ...
  1828. @overload
  1829. def kthvalue(self, k: _int, dim: _int=-1, keepdim: _bool=False) -> torch.return_types.kthvalue: ...
  1830. @overload
  1831. def kthvalue(self, k: _int, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> torch.return_types.kthvalue: ...
  1832. def lcm(self, other: Tensor) -> Tensor: ...
  1833. def lcm_(self, other: Tensor) -> Tensor: ...
  1834. def ldexp(self, other: Tensor) -> Tensor: ...
  1835. def ldexp_(self, other: Tensor) -> Tensor: ...
  1836. @overload
  1837. def le(self, other: Tensor) -> Tensor: ...
  1838. @overload
  1839. def le(self, other: Number) -> Tensor: ...
  1840. @overload
  1841. def le_(self, other: Tensor) -> Tensor: ...
  1842. @overload
  1843. def le_(self, other: Number) -> Tensor: ...
  1844. @overload
  1845. def lerp(self, end: Tensor, weight: Tensor) -> Tensor: ...
  1846. @overload
  1847. def lerp(self, end: Tensor, weight: Number) -> Tensor: ...
  1848. @overload
  1849. def lerp_(self, end: Tensor, weight: Tensor) -> Tensor: ...
  1850. @overload
  1851. def lerp_(self, end: Tensor, weight: Number) -> Tensor: ...
  1852. @overload
  1853. def less(self, other: Tensor) -> Tensor: ...
  1854. @overload
  1855. def less(self, other: Number) -> Tensor: ...
  1856. @overload
  1857. def less_(self, other: Tensor) -> Tensor: ...
  1858. @overload
  1859. def less_(self, other: Number) -> Tensor: ...
  1860. @overload
  1861. def less_equal(self, other: Tensor) -> Tensor: ...
  1862. @overload
  1863. def less_equal(self, other: Number) -> Tensor: ...
  1864. @overload
  1865. def less_equal_(self, other: Tensor) -> Tensor: ...
  1866. @overload
  1867. def less_equal_(self, other: Number) -> Tensor: ...
  1868. def lgamma(self) -> Tensor: ...
  1869. def lgamma_(self) -> Tensor: ...
  1870. def log(self) -> Tensor: ...
  1871. def log10(self) -> Tensor: ...
  1872. def log10_(self) -> Tensor: ...
  1873. def log1p(self) -> Tensor: ...
  1874. def log1p_(self) -> Tensor: ...
  1875. def log2(self) -> Tensor: ...
  1876. def log2_(self) -> Tensor: ...
  1877. def log_(self) -> Tensor: ...
  1878. def log_normal_(self, mean: _float=1, std: _float=2, *, generator: Optional[Generator]=None) -> Tensor: ...
  1879. @overload
  1880. def log_softmax(self, dim: _int, dtype: Optional[_dtype]=None) -> Tensor: ...
  1881. @overload
  1882. def log_softmax(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
  1883. def logaddexp(self, other: Tensor) -> Tensor: ...
  1884. def logaddexp2(self, other: Tensor) -> Tensor: ...
  1885. @overload
  1886. def logcumsumexp(self, dim: _int) -> Tensor: ...
  1887. @overload
  1888. def logcumsumexp(self, dim: Union[str, ellipsis, None]) -> Tensor: ...
  1889. def logdet(self) -> Tensor: ...
  1890. def logical_and(self, other: Tensor) -> Tensor: ...
  1891. def logical_and_(self, other: Tensor) -> Tensor: ...
  1892. def logical_not(self) -> Tensor: ...
  1893. def logical_not_(self) -> Tensor: ...
  1894. def logical_or(self, other: Tensor) -> Tensor: ...
  1895. def logical_or_(self, other: Tensor) -> Tensor: ...
  1896. def logical_xor(self, other: Tensor) -> Tensor: ...
  1897. def logical_xor_(self, other: Tensor) -> Tensor: ...
  1898. def logit(self, eps: Optional[_float]=None) -> Tensor: ...
  1899. def logit_(self, eps: Optional[_float]=None) -> Tensor: ...
  1900. @overload
  1901. def logsumexp(self, dim: Union[_int, _size], keepdim: _bool=False) -> Tensor: ...
  1902. @overload
  1903. def logsumexp(self, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool=False) -> Tensor: ...
  1904. def long(self) -> Tensor: ...
  1905. @overload
  1906. def lt(self, other: Tensor) -> Tensor: ...
  1907. @overload
  1908. def lt(self, other: Number) -> Tensor: ...
  1909. @overload
  1910. def lt_(self, other: Tensor) -> Tensor: ...
  1911. @overload
  1912. def lt_(self, other: Number) -> Tensor: ...
  1913. def lu_solve(self, LU_data: Tensor, LU_pivots: Tensor) -> Tensor: ...
  1914. def map2_(self, x: Tensor, y: Tensor, callable: Callable) -> Tensor: ...
  1915. def map_(self, tensor: Tensor, callable: Callable) -> Tensor: ...
  1916. @overload
  1917. def masked_fill(self, mask: Tensor, value: Tensor) -> Tensor: ...
  1918. @overload
  1919. def masked_fill(self, mask: Tensor, value: Number) -> Tensor: ...
  1920. @overload
  1921. def masked_fill_(self, mask: Tensor, value: Tensor) -> Tensor: ...
  1922. @overload
  1923. def masked_fill_(self, mask: Tensor, value: Number) -> Tensor: ...
  1924. def masked_scatter(self, mask: Tensor, source: Tensor) -> Tensor: ...
  1925. def masked_scatter_(self, mask: Tensor, source: Tensor) -> Tensor: ...
  1926. def masked_select(self, mask: Tensor) -> Tensor: ...
  1927. def matmul(self, other: Tensor) -> Tensor: ...
  1928. def matrix_exp(self) -> Tensor: ...
  1929. def matrix_power(self, n: _int) -> Tensor: ...
  1930. @overload
  1931. def max(self) -> Tensor: ...
  1932. @overload
  1933. def max(self, other: Tensor) -> Tensor: ...
  1934. @overload
  1935. def max(self, dim: _int, keepdim: _bool=False) -> torch.return_types.max: ...
  1936. @overload
  1937. def max(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> torch.return_types.max: ...
  1938. def maximum(self, other: Tensor) -> Tensor: ...
  1939. @overload
  1940. def mean(self, *, dtype: Optional[_dtype]=None) -> Tensor: ...
  1941. @overload
  1942. def mean(self, dim: Optional[Union[_int, _size]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
  1943. @overload
  1944. def mean(self, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
  1945. @overload
  1946. def median(self) -> Tensor: ...
  1947. @overload
  1948. def median(self, dim: _int, keepdim: _bool=False) -> torch.return_types.median: ...
  1949. @overload
  1950. def median(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> torch.return_types.median: ...
  1951. @overload
  1952. def min(self) -> Tensor: ...
  1953. @overload
  1954. def min(self, other: Tensor) -> Tensor: ...
  1955. @overload
  1956. def min(self, dim: _int, keepdim: _bool=False) -> torch.return_types.min: ...
  1957. @overload
  1958. def min(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> torch.return_types.min: ...
  1959. def minimum(self, other: Tensor) -> Tensor: ...
  1960. def mm(self, mat2: Tensor) -> Tensor: ...
  1961. @overload
  1962. def mode(self, dim: _int=-1, keepdim: _bool=False) -> torch.return_types.mode: ...
  1963. @overload
  1964. def mode(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> torch.return_types.mode: ...
  1965. @overload
  1966. def moveaxis(self, source: _int, destination: _int) -> Tensor: ...
  1967. @overload
  1968. def moveaxis(self, source: _size, destination: _size) -> Tensor: ...
  1969. @overload
  1970. def movedim(self, source: _int, destination: _int) -> Tensor: ...
  1971. @overload
  1972. def movedim(self, source: _size, destination: _size) -> Tensor: ...
  1973. def msort(self) -> Tensor: ...
  1974. def mul(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, out: Optional[Tensor]=None) -> Tensor: ...
  1975. def mul_(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat]) -> Tensor: ...
  1976. def multinomial(self, num_samples: _int, replacement: _bool=False, *, generator: Optional[Generator]=None) -> Tensor: ...
  1977. @overload
  1978. def multiply(self, other: Tensor) -> Tensor: ...
  1979. @overload
  1980. def multiply(self, other: Number) -> Tensor: ...
  1981. @overload
  1982. def multiply_(self, other: Tensor) -> Tensor: ...
  1983. @overload
  1984. def multiply_(self, other: Number) -> Tensor: ...
  1985. def mv(self, vec: Tensor) -> Tensor: ...
  1986. def mvlgamma(self, p: _int) -> Tensor: ...
  1987. def mvlgamma_(self, p: _int) -> Tensor: ...
  1988. def nan_to_num(self, nan: Optional[_float]=None, posinf: Optional[_float]=None, neginf: Optional[_float]=None) -> Tensor: ...
  1989. def nan_to_num_(self, nan: Optional[_float]=None, posinf: Optional[_float]=None, neginf: Optional[_float]=None) -> Tensor: ...
  1990. def nanmean(self, dim: Optional[Union[_int, _size]]=None, keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
  1991. @overload
  1992. def nanmedian(self) -> Tensor: ...
  1993. @overload
  1994. def nanmedian(self, dim: _int, keepdim: _bool=False) -> torch.return_types.nanmedian: ...
  1995. @overload
  1996. def nanmedian(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> torch.return_types.nanmedian: ...
  1997. @overload
  1998. def nanquantile(self, q: Tensor, dim: Optional[_int]=None, keepdim: _bool=False, *, interpolation: str="linear") -> Tensor: ...
  1999. @overload
  2000. def nanquantile(self, q: _float, dim: Optional[_int]=None, keepdim: _bool=False, *, interpolation: str="linear") -> Tensor: ...
  2001. def nansum(self, dim: Optional[Union[_int, _size]]=None, keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
  2002. @overload
  2003. def narrow(self, dim: _int, start: Tensor, length: Union[_int, SymInt]) -> Tensor: ...
  2004. @overload
  2005. def narrow(self, dim: _int, start: Union[_int, SymInt], length: Union[_int, SymInt]) -> Tensor: ...
  2006. def narrow_copy(self, dim: _int, start: Union[_int, SymInt], length: Union[_int, SymInt]) -> Tensor: ...
  2007. def ndimension(self) -> _int: ...
  2008. @overload
  2009. def ne(self, other: Tensor) -> Tensor: ...
  2010. @overload
  2011. def ne(self, other: Number) -> Tensor: ...
  2012. @overload
  2013. def ne_(self, other: Tensor) -> Tensor: ...
  2014. @overload
  2015. def ne_(self, other: Number) -> Tensor: ...
  2016. def neg(self) -> Tensor: ...
  2017. def neg_(self) -> Tensor: ...
  2018. def negative(self) -> Tensor: ...
  2019. def negative_(self) -> Tensor: ...
  2020. def nelement(self) -> _int: ...
  2021. @overload
  2022. def new(self, *args: Any, device: Device=None) ->Tensor: ...
  2023. @overload
  2024. def new(self, storage: Storage) -> Tensor: ...
  2025. @overload
  2026. def new(self, other: Tensor) -> Tensor: ...
  2027. @overload
  2028. def new(self, size: _size, *, device: Device=None) -> Tensor: ...
  2029. @overload
  2030. def new_empty(self, size: Sequence[Union[_int, SymInt]], *, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor: ...
  2031. @overload
  2032. def new_empty(self, *size: _int, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor: ...
  2033. def new_empty_strided(self, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], *, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor: ...
  2034. def new_full(self, size: Sequence[Union[_int, SymInt]], fill_value: Number, *, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor: ...
  2035. @overload
  2036. def new_ones(self, size: _size, dtype: Optional[_dtype]=None, device: Device=None, requires_grad: _bool=False) -> Tensor: ...
  2037. @overload
  2038. def new_ones(self, size: Sequence[Union[_int, SymInt]], *, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor: ...
  2039. @overload
  2040. def new_ones(self, *size: _int, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor: ...
  2041. def new_tensor(self, data: Any, dtype: Optional[_dtype]=None, device: Device=None, requires_grad: _bool=False) -> Tensor: ...
  2042. @overload
  2043. def new_zeros(self, size: Sequence[Union[_int, SymInt]], *, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor: ...
  2044. @overload
  2045. def new_zeros(self, *size: _int, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor: ...
  2046. def nextafter(self, other: Tensor) -> Tensor: ...
  2047. def nextafter_(self, other: Tensor) -> Tensor: ...
  2048. @overload
  2049. def nonzero(self, *, as_tuple: Literal[False]=False) -> Tensor: ...
  2050. @overload
  2051. def nonzero(self, *, as_tuple: Literal[True]) -> Tuple[Tensor, ...]: ...
  2052. def normal_(self, mean: _float=0, std: _float=1, *, generator: Optional[Generator]=None) -> Tensor: ...
  2053. @overload
  2054. def not_equal(self, other: Tensor) -> Tensor: ...
  2055. @overload
  2056. def not_equal(self, other: Number) -> Tensor: ...
  2057. @overload
  2058. def not_equal_(self, other: Tensor) -> Tensor: ...
  2059. @overload
  2060. def not_equal_(self, other: Number) -> Tensor: ...
  2061. def numel(self) -> _int: ...
  2062. def numpy(self, *, force: _bool=False) -> Any: ...
  2063. def orgqr(self, input2: Tensor) -> Tensor: ...
  2064. def ormqr(self, input2: Tensor, input3: Tensor, left: _bool=True, transpose: _bool=False) -> Tensor: ...
  2065. def outer(self, vec2: Tensor) -> Tensor: ...
  2066. @overload
  2067. def permute(self, dims: _size) -> Tensor: ...
  2068. @overload
  2069. def permute(self, *dims: _int) -> Tensor: ...
  2070. def pin_memory(self, device: Optional[Union[_device, str, None]]=None) -> Tensor: ...
  2071. def pinverse(self, rcond: _float=1e-15) -> Tensor: ...
  2072. def polygamma(self, n: _int) -> Tensor: ...
  2073. def polygamma_(self, n: _int) -> Tensor: ...
  2074. def positive(self) -> Tensor: ...
  2075. @overload
  2076. def pow(self, exponent: Tensor) -> Tensor: ...
  2077. @overload
  2078. def pow(self, exponent: Number) -> Tensor: ...
  2079. @overload
  2080. def pow_(self, exponent: Tensor) -> Tensor: ...
  2081. @overload
  2082. def pow_(self, exponent: Number) -> Tensor: ...
  2083. def prelu(self, weight: Tensor) -> Tensor: ...
  2084. @overload
  2085. def prod(self, *, dtype: Optional[_dtype]=None) -> Tensor: ...
  2086. @overload
  2087. def prod(self, dim: _int, keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
  2088. @overload
  2089. def prod(self, dim: Union[str, ellipsis, None], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
  2090. def put(self, index: Tensor, source: Tensor, accumulate: _bool=False) -> Tensor: ...
  2091. def put_(self, index: Tensor, source: Tensor, accumulate: _bool=False) -> Tensor: ...
  2092. def q_per_channel_axis(self) -> _int: ...
  2093. def q_per_channel_scales(self) -> Tensor: ...
  2094. def q_per_channel_zero_points(self) -> Tensor: ...
  2095. def q_scale(self) -> _float: ...
  2096. def q_zero_point(self) -> _int: ...
  2097. def qr(self, some: _bool=True) -> torch.return_types.qr: ...
  2098. def qscheme(self) -> _qscheme: ...
  2099. @overload
  2100. def quantile(self, q: Tensor, dim: Optional[_int]=None, keepdim: _bool=False, *, interpolation: str="linear") -> Tensor: ...
  2101. @overload
  2102. def quantile(self, q: _float, dim: Optional[_int]=None, keepdim: _bool=False, *, interpolation: str="linear") -> Tensor: ...
  2103. def rad2deg(self) -> Tensor: ...
  2104. def rad2deg_(self) -> Tensor: ...
  2105. @overload
  2106. def random_(self, *, generator: Optional[Generator]=None) -> Tensor: ...
  2107. @overload
  2108. def random_(self, from_: _int, to: Optional[_int], *, generator: Optional[Generator]=None) -> Tensor: ...
  2109. @overload
  2110. def random_(self, to: _int, *, generator: Optional[Generator]=None) -> Tensor: ...
  2111. def ravel(self) -> Tensor: ...
  2112. def reciprocal(self) -> Tensor: ...
  2113. def reciprocal_(self) -> Tensor: ...
  2114. def record_stream(self, s: Stream) -> None: ...
  2115. def refine_names(self, names: Sequence[Union[str, ellipsis, None]]) -> Tensor: ...
  2116. def relu(self) -> Tensor: ...
  2117. def relu_(self) -> Tensor: ...
  2118. @overload
  2119. def remainder(self, other: Tensor) -> Tensor: ...
  2120. @overload
  2121. def remainder(self, other: Number) -> Tensor: ...
  2122. @overload
  2123. def remainder_(self, other: Tensor) -> Tensor: ...
  2124. @overload
  2125. def remainder_(self, other: Number) -> Tensor: ...
  2126. def rename(self, names: Optional[Sequence[Union[str, ellipsis, None]]]) -> Tensor: ...
  2127. def rename_(self, names: Optional[Sequence[Union[str, ellipsis, None]]]) -> Tensor: ...
  2128. def renorm(self, p: Number, dim: _int, maxnorm: Number) -> Tensor: ...
  2129. def renorm_(self, p: Number, dim: _int, maxnorm: Number) -> Tensor: ...
  2130. @overload
  2131. def repeat(self, repeats: Sequence[Union[_int, SymInt]]) -> Tensor: ...
  2132. @overload
  2133. def repeat(self, *repeats: _int) -> Tensor: ...
  2134. @overload
  2135. def repeat_interleave(self, repeats: Tensor, dim: Optional[_int]=None, *, output_size: Optional[_int]=None) -> Tensor: ...
  2136. @overload
  2137. def repeat_interleave(self, repeats: Union[_int, SymInt], dim: Optional[_int]=None, *, output_size: Optional[_int]=None) -> Tensor: ...
  2138. def requires_grad_(self, mode: _bool=True) -> Tensor: ...
  2139. @overload
  2140. def reshape(self, shape: Sequence[Union[_int, SymInt]]) -> Tensor: ...
  2141. @overload
  2142. def reshape(self, *shape: _int) -> Tensor: ...
  2143. def reshape_as(self, other: Tensor) -> Tensor: ...
  2144. @overload
  2145. def resize_(self, size: Sequence[Union[_int, SymInt]], *, memory_format: Optional[memory_format]=None) -> Tensor: ...
  2146. @overload
  2147. def resize_(self, *size: _int, memory_format: Optional[memory_format]=None) -> Tensor: ...
  2148. def resize_as_(self, the_template: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
  2149. def resize_as_sparse_(self, the_template: Tensor) -> Tensor: ...
  2150. def resolve_conj(self) -> Tensor: ...
  2151. def resolve_neg(self) -> Tensor: ...
  2152. def retain_grad(self) -> None: ...
  2153. def roll(self, shifts: Union[_int, _size], dims: Union[_int, _size]=()) -> Tensor: ...
  2154. def rot90(self, k: _int=1, dims: _size=(0,1)) -> Tensor: ...
  2155. @overload
  2156. def round(self) -> Tensor: ...
  2157. @overload
  2158. def round(self, *, decimals: _int) -> Tensor: ...
  2159. @overload
  2160. def round_(self) -> Tensor: ...
  2161. @overload
  2162. def round_(self, *, decimals: _int) -> Tensor: ...
  2163. def row_indices(self) -> Tensor: ...
  2164. def rsqrt(self) -> Tensor: ...
  2165. def rsqrt_(self) -> Tensor: ...
  2166. @overload
  2167. def scatter(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
  2168. @overload
  2169. def scatter(self, dim: _int, index: Tensor, src: Tensor, *, reduce: str) -> Tensor: ...
  2170. @overload
  2171. def scatter(self, dim: _int, index: Tensor, value: Number, *, reduce: str) -> Tensor: ...
  2172. @overload
  2173. def scatter(self, dim: Union[str, ellipsis, None], index: Tensor, src: Tensor) -> Tensor: ...
  2174. @overload
  2175. def scatter(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
  2176. @overload
  2177. def scatter(self, dim: Union[str, ellipsis, None], index: Tensor, value: Number) -> Tensor: ...
  2178. @overload
  2179. def scatter_(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
  2180. @overload
  2181. def scatter_(self, dim: _int, index: Tensor, src: Tensor, *, reduce: str) -> Tensor: ...
  2182. @overload
  2183. def scatter_(self, dim: _int, index: Tensor, value: Number, *, reduce: str) -> Tensor: ...
  2184. @overload
  2185. def scatter_(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
  2186. @overload
  2187. def scatter_add(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
  2188. @overload
  2189. def scatter_add(self, dim: Union[str, ellipsis, None], index: Tensor, src: Tensor) -> Tensor: ...
  2190. def scatter_add_(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
  2191. def scatter_reduce(self, dim: _int, index: Tensor, src: Tensor, reduce: str, *, include_self: _bool=True) -> Tensor: ...
  2192. def scatter_reduce_(self, dim: _int, index: Tensor, src: Tensor, reduce: str, *, include_self: _bool=True) -> Tensor: ...
  2193. @overload
  2194. def select(self, dim: _int, index: Union[_int, SymInt]) -> Tensor: ...
  2195. @overload
  2196. def select(self, dim: Union[str, ellipsis, None], index: _int) -> Tensor: ...
  2197. def select_scatter(self, src: Tensor, dim: _int, index: Union[_int, SymInt]) -> Tensor: ...
  2198. @overload
  2199. def set_(self, storage: Union[Storage, TypedStorage], offset: _int, size: _size, stride: _size) -> Tensor: ...
  2200. @overload
  2201. def set_(self, storage: Union[Storage, TypedStorage]) -> Tensor: ...
  2202. def sgn(self) -> Tensor: ...
  2203. def sgn_(self) -> Tensor: ...
  2204. def short(self) -> Tensor: ...
  2205. def sigmoid(self) -> Tensor: ...
  2206. def sigmoid_(self) -> Tensor: ...
  2207. def sign(self) -> Tensor: ...
  2208. def sign_(self) -> Tensor: ...
  2209. def signbit(self) -> Tensor: ...
  2210. def sin(self) -> Tensor: ...
  2211. def sin_(self) -> Tensor: ...
  2212. def sinc(self) -> Tensor: ...
  2213. def sinc_(self) -> Tensor: ...
  2214. def sinh(self) -> Tensor: ...
  2215. def sinh_(self) -> Tensor: ...
  2216. @overload
  2217. def size(self) -> Size: ...
  2218. @overload
  2219. def size(self, dim: _int) -> _int: ...
  2220. def slice_scatter(self, src: Tensor, dim: _int=0, start: Optional[Union[_int, SymInt]]=None, end: Optional[Union[_int, SymInt]]=None, step: Union[_int, SymInt]=1) -> Tensor: ...
  2221. def slogdet(self) -> torch.return_types.slogdet: ...
  2222. def smm(self, mat2: Tensor) -> Tensor: ...
  2223. @overload
  2224. def softmax(self, dim: _int, dtype: Optional[_dtype]=None) -> Tensor: ...
  2225. @overload
  2226. def softmax(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
  2227. @overload
  2228. def sort(self, *, stable: Optional[_bool], dim: _int=-1, descending: _bool=False) -> torch.return_types.sort: ...
  2229. @overload
  2230. def sort(self, dim: _int=-1, descending: _bool=False) -> torch.return_types.sort: ...
  2231. @overload
  2232. def sort(self, *, stable: Optional[_bool], dim: Union[str, ellipsis, None], descending: _bool=False) -> torch.return_types.sort: ...
  2233. @overload
  2234. def sort(self, dim: Union[str, ellipsis, None], descending: _bool=False) -> torch.return_types.sort: ...
  2235. def sparse_dim(self) -> _int: ...
  2236. def sparse_mask(self, mask: Tensor) -> Tensor: ...
  2237. def sparse_resize_(self, size: _size, sparse_dim: _int, dense_dim: _int) -> Tensor: ...
  2238. def sparse_resize_and_clear_(self, size: _size, sparse_dim: _int, dense_dim: _int) -> Tensor: ...
  2239. @overload
  2240. def split(self, split_size: _int, dim: _int=0) -> Sequence[Tensor]: ...
  2241. @overload
  2242. def split(self, split_size: Tuple[_int, ...], dim: _int=0) -> Sequence[Tensor]: ...
  2243. def split_with_sizes(self, split_sizes: Sequence[Union[_int, SymInt]], dim: _int=0) -> List[Tensor]: ...
  2244. def sqrt(self) -> Tensor: ...
  2245. def sqrt_(self) -> Tensor: ...
  2246. def square(self) -> Tensor: ...
  2247. def square_(self) -> Tensor: ...
  2248. @overload
  2249. def squeeze(self) -> Tensor: ...
  2250. @overload
  2251. def squeeze(self, dim: _int) -> Tensor: ...
  2252. @overload
  2253. def squeeze(self, dim: _size) -> Tensor: ...
  2254. @overload
  2255. def squeeze(self, *dim: _int) -> Tensor: ...
  2256. @overload
  2257. def squeeze(self, dim: Union[str, ellipsis, None]) -> Tensor: ...
  2258. @overload
  2259. def squeeze_(self) -> Tensor: ...
  2260. @overload
  2261. def squeeze_(self, dim: _int) -> Tensor: ...
  2262. @overload
  2263. def squeeze_(self, dim: _size) -> Tensor: ...
  2264. @overload
  2265. def squeeze_(self, *dim: _int) -> Tensor: ...
  2266. @overload
  2267. def squeeze_(self, dim: Union[str, ellipsis, None]) -> Tensor: ...
  2268. def sspaddmm(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
  2269. @overload
  2270. def std(self, dim: Optional[Union[_int, _size]], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
  2271. @overload
  2272. def std(self, dim: Optional[Union[_int, _size]]=None, *, correction: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
  2273. @overload
  2274. def std(self, unbiased: _bool=True) -> Tensor: ...
  2275. @overload
  2276. def std(self, dim: Sequence[Union[str, ellipsis, None]], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
  2277. @overload
  2278. def std(self, dim: Sequence[Union[str, ellipsis, None]], *, correction: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
  2279. def untyped_storage(self) -> Storage: ...
  2280. def storage_offset(self) -> _int: ...
  2281. def storage_type(self) -> Storage: ...
  2282. @overload
  2283. def stride(self) -> Tuple[_int, ...]: ...
  2284. @overload
  2285. def stride(self, _int) -> _int: ...
  2286. def sub(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, alpha: Optional[Number]=1, out: Optional[Tensor]=None) -> Tensor: ...
  2287. def sub_(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, alpha: Optional[Number]=1) -> Tensor: ...
  2288. @overload
  2289. def subtract(self, other: Tensor, *, alpha: Number=1) -> Tensor: ...
  2290. @overload
  2291. def subtract(self, other: Number, alpha: Number=1) -> Tensor: ...
  2292. @overload
  2293. def subtract_(self, other: Tensor, *, alpha: Number=1) -> Tensor: ...
  2294. @overload
  2295. def subtract_(self, other: Number, alpha: Number=1) -> Tensor: ...
  2296. @overload
  2297. def sum(self, *, dtype: Optional[_dtype]=None) -> Tensor: ...
  2298. @overload
  2299. def sum(self, dim: Optional[Union[_int, _size]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
  2300. @overload
  2301. def sum(self, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
  2302. @overload
  2303. def sum_to_size(self, size: _size) -> Tensor: ...
  2304. @overload
  2305. def sum_to_size(self, *size: _int) -> Tensor: ...
  2306. def svd(self, some: _bool=True, compute_uv: _bool=True) -> torch.return_types.svd: ...
  2307. def swapaxes(self, axis0: _int, axis1: _int) -> Tensor: ...
  2308. def swapaxes_(self, axis0: _int, axis1: _int) -> Tensor: ...
  2309. def swapdims(self, dim0: _int, dim1: _int) -> Tensor: ...
  2310. def swapdims_(self, dim0: _int, dim1: _int) -> Tensor: ...
  2311. def t(self) -> Tensor: ...
  2312. def t_(self) -> Tensor: ...
  2313. def take(self, index: Tensor) -> Tensor: ...
  2314. def take_along_dim(self, indices: Tensor, dim: Optional[_int]=None) -> Tensor: ...
  2315. def tan(self) -> Tensor: ...
  2316. def tan_(self) -> Tensor: ...
  2317. def tanh(self) -> Tensor: ...
  2318. def tanh_(self) -> Tensor: ...
  2319. @overload
  2320. def tensor_split(self, indices: Sequence[Union[_int, SymInt]], dim: _int=0) -> List[Tensor]: ...
  2321. @overload
  2322. def tensor_split(self, tensor_indices_or_sections: Tensor, dim: _int=0) -> List[Tensor]: ...
  2323. @overload
  2324. def tensor_split(self, sections: Union[_int, SymInt], dim: _int=0) -> List[Tensor]: ...
  2325. @overload
  2326. def tile(self, dims: _size) -> Tensor: ...
  2327. @overload
  2328. def tile(self, *dims: _int) -> Tensor: ...
  2329. @overload
  2330. def to(self, dtype: _dtype, non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...
  2331. @overload
  2332. def to(self, device: Optional[Union[_device, str]]=None, dtype: Optional[_dtype]=None, non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...
  2333. @overload
  2334. def to(self, other: Tensor, non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...
  2335. def to_dense(self, dtype: Optional[_dtype]=None) -> Tensor: ...
  2336. def to_mkldnn(self, dtype: Optional[_dtype]=None) -> Tensor: ...
  2337. def to_padded_tensor(self, padding: _float, output_size: Optional[Sequence[Union[_int, SymInt]]]=None) -> Tensor: ...
  2338. @overload
  2339. def to_sparse(self, *, layout: Optional[_layout]=None, blocksize: Optional[Union[_int, _size]]=None, dense_dim: Optional[_int]=None) -> Tensor: ...
  2340. @overload
  2341. def to_sparse(self, sparse_dim: _int) -> Tensor: ...
  2342. def to_sparse_bsc(self, blocksize: Union[_int, _size], dense_dim: Optional[_int]=None) -> Tensor: ...
  2343. def to_sparse_bsr(self, blocksize: Union[_int, _size], dense_dim: Optional[_int]=None) -> Tensor: ...
  2344. def to_sparse_csc(self, dense_dim: Optional[_int]=None) -> Tensor: ...
  2345. def to_sparse_csr(self, dense_dim: Optional[_int]=None) -> Tensor: ...
  2346. def tolist(self) -> List: ...
  2347. def topk(self, k: _int, dim: _int=-1, largest: _bool=True, sorted: _bool=True) -> torch.return_types.topk: ...
  2348. def trace(self) -> Tensor: ...
  2349. @overload
  2350. def transpose(self, dim0: _int, dim1: _int) -> Tensor: ...
  2351. @overload
  2352. def transpose(self, dim0: Union[str, ellipsis, None], dim1: Union[str, ellipsis, None]) -> Tensor: ...
  2353. def transpose_(self, dim0: _int, dim1: _int) -> Tensor: ...
  2354. def triangular_solve(self, A: Tensor, upper: _bool=True, transpose: _bool=False, unitriangular: _bool=False) -> torch.return_types.triangular_solve: ...
  2355. def tril(self, diagonal: _int=0) -> Tensor: ...
  2356. def tril_(self, diagonal: _int=0) -> Tensor: ...
  2357. def triu(self, diagonal: _int=0) -> Tensor: ...
  2358. def triu_(self, diagonal: _int=0) -> Tensor: ...
  2359. def true_divide(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, out: Optional[Tensor]=None) -> Tensor: ...
  2360. def true_divide_(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat]) -> Tensor: ...
  2361. def trunc(self) -> Tensor: ...
  2362. def trunc_(self) -> Tensor: ...
  2363. @overload
  2364. def type(self, dtype: None=None, non_blocking: _bool=False) -> str: ...
  2365. @overload
  2366. def type(self, dtype: Union[str, _dtype], non_blocking: _bool=False) -> Tensor: ...
  2367. def type_as(self, other: Tensor) -> Tensor: ...
  2368. @overload
  2369. def unbind(self, dim: _int=0) -> List[Tensor]: ...
  2370. @overload
  2371. def unbind(self, dim: Union[str, ellipsis, None]) -> List[Tensor]: ...
  2372. @overload
  2373. def unflatten(self, dim: Union[str, ellipsis, None], sizes: _size, names: Sequence[Union[str, ellipsis, None]]) -> Tensor: ...
  2374. @overload
  2375. def unflatten(self, dim: _int, sizes: _size) -> Tensor: ...
  2376. def unfold(self, dimension: _int, size: _int, step: _int) -> Tensor: ...
  2377. def uniform_(self, from_: _float=0, to: _float=1, *, generator: Optional[Generator]=None) -> Tensor: ...
  2378. def unsafe_chunk(self, chunks: _int, dim: _int=0) -> List[Tensor]: ...
  2379. def unsafe_split(self, split_size: Union[_int, SymInt], dim: _int=0) -> List[Tensor]: ...
  2380. def unsafe_split_with_sizes(self, split_sizes: Sequence[Union[_int, SymInt]], dim: _int=0) -> List[Tensor]: ...
  2381. def unsqueeze(self, dim: _int) -> Tensor: ...
  2382. def unsqueeze_(self, dim: _int) -> Tensor: ...
  2383. def values(self) -> Tensor: ...
  2384. @overload
  2385. def var(self, dim: Optional[Union[_int, _size]], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
  2386. @overload
  2387. def var(self, dim: Optional[Union[_int, _size]]=None, *, correction: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
  2388. @overload
  2389. def var(self, unbiased: _bool=True) -> Tensor: ...
  2390. @overload
  2391. def var(self, dim: Sequence[Union[str, ellipsis, None]], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
  2392. @overload
  2393. def var(self, dim: Sequence[Union[str, ellipsis, None]], *, correction: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
  2394. def vdot(self, other: Tensor) -> Tensor: ...
  2395. @overload
  2396. def view(self, dtype: _dtype) -> Tensor: ...
  2397. @overload
  2398. def view(self, size: Sequence[Union[_int, SymInt]]) -> Tensor: ...
  2399. @overload
  2400. def view(self, *size: _int) -> Tensor: ...
  2401. def view_as(self, other: Tensor) -> Tensor: ...
  2402. @overload
  2403. def vsplit(self, sections: _int) -> List[Tensor]: ...
  2404. @overload
  2405. def vsplit(self, indices: _size) -> List[Tensor]: ...
  2406. @overload
  2407. def vsplit(self, *indices: _int) -> List[Tensor]: ...
  2408. @overload
  2409. def where(self, condition: Tensor, other: Tensor) -> Tensor: ...
  2410. @overload
  2411. def where(self, condition: Tensor, other: Number) -> Tensor: ...
  2412. @overload
  2413. def xlogy(self, other: Tensor) -> Tensor: ...
  2414. @overload
  2415. def xlogy(self, other: Number) -> Tensor: ...
  2416. @overload
  2417. def xlogy_(self, other: Tensor) -> Tensor: ...
  2418. @overload
  2419. def xlogy_(self, other: Number) -> Tensor: ...
  2420. def zero_(self) -> Tensor: ...
  2421. # Defined in torch/csrc/multiprocessing/init.cpp
  2422. def _multiprocessing_init() -> None: ...
  2423. # Defined in torch/csrc/mps/Module.cpp
  2424. def _mps_synchronize() -> None: ...
  2425. def _mps_get_default_generator() -> Generator: ...
  2426. def _mps_emptyCache() -> None: ...
  2427. def _mps_setMemoryFraction(fraction: _float) -> None: ...
  2428. def _mps_currentAllocatedMemory() -> _int: ...
  2429. def _mps_driverAllocatedMemory() -> _int: ...
  2430. def _mps_is_available() -> _bool: ...
  2431. def _mps_is_on_macos_13_or_newer() -> _bool: ...
  2432. # Defined in torch/csrc/cuda/Module.cpp
  2433. def _cuda_getCurrentStream(device: _int) -> Tuple: ...
  2434. def _cuda_getCurrentRawStream(device: _int) -> _int: ...
  2435. def _cuda_getDefaultStream(device: _int) -> Tuple: ...
  2436. def _cuda_getCurrentBlasHandle() -> _int: ...
  2437. def _cuda_clearCublasWorkspaces() -> None: ...
  2438. def _cuda_setDevice(device: _int) -> None: ...
  2439. def _cuda_exchangeDevice(device: _int) -> _int: ...
  2440. def _cuda_maybeExchangeDevice(device: _int) -> _int: ...
  2441. def _cuda_getDevice() -> _int: ...
  2442. def _cuda_getDeviceCount() -> _int: ...
  2443. def _cuda_set_sync_debug_mode(warn_level: Union[_int, str]) -> None: ...
  2444. def _cuda_get_sync_debug_mode() -> _int: ...
  2445. def _cuda_sleep(cycles: _int) -> None: ...
  2446. def _cuda_synchronize() -> None: ...
  2447. def _cuda_ipc_collect() -> None: ...
  2448. def _cuda_getArchFlags() -> Optional[str]: ...
  2449. def _cuda_init() -> None: ...
  2450. def _cuda_setStream(stream_id: _int, device_index: _int, device_type: _int) -> None: ...
  2451. def _cuda_getCompiledVersion() -> _int: ...
  2452. def _cuda_cudaHostAllocator() -> _int: ...
  2453. def _cuda_cudaCachingAllocator_raw_alloc(size: _int, cuda_stream: _int) -> _int: ...
  2454. def _cuda_cudaCachingAllocator_raw_delete(ptr: _int) -> None: ...
  2455. def _cuda_cudaCachingAllocator_set_allocator_settings(env: str) -> None: ...
  2456. def _cuda_setMemoryFraction(fraction: _float, device: _int) -> None: ...
  2457. def _cuda_emptyCache() -> None: ...
  2458. def _cuda_memoryStats(device: _int) -> Dict[str, Any]: ...
  2459. def _cuda_resetAccumulatedMemoryStats(device: _int) -> None: ...
  2460. def _cuda_resetPeakMemoryStats(device: _int) -> None: ...
  2461. def _cuda_memorySnapshot() -> Dict[str, Any]: ...
  2462. def _cuda_recordMemoryHistory(enabled: _bool, record_context: _bool, record_context_cpp: _bool, alloc_trace_max_entries: _int, alloc_trace_record_context: _bool) -> None: ...
  2463. def _cuda_getAllocatorBackend() -> str: ...
  2464. class _cuda_CUDAAllocator:
  2465. ...
  2466. def _cuda_customAllocator(alloc_fn: _int, free_fn: _int) -> _cuda_CUDAAllocator: ...
  2467. def _cuda_changeCurrentAllocator(allocator: _cuda_CUDAAllocator) -> None: ...
  2468. def _cuda_getAllocator() -> _cuda_CUDAAllocator: ...
  2469. def _cuda_lock_mutex() -> None: ...
  2470. def _cuda_unlock_mutex() -> None: ...
  2471. def _cuda_canDeviceAccessPeer(device: _int, peer_device: _int) -> _bool: ...
  2472. def _cuda_jiterator_compile_and_launch_kernel(code_string: str,
  2473. kernel_name: str,
  2474. return_by_ref: _bool,
  2475. num_outputs: _int,
  2476. tensors: Tuple,
  2477. kwargs: Dict[str, Union[_int, _float, _bool]]) -> Tensor: ...
  2478. def _cuda_get_cudnn_benchmark_limit() -> _int: ...
  2479. def _cuda_set_cudnn_benchmark_limit(arg: _int) -> None: ...
  2480. def _nccl_version() -> _int: ...
  2481. def _nccl_unique_id() -> bytes: ...
  2482. def _nccl_init_rank(nranks: _int, comm_id: bytes, rank: _int) -> object: ...
  2483. def _nccl_reduce(input: Sequence[Tensor],
  2484. output: Tensor,
  2485. root: _int,
  2486. op: _int,
  2487. streams: Optional[Sequence[_CudaStreamBase]],
  2488. comms: Optional[Sequence[object]]) -> None: ...
  2489. def _nccl_all_reduce(input: Sequence[Tensor],
  2490. output: Sequence[Tensor],
  2491. op: _int,
  2492. streams: Optional[Sequence[_CudaStreamBase]],
  2493. comms: Optional[Sequence[object]]) -> None: ...
  2494. def _nccl_broadcast(input: Sequence[Tensor],
  2495. root: _int,
  2496. streams: Optional[Sequence[_CudaStreamBase]],
  2497. comms: Optional[Sequence[object]]) -> None: ...
  2498. def _nccl_all_gather(input: Sequence[Tensor],
  2499. output: Sequence[Tensor],
  2500. streams: Optional[Sequence[_CudaStreamBase]],
  2501. comms: Optional[Sequence[object]]) -> None: ...
  2502. def _nccl_reduce_scatter(input: Sequence[Tensor],
  2503. output: Sequence[Tensor],
  2504. op: _int,
  2505. streams: Optional[Sequence[_CudaStreamBase]],
  2506. comms: Optional[Sequence[object]]) -> None: ...
  2507. def _rocm_is_backward_pass() -> _bool: ...
  2508. class _CudaDeviceProperties:
  2509. name: str
  2510. major: _int
  2511. minor: _int
  2512. multi_processor_count: _int
  2513. total_memory: _int
  2514. is_integrated: _int
  2515. is_multi_gpu_board: _int
  2516. # Defined in torch/csrc/cuda/python_comm.cpp
  2517. def _broadcast(tensor: Tensor, devices: List[_int]) -> List[Tensor]: ...
  2518. def _broadcast_out(tensor: Tensor, out_tensors: List[Tensor]) -> List[Tensor]: ...
  2519. def _broadcast_coalesced(
  2520. tensors: List[Tensor],
  2521. devices: List[_int],
  2522. buffer_size: _int
  2523. ) -> List[List[Tensor]]: ...
  2524. def _scatter(tensor: Tensor, devices: List[_int], chunk_sizes: Optional[List[_int]], dim: _int, streams: Optional[List[Stream]]) -> List[Tensor]: ...
  2525. def _scatter_out(tensor: Tensor, out_tensors: List[Tensor], dim: _int, streams: Optional[List[Stream]]) -> List[Tensor]: ...
  2526. def _gather(tensors: List[Tensor], dim: _int, destination_index: Optional[_int]) -> Tensor: ...
  2527. def _gather_out(tensors: List[Tensor], out_tensor: Tensor, dim: _int) -> Tensor: ...
  2528. # Defined in torch/csrc/cuda/Stream.cpp
  2529. class _CudaStreamBase:
  2530. stream_id: _int
  2531. device_index: _int
  2532. device_type: _int
  2533. device: _device
  2534. cuda_stream: _int
  2535. priority: _int
  2536. def __new__(self, priority: _int = 0, stream_id: _int = 0, device_index: _int = 0, stream_ptr: _int = 0) -> _CudaStreamBase: ...
  2537. def query(self) -> _bool: ...
  2538. def synchronize(self) -> None: ...
  2539. def priority_range(self) -> Tuple[_int, _int]: ...
  2540. # Defined in torch/csrc/cuda/Event.cpp
  2541. class _CudaEventBase:
  2542. device: _device
  2543. cuda_event: _int
  2544. def __new__(cls, enable_timing: _bool = False, blocking: _bool = False, interprocess: _bool = False) -> _CudaEventBase: ...
  2545. @classmethod
  2546. def from_ipc_handle(cls, device: _device, ipc_handle: bytes) -> _CudaEventBase: ...
  2547. def record(self, stream: _CudaStreamBase) -> None: ...
  2548. def wait(self, stream: _CudaStreamBase) -> None: ...
  2549. def query(self) -> _bool: ...
  2550. def elapsed_time(self, other: _CudaEventBase) -> _float: ...
  2551. def synchronize(self) -> None: ...
  2552. def ipc_handle(self) -> bytes: ...
  2553. # Defined in torch/csrc/cuda/Graph.cpp
  2554. class _CUDAGraph:
  2555. def capture_begin(self,
  2556. pool: Optional[Tuple[_int, _int]]=...) -> None: ...
  2557. def capture_end(self) -> None: ...
  2558. def replay(self) -> None: ...
  2559. def reset(self) -> None: ...
  2560. def pool(self) -> Tuple[_int, _int]: ...
  2561. def enable_debug_mode(self) -> None: ...
  2562. def debug_dump(self,
  2563. debug_path: str) -> None: ...
  2564. def _cuda_isCurrentStreamCapturing() -> _bool: ...
  2565. def _graph_pool_handle() -> Tuple[_int, _int]: ...
  2566. # Defined in torch/csrc/DataLoader.cpp
  2567. def _set_worker_signal_handlers(*arg: Any) -> None: ... # THPModule_setWorkerSignalHandlers
  2568. def _set_worker_pids(key: _int, child_pids: Tuple[_int, ...]) -> None: ... # THPModule_setWorkerPIDs
  2569. def _remove_worker_pids(loader_id: _int) -> None: ... # THPModule_removeWorkerPIDs
  2570. def _error_if_any_worker_fails() -> None: ... # THPModule_errorIfAnyWorkerFails
  2571. # Defined in torch/csrc/jit/python/python_tracer.cpp
  2572. class TracingState:
  2573. def push_scope(self, scope_name: str) -> None: ...
  2574. def pop_scope(self) -> None: ...
  2575. def current_scope(self) -> str: ...
  2576. def set_graph(self, graph: Graph) -> None: ...
  2577. def graph(self) -> Graph: ...
  2578. ...
  2579. def _create_graph_by_tracing(
  2580. func: Callable[..., Any],
  2581. inputs: Any,
  2582. var_name_lookup_fn: Callable[[Tensor], str],
  2583. strict: Any,
  2584. force_outplace: Any,
  2585. self: Any = None,
  2586. argument_names: List[str] = []
  2587. ) -> Tuple[Graph, Stack]: ...
  2588. def _tracer_warn_use_python(): ...
  2589. def _get_tracing_state() -> TracingState: ...
  2590. # Defined in torch/csrc/jit/python/python_ir.cpp
  2591. # Not actually defined in python_ir.cpp, not sure where they are.
  2592. class IValue:
  2593. ...
  2594. Stack = List[IValue]
  2595. class JitType:
  2596. annotation_str : str
  2597. def isSubtypeOf(self, other: JitType) -> _bool: ...
  2598. def with_dtype(self, dtype: _dtype) -> JitType: ...
  2599. def with_sizes(self, sizes: List[Optional[_int]]) -> JitType: ...
  2600. def kind(self) -> str: ...
  2601. def scalarType(self) -> Optional[str]: ...
  2602. def getElementType(self) -> JitType: ...
  2603. def dtype(self) -> Optional[_dtype]: ...
  2604. class InferredType:
  2605. def __init__(self, arg: Union[JitType, str]): ...
  2606. def type(self) -> JitType: ...
  2607. def success(self) -> _bool: ...
  2608. def reason(self) -> str: ...
  2609. R = TypeVar('R', bound=JitType)
  2610. class AnyType(JitType):
  2611. @staticmethod
  2612. def get() -> AnyType: ...
  2613. class NoneType(JitType):
  2614. @staticmethod
  2615. def get() -> NoneType: ...
  2616. class BoolType(JitType):
  2617. @staticmethod
  2618. def get() -> BoolType: ...
  2619. class FloatType(JitType):
  2620. @staticmethod
  2621. def get() -> FloatType: ...
  2622. class ComplexType(JitType):
  2623. @staticmethod
  2624. def get() -> ComplexType: ...
  2625. class IntType(JitType):
  2626. @staticmethod
  2627. def get() -> IntType: ...
  2628. class NumberType(JitType):
  2629. @staticmethod
  2630. def get() -> NumberType: ...
  2631. class StringType(JitType):
  2632. @staticmethod
  2633. def get() -> StringType: ...
  2634. class DeviceObjType(JitType):
  2635. @staticmethod
  2636. def get() -> DeviceObjType: ...
  2637. class StreamObjType(JitType):
  2638. @staticmethod
  2639. def get() -> StreamObjType: ...
  2640. class ListType(JitType):
  2641. def __init__(self, a: JitType) -> None: ...
  2642. def getElementType(self) -> JitType: ...
  2643. @staticmethod
  2644. def ofInts() -> ListType: ...
  2645. @staticmethod
  2646. def ofTensors() -> ListType: ...
  2647. @staticmethod
  2648. def ofFloats() -> ListType: ...
  2649. @staticmethod
  2650. def ofComplexDoubles() -> ListType: ...
  2651. @staticmethod
  2652. def ofBools() -> ListType: ...
  2653. @staticmethod
  2654. def ofStrings() -> ListType: ...
  2655. class DictType(JitType):
  2656. def __init__(self, key: JitType, value: JitType) -> None: ...
  2657. def getKeyType(self) -> JitType: ...
  2658. def getValueType(self) -> JitType: ...
  2659. class TupleType(JitType):
  2660. def __init__(self, a: List[Optional[JitType]]) -> None: ...
  2661. def elements(self) -> List[JitType]: ...
  2662. class UnionType(JitType):
  2663. def __init__(self, a: List[JitType]) -> None: ...
  2664. class ClassType(JitType):
  2665. def __init__(self, qualified_name: str) -> None: ...
  2666. class InterfaceType(JitType):
  2667. def __init__(self, qualified_name: str) -> None: ...
  2668. def getMethod(self, name: str) -> Optional[FunctionSchema]: ...
  2669. def getMethodNames(self) -> List[str]: ...
  2670. class OptionalType(JitType, Generic[R]):
  2671. def __init__(self, a: JitType) -> None: ...
  2672. def getElementType(self) -> JitType: ...
  2673. @staticmethod
  2674. def ofTensor() -> OptionalType: ...
  2675. class FutureType(JitType):
  2676. def __init__(self, a: JitType) -> None: ...
  2677. def getElementType(self) -> JitType: ...
  2678. class AwaitType(JitType):
  2679. def __init__(self, a: JitType) -> None: ...
  2680. def getElementType(self) -> JitType: ...
  2681. class RRefType(JitType):
  2682. def __init__(self, a: JitType) -> None: ...
  2683. class EnumType(JitType):
  2684. def __init__(
  2685. self,
  2686. qualified_name: str,
  2687. value_type: JitType,
  2688. enum_names_values: List[Any]
  2689. ) -> None:
  2690. ...
  2691. class TensorType(JitType):
  2692. @classmethod
  2693. def get(cls) -> TensorType: ...
  2694. @classmethod
  2695. def getInferred(cls) -> TensorType: ...
  2696. def with_sizes(self, other: Optional[List[Optional[_int]]]) -> TensorType: ...
  2697. def sizes(self) -> Optional[List[_int]]: ...
  2698. def varyingSizes(self) -> Optional[List[Optional[_int]]]: ...
  2699. def strides(self) -> Optional[List[_int]]: ...
  2700. def device(self) -> Optional[_device]: ...
  2701. def dim(self) -> _int: ...
  2702. def dtype(self) -> Optional[_dtype]: ...
  2703. @staticmethod
  2704. def create_from_tensor(t: Tensor) -> TensorType: ...
  2705. # Defined in torch/csrc/jit/python/python_tree_views.cpp
  2706. class SourceRange:
  2707. ...
  2708. class TreeView:
  2709. ...
  2710. class Ident(TreeView):
  2711. @property
  2712. def name(self) -> str: ...
  2713. class ClassDef(TreeView):
  2714. ...
  2715. class Def(TreeView):
  2716. def name(self) -> Ident: ...
  2717. class Decl(TreeView):
  2718. ...
  2719. # Defined in torch/csrc/distributed/rpc/init.cpp
  2720. def _rpc_init() -> _bool: ...
  2721. # Defined in torch/csrc/distributed/autograd/init.cpp
  2722. def _dist_autograd_init() -> _bool: ...
  2723. # Defined in torch/csrc/distributed/c10d/init.cpp
  2724. def _c10d_init() -> _bool: ...
  2725. # Defined in torch/csrc/distributed/rpc/testing/init.cpp
  2726. def _faulty_agent_init() -> _bool: ...
  2727. def _enable_minidumps(directory: str) -> None: ...
  2728. def _disable_minidumps() -> None: ...
  2729. def _enable_minidumps_on_exceptions() -> None: ...
  2730. def _register_py_class_for_device(device: str, cls: Any) -> None: ...
  2731. def _activate_cuda_trace() -> None: ...
  2732. # Defined in torch/csrc/Module.cpp
  2733. def _current_graph_task_id() -> _int: ...
  2734. def _current_autograd_node() -> _Node: ...
  2735. class _OutOfMemoryError:
  2736. pass
  2737. class _DistBackendError(RuntimeError):
  2738. pass