123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464 |
- from sympy.testing.pytest import raises
- from sympy.vector.coordsysrect import CoordSys3D
- from sympy.vector.scalar import BaseScalar
- from sympy.core.function import expand
- from sympy.core.numbers import pi
- from sympy.core.symbol import symbols
- from sympy.functions.elementary.hyperbolic import (cosh, sinh)
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.functions.elementary.trigonometric import (acos, atan2, cos, sin)
- from sympy.matrices.dense import zeros
- from sympy.matrices.immutable import ImmutableDenseMatrix as Matrix
- from sympy.simplify.simplify import simplify
- from sympy.vector.functions import express
- from sympy.vector.point import Point
- from sympy.vector.vector import Vector
- from sympy.vector.orienters import (AxisOrienter, BodyOrienter,
- SpaceOrienter, QuaternionOrienter)
- x, y, z = symbols('x y z')
- a, b, c, q = symbols('a b c q')
- q1, q2, q3, q4 = symbols('q1 q2 q3 q4')
- def test_func_args():
- A = CoordSys3D('A')
- assert A.x.func(*A.x.args) == A.x
- expr = 3*A.x + 4*A.y
- assert expr.func(*expr.args) == expr
- assert A.i.func(*A.i.args) == A.i
- v = A.x*A.i + A.y*A.j + A.z*A.k
- assert v.func(*v.args) == v
- assert A.origin.func(*A.origin.args) == A.origin
- def test_coordsys3d_equivalence():
- A = CoordSys3D('A')
- A1 = CoordSys3D('A')
- assert A1 == A
- B = CoordSys3D('B')
- assert A != B
- def test_orienters():
- A = CoordSys3D('A')
- axis_orienter = AxisOrienter(a, A.k)
- body_orienter = BodyOrienter(a, b, c, '123')
- space_orienter = SpaceOrienter(a, b, c, '123')
- q_orienter = QuaternionOrienter(q1, q2, q3, q4)
- assert axis_orienter.rotation_matrix(A) == Matrix([
- [ cos(a), sin(a), 0],
- [-sin(a), cos(a), 0],
- [ 0, 0, 1]])
- assert body_orienter.rotation_matrix() == Matrix([
- [ cos(b)*cos(c), sin(a)*sin(b)*cos(c) + sin(c)*cos(a),
- sin(a)*sin(c) - sin(b)*cos(a)*cos(c)],
- [-sin(c)*cos(b), -sin(a)*sin(b)*sin(c) + cos(a)*cos(c),
- sin(a)*cos(c) + sin(b)*sin(c)*cos(a)],
- [ sin(b), -sin(a)*cos(b),
- cos(a)*cos(b)]])
- assert space_orienter.rotation_matrix() == Matrix([
- [cos(b)*cos(c), sin(c)*cos(b), -sin(b)],
- [sin(a)*sin(b)*cos(c) - sin(c)*cos(a),
- sin(a)*sin(b)*sin(c) + cos(a)*cos(c), sin(a)*cos(b)],
- [sin(a)*sin(c) + sin(b)*cos(a)*cos(c), -sin(a)*cos(c) +
- sin(b)*sin(c)*cos(a), cos(a)*cos(b)]])
- assert q_orienter.rotation_matrix() == Matrix([
- [q1**2 + q2**2 - q3**2 - q4**2, 2*q1*q4 + 2*q2*q3,
- -2*q1*q3 + 2*q2*q4],
- [-2*q1*q4 + 2*q2*q3, q1**2 - q2**2 + q3**2 - q4**2,
- 2*q1*q2 + 2*q3*q4],
- [2*q1*q3 + 2*q2*q4,
- -2*q1*q2 + 2*q3*q4, q1**2 - q2**2 - q3**2 + q4**2]])
- def test_coordinate_vars():
- """
- Tests the coordinate variables functionality with respect to
- reorientation of coordinate systems.
- """
- A = CoordSys3D('A')
- # Note that the name given on the lhs is different from A.x._name
- assert BaseScalar(0, A, 'A_x', r'\mathbf{{x}_{A}}') == A.x
- assert BaseScalar(1, A, 'A_y', r'\mathbf{{y}_{A}}') == A.y
- assert BaseScalar(2, A, 'A_z', r'\mathbf{{z}_{A}}') == A.z
- assert BaseScalar(0, A, 'A_x', r'\mathbf{{x}_{A}}').__hash__() == A.x.__hash__()
- assert isinstance(A.x, BaseScalar) and \
- isinstance(A.y, BaseScalar) and \
- isinstance(A.z, BaseScalar)
- assert A.x*A.y == A.y*A.x
- assert A.scalar_map(A) == {A.x: A.x, A.y: A.y, A.z: A.z}
- assert A.x.system == A
- assert A.x.diff(A.x) == 1
- B = A.orient_new_axis('B', q, A.k)
- assert B.scalar_map(A) == {B.z: A.z, B.y: -A.x*sin(q) + A.y*cos(q),
- B.x: A.x*cos(q) + A.y*sin(q)}
- assert A.scalar_map(B) == {A.x: B.x*cos(q) - B.y*sin(q),
- A.y: B.x*sin(q) + B.y*cos(q), A.z: B.z}
- assert express(B.x, A, variables=True) == A.x*cos(q) + A.y*sin(q)
- assert express(B.y, A, variables=True) == -A.x*sin(q) + A.y*cos(q)
- assert express(B.z, A, variables=True) == A.z
- assert expand(express(B.x*B.y*B.z, A, variables=True)) == \
- expand(A.z*(-A.x*sin(q) + A.y*cos(q))*(A.x*cos(q) + A.y*sin(q)))
- assert express(B.x*B.i + B.y*B.j + B.z*B.k, A) == \
- (B.x*cos(q) - B.y*sin(q))*A.i + (B.x*sin(q) + \
- B.y*cos(q))*A.j + B.z*A.k
- assert simplify(express(B.x*B.i + B.y*B.j + B.z*B.k, A, \
- variables=True)) == \
- A.x*A.i + A.y*A.j + A.z*A.k
- assert express(A.x*A.i + A.y*A.j + A.z*A.k, B) == \
- (A.x*cos(q) + A.y*sin(q))*B.i + \
- (-A.x*sin(q) + A.y*cos(q))*B.j + A.z*B.k
- assert simplify(express(A.x*A.i + A.y*A.j + A.z*A.k, B, \
- variables=True)) == \
- B.x*B.i + B.y*B.j + B.z*B.k
- N = B.orient_new_axis('N', -q, B.k)
- assert N.scalar_map(A) == \
- {N.x: A.x, N.z: A.z, N.y: A.y}
- C = A.orient_new_axis('C', q, A.i + A.j + A.k)
- mapping = A.scalar_map(C)
- assert mapping[A.x].equals(C.x*(2*cos(q) + 1)/3 +
- C.y*(-2*sin(q + pi/6) + 1)/3 +
- C.z*(-2*cos(q + pi/3) + 1)/3)
- assert mapping[A.y].equals(C.x*(-2*cos(q + pi/3) + 1)/3 +
- C.y*(2*cos(q) + 1)/3 +
- C.z*(-2*sin(q + pi/6) + 1)/3)
- assert mapping[A.z].equals(C.x*(-2*sin(q + pi/6) + 1)/3 +
- C.y*(-2*cos(q + pi/3) + 1)/3 +
- C.z*(2*cos(q) + 1)/3)
- D = A.locate_new('D', a*A.i + b*A.j + c*A.k)
- assert D.scalar_map(A) == {D.z: A.z - c, D.x: A.x - a, D.y: A.y - b}
- E = A.orient_new_axis('E', a, A.k, a*A.i + b*A.j + c*A.k)
- assert A.scalar_map(E) == {A.z: E.z + c,
- A.x: E.x*cos(a) - E.y*sin(a) + a,
- A.y: E.x*sin(a) + E.y*cos(a) + b}
- assert E.scalar_map(A) == {E.x: (A.x - a)*cos(a) + (A.y - b)*sin(a),
- E.y: (-A.x + a)*sin(a) + (A.y - b)*cos(a),
- E.z: A.z - c}
- F = A.locate_new('F', Vector.zero)
- assert A.scalar_map(F) == {A.z: F.z, A.x: F.x, A.y: F.y}
- def test_rotation_matrix():
- N = CoordSys3D('N')
- A = N.orient_new_axis('A', q1, N.k)
- B = A.orient_new_axis('B', q2, A.i)
- C = B.orient_new_axis('C', q3, B.j)
- D = N.orient_new_axis('D', q4, N.j)
- E = N.orient_new_space('E', q1, q2, q3, '123')
- F = N.orient_new_quaternion('F', q1, q2, q3, q4)
- G = N.orient_new_body('G', q1, q2, q3, '123')
- assert N.rotation_matrix(C) == Matrix([
- [- sin(q1) * sin(q2) * sin(q3) + cos(q1) * cos(q3), - sin(q1) *
- cos(q2), sin(q1) * sin(q2) * cos(q3) + sin(q3) * cos(q1)], \
- [sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1), \
- cos(q1) * cos(q2), sin(q1) * sin(q3) - sin(q2) * cos(q1) * \
- cos(q3)], [- sin(q3) * cos(q2), sin(q2), cos(q2) * cos(q3)]])
- test_mat = D.rotation_matrix(C) - Matrix(
- [[cos(q1) * cos(q3) * cos(q4) - sin(q3) * (- sin(q4) * cos(q2) +
- sin(q1) * sin(q2) * cos(q4)), - sin(q2) * sin(q4) - sin(q1) *
- cos(q2) * cos(q4), sin(q3) * cos(q1) * cos(q4) + cos(q3) * \
- (- sin(q4) * cos(q2) + sin(q1) * sin(q2) * cos(q4))], \
- [sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1), cos(q1) * \
- cos(q2), sin(q1) * sin(q3) - sin(q2) * cos(q1) * cos(q3)], \
- [sin(q4) * cos(q1) * cos(q3) - sin(q3) * (cos(q2) * cos(q4) + \
- sin(q1) * sin(q2) * \
- sin(q4)), sin(q2) *
- cos(q4) - sin(q1) * sin(q4) * cos(q2), sin(q3) * \
- sin(q4) * cos(q1) + cos(q3) * (cos(q2) * cos(q4) + \
- sin(q1) * sin(q2) * sin(q4))]])
- assert test_mat.expand() == zeros(3, 3)
- assert E.rotation_matrix(N) == Matrix(
- [[cos(q2)*cos(q3), sin(q3)*cos(q2), -sin(q2)],
- [sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1), \
- sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2)], \
- [sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), - \
- sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q2)]])
- assert F.rotation_matrix(N) == Matrix([[
- q1**2 + q2**2 - q3**2 - q4**2,
- 2*q1*q4 + 2*q2*q3, -2*q1*q3 + 2*q2*q4],[ -2*q1*q4 + 2*q2*q3,
- q1**2 - q2**2 + q3**2 - q4**2, 2*q1*q2 + 2*q3*q4],
- [2*q1*q3 + 2*q2*q4,
- -2*q1*q2 + 2*q3*q4,
- q1**2 - q2**2 - q3**2 + q4**2]])
- assert G.rotation_matrix(N) == Matrix([[
- cos(q2)*cos(q3), sin(q1)*sin(q2)*cos(q3) + sin(q3)*cos(q1),
- sin(q1)*sin(q3) - sin(q2)*cos(q1)*cos(q3)], [
- -sin(q3)*cos(q2), -sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3),
- sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)],[
- sin(q2), -sin(q1)*cos(q2), cos(q1)*cos(q2)]])
- def test_vector_with_orientation():
- """
- Tests the effects of orientation of coordinate systems on
- basic vector operations.
- """
- N = CoordSys3D('N')
- A = N.orient_new_axis('A', q1, N.k)
- B = A.orient_new_axis('B', q2, A.i)
- C = B.orient_new_axis('C', q3, B.j)
- # Test to_matrix
- v1 = a*N.i + b*N.j + c*N.k
- assert v1.to_matrix(A) == Matrix([[ a*cos(q1) + b*sin(q1)],
- [-a*sin(q1) + b*cos(q1)],
- [ c]])
- # Test dot
- assert N.i.dot(A.i) == cos(q1)
- assert N.i.dot(A.j) == -sin(q1)
- assert N.i.dot(A.k) == 0
- assert N.j.dot(A.i) == sin(q1)
- assert N.j.dot(A.j) == cos(q1)
- assert N.j.dot(A.k) == 0
- assert N.k.dot(A.i) == 0
- assert N.k.dot(A.j) == 0
- assert N.k.dot(A.k) == 1
- assert N.i.dot(A.i + A.j) == -sin(q1) + cos(q1) == \
- (A.i + A.j).dot(N.i)
- assert A.i.dot(C.i) == cos(q3)
- assert A.i.dot(C.j) == 0
- assert A.i.dot(C.k) == sin(q3)
- assert A.j.dot(C.i) == sin(q2)*sin(q3)
- assert A.j.dot(C.j) == cos(q2)
- assert A.j.dot(C.k) == -sin(q2)*cos(q3)
- assert A.k.dot(C.i) == -cos(q2)*sin(q3)
- assert A.k.dot(C.j) == sin(q2)
- assert A.k.dot(C.k) == cos(q2)*cos(q3)
- # Test cross
- assert N.i.cross(A.i) == sin(q1)*A.k
- assert N.i.cross(A.j) == cos(q1)*A.k
- assert N.i.cross(A.k) == -sin(q1)*A.i - cos(q1)*A.j
- assert N.j.cross(A.i) == -cos(q1)*A.k
- assert N.j.cross(A.j) == sin(q1)*A.k
- assert N.j.cross(A.k) == cos(q1)*A.i - sin(q1)*A.j
- assert N.k.cross(A.i) == A.j
- assert N.k.cross(A.j) == -A.i
- assert N.k.cross(A.k) == Vector.zero
- assert N.i.cross(A.i) == sin(q1)*A.k
- assert N.i.cross(A.j) == cos(q1)*A.k
- assert N.i.cross(A.i + A.j) == sin(q1)*A.k + cos(q1)*A.k
- assert (A.i + A.j).cross(N.i) == (-sin(q1) - cos(q1))*N.k
- assert A.i.cross(C.i) == sin(q3)*C.j
- assert A.i.cross(C.j) == -sin(q3)*C.i + cos(q3)*C.k
- assert A.i.cross(C.k) == -cos(q3)*C.j
- assert C.i.cross(A.i) == (-sin(q3)*cos(q2))*A.j + \
- (-sin(q2)*sin(q3))*A.k
- assert C.j.cross(A.i) == (sin(q2))*A.j + (-cos(q2))*A.k
- assert express(C.k.cross(A.i), C).trigsimp() == cos(q3)*C.j
- def test_orient_new_methods():
- N = CoordSys3D('N')
- orienter1 = AxisOrienter(q4, N.j)
- orienter2 = SpaceOrienter(q1, q2, q3, '123')
- orienter3 = QuaternionOrienter(q1, q2, q3, q4)
- orienter4 = BodyOrienter(q1, q2, q3, '123')
- D = N.orient_new('D', (orienter1, ))
- E = N.orient_new('E', (orienter2, ))
- F = N.orient_new('F', (orienter3, ))
- G = N.orient_new('G', (orienter4, ))
- assert D == N.orient_new_axis('D', q4, N.j)
- assert E == N.orient_new_space('E', q1, q2, q3, '123')
- assert F == N.orient_new_quaternion('F', q1, q2, q3, q4)
- assert G == N.orient_new_body('G', q1, q2, q3, '123')
- def test_locatenew_point():
- """
- Tests Point class, and locate_new method in CoordSys3D.
- """
- A = CoordSys3D('A')
- assert isinstance(A.origin, Point)
- v = a*A.i + b*A.j + c*A.k
- C = A.locate_new('C', v)
- assert C.origin.position_wrt(A) == \
- C.position_wrt(A) == \
- C.origin.position_wrt(A.origin) == v
- assert A.origin.position_wrt(C) == \
- A.position_wrt(C) == \
- A.origin.position_wrt(C.origin) == -v
- assert A.origin.express_coordinates(C) == (-a, -b, -c)
- p = A.origin.locate_new('p', -v)
- assert p.express_coordinates(A) == (-a, -b, -c)
- assert p.position_wrt(C.origin) == p.position_wrt(C) == \
- -2 * v
- p1 = p.locate_new('p1', 2*v)
- assert p1.position_wrt(C.origin) == Vector.zero
- assert p1.express_coordinates(C) == (0, 0, 0)
- p2 = p.locate_new('p2', A.i)
- assert p1.position_wrt(p2) == 2*v - A.i
- assert p2.express_coordinates(C) == (-2*a + 1, -2*b, -2*c)
- def test_create_new():
- a = CoordSys3D('a')
- c = a.create_new('c', transformation='spherical')
- assert c._parent == a
- assert c.transformation_to_parent() == \
- (c.r*sin(c.theta)*cos(c.phi), c.r*sin(c.theta)*sin(c.phi), c.r*cos(c.theta))
- assert c.transformation_from_parent() == \
- (sqrt(a.x**2 + a.y**2 + a.z**2), acos(a.z/sqrt(a.x**2 + a.y**2 + a.z**2)), atan2(a.y, a.x))
- def test_evalf():
- A = CoordSys3D('A')
- v = 3*A.i + 4*A.j + a*A.k
- assert v.n() == v.evalf()
- assert v.evalf(subs={a:1}) == v.subs(a, 1).evalf()
- def test_lame_coefficients():
- a = CoordSys3D('a', 'spherical')
- assert a.lame_coefficients() == (1, a.r, sin(a.theta)*a.r)
- a = CoordSys3D('a')
- assert a.lame_coefficients() == (1, 1, 1)
- a = CoordSys3D('a', 'cartesian')
- assert a.lame_coefficients() == (1, 1, 1)
- a = CoordSys3D('a', 'cylindrical')
- assert a.lame_coefficients() == (1, a.r, 1)
- def test_transformation_equations():
- x, y, z = symbols('x y z')
- # Str
- a = CoordSys3D('a', transformation='spherical',
- variable_names=["r", "theta", "phi"])
- r, theta, phi = a.base_scalars()
- assert r == a.r
- assert theta == a.theta
- assert phi == a.phi
- raises(AttributeError, lambda: a.x)
- raises(AttributeError, lambda: a.y)
- raises(AttributeError, lambda: a.z)
- assert a.transformation_to_parent() == (
- r*sin(theta)*cos(phi),
- r*sin(theta)*sin(phi),
- r*cos(theta)
- )
- assert a.lame_coefficients() == (1, r, r*sin(theta))
- assert a.transformation_from_parent_function()(x, y, z) == (
- sqrt(x ** 2 + y ** 2 + z ** 2),
- acos((z) / sqrt(x**2 + y**2 + z**2)),
- atan2(y, x)
- )
- a = CoordSys3D('a', transformation='cylindrical',
- variable_names=["r", "theta", "z"])
- r, theta, z = a.base_scalars()
- assert a.transformation_to_parent() == (
- r*cos(theta),
- r*sin(theta),
- z
- )
- assert a.lame_coefficients() == (1, a.r, 1)
- assert a.transformation_from_parent_function()(x, y, z) == (sqrt(x**2 + y**2),
- atan2(y, x), z)
- a = CoordSys3D('a', 'cartesian')
- assert a.transformation_to_parent() == (a.x, a.y, a.z)
- assert a.lame_coefficients() == (1, 1, 1)
- assert a.transformation_from_parent_function()(x, y, z) == (x, y, z)
- # Variables and expressions
- # Cartesian with equation tuple:
- x, y, z = symbols('x y z')
- a = CoordSys3D('a', ((x, y, z), (x, y, z)))
- a._calculate_inv_trans_equations()
- assert a.transformation_to_parent() == (a.x1, a.x2, a.x3)
- assert a.lame_coefficients() == (1, 1, 1)
- assert a.transformation_from_parent_function()(x, y, z) == (x, y, z)
- r, theta, z = symbols("r theta z")
- # Cylindrical with equation tuple:
- a = CoordSys3D('a', [(r, theta, z), (r*cos(theta), r*sin(theta), z)],
- variable_names=["r", "theta", "z"])
- r, theta, z = a.base_scalars()
- assert a.transformation_to_parent() == (
- r*cos(theta), r*sin(theta), z
- )
- assert a.lame_coefficients() == (
- sqrt(sin(theta)**2 + cos(theta)**2),
- sqrt(r**2*sin(theta)**2 + r**2*cos(theta)**2),
- 1
- ) # ==> this should simplify to (1, r, 1), tests are too slow with `simplify`.
- # Definitions with `lambda`:
- # Cartesian with `lambda`
- a = CoordSys3D('a', lambda x, y, z: (x, y, z))
- assert a.transformation_to_parent() == (a.x1, a.x2, a.x3)
- assert a.lame_coefficients() == (1, 1, 1)
- a._calculate_inv_trans_equations()
- assert a.transformation_from_parent_function()(x, y, z) == (x, y, z)
- # Spherical with `lambda`
- a = CoordSys3D('a', lambda r, theta, phi: (r*sin(theta)*cos(phi), r*sin(theta)*sin(phi), r*cos(theta)),
- variable_names=["r", "theta", "phi"])
- r, theta, phi = a.base_scalars()
- assert a.transformation_to_parent() == (
- r*sin(theta)*cos(phi), r*sin(phi)*sin(theta), r*cos(theta)
- )
- assert a.lame_coefficients() == (
- sqrt(sin(phi)**2*sin(theta)**2 + sin(theta)**2*cos(phi)**2 + cos(theta)**2),
- sqrt(r**2*sin(phi)**2*cos(theta)**2 + r**2*sin(theta)**2 + r**2*cos(phi)**2*cos(theta)**2),
- sqrt(r**2*sin(phi)**2*sin(theta)**2 + r**2*sin(theta)**2*cos(phi)**2)
- ) # ==> this should simplify to (1, r, sin(theta)*r), `simplify` is too slow.
- # Cylindrical with `lambda`
- a = CoordSys3D('a', lambda r, theta, z:
- (r*cos(theta), r*sin(theta), z),
- variable_names=["r", "theta", "z"]
- )
- r, theta, z = a.base_scalars()
- assert a.transformation_to_parent() == (r*cos(theta), r*sin(theta), z)
- assert a.lame_coefficients() == (
- sqrt(sin(theta)**2 + cos(theta)**2),
- sqrt(r**2*sin(theta)**2 + r**2*cos(theta)**2),
- 1
- ) # ==> this should simplify to (1, a.x, 1)
- raises(TypeError, lambda: CoordSys3D('a', transformation={
- x: x*sin(y)*cos(z), y:x*sin(y)*sin(z), z: x*cos(y)}))
- def test_check_orthogonality():
- x, y, z = symbols('x y z')
- u,v = symbols('u, v')
- a = CoordSys3D('a', transformation=((x, y, z), (x*sin(y)*cos(z), x*sin(y)*sin(z), x*cos(y))))
- assert a._check_orthogonality(a._transformation) is True
- a = CoordSys3D('a', transformation=((x, y, z), (x * cos(y), x * sin(y), z)))
- assert a._check_orthogonality(a._transformation) is True
- a = CoordSys3D('a', transformation=((u, v, z), (cosh(u) * cos(v), sinh(u) * sin(v), z)))
- assert a._check_orthogonality(a._transformation) is True
- raises(ValueError, lambda: CoordSys3D('a', transformation=((x, y, z), (x, x, z))))
- raises(ValueError, lambda: CoordSys3D('a', transformation=(
- (x, y, z), (x*sin(y/2)*cos(z), x*sin(y)*sin(z), x*cos(y)))))
- def test_rotation_trans_equations():
- a = CoordSys3D('a')
- from sympy.core.symbol import symbols
- q0 = symbols('q0')
- assert a._rotation_trans_equations(a._parent_rotation_matrix, a.base_scalars()) == (a.x, a.y, a.z)
- assert a._rotation_trans_equations(a._inverse_rotation_matrix(), a.base_scalars()) == (a.x, a.y, a.z)
- b = a.orient_new_axis('b', 0, -a.k)
- assert b._rotation_trans_equations(b._parent_rotation_matrix, b.base_scalars()) == (b.x, b.y, b.z)
- assert b._rotation_trans_equations(b._inverse_rotation_matrix(), b.base_scalars()) == (b.x, b.y, b.z)
- c = a.orient_new_axis('c', q0, -a.k)
- assert c._rotation_trans_equations(c._parent_rotation_matrix, c.base_scalars()) == \
- (-sin(q0) * c.y + cos(q0) * c.x, sin(q0) * c.x + cos(q0) * c.y, c.z)
- assert c._rotation_trans_equations(c._inverse_rotation_matrix(), c.base_scalars()) == \
- (sin(q0) * c.y + cos(q0) * c.x, -sin(q0) * c.x + cos(q0) * c.y, c.z)
|