1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- from sympy.unify.rewrite import rewriterule
- from sympy.core.basic import Basic
- from sympy.core.singleton import S
- from sympy.core.symbol import Symbol
- from sympy.functions.elementary.trigonometric import sin
- from sympy.abc import x, y
- from sympy.strategies.rl import rebuild
- from sympy.assumptions import Q
- p, q = Symbol('p'), Symbol('q')
- def test_simple():
- rl = rewriterule(Basic(p, S(1)), Basic(p, S(2)), variables=(p,))
- assert list(rl(Basic(S(3), S(1)))) == [Basic(S(3), S(2))]
- p1 = p**2
- p2 = p**3
- rl = rewriterule(p1, p2, variables=(p,))
- expr = x**2
- assert list(rl(expr)) == [x**3]
- def test_simple_variables():
- rl = rewriterule(Basic(x, S(1)), Basic(x, S(2)), variables=(x,))
- assert list(rl(Basic(S(3), S(1)))) == [Basic(S(3), S(2))]
- rl = rewriterule(x**2, x**3, variables=(x,))
- assert list(rl(y**2)) == [y**3]
- def test_moderate():
- p1 = p**2 + q**3
- p2 = (p*q)**4
- rl = rewriterule(p1, p2, (p, q))
- expr = x**2 + y**3
- assert list(rl(expr)) == [(x*y)**4]
- def test_sincos():
- p1 = sin(p)**2 + sin(p)**2
- p2 = 1
- rl = rewriterule(p1, p2, (p, q))
- assert list(rl(sin(x)**2 + sin(x)**2)) == [1]
- assert list(rl(sin(y)**2 + sin(y)**2)) == [1]
- def test_Exprs_ok():
- rl = rewriterule(p+q, q+p, (p, q))
- next(rl(x+y)).is_commutative
- str(next(rl(x+y)))
- def test_condition_simple():
- rl = rewriterule(x, x+1, [x], lambda x: x < 10)
- assert not list(rl(S(15)))
- assert rebuild(next(rl(S(5)))) == 6
- def test_condition_multiple():
- rl = rewriterule(x + y, x**y, [x,y], lambda x, y: x.is_integer)
- a = Symbol('a')
- b = Symbol('b', integer=True)
- expr = a + b
- assert list(rl(expr)) == [b**a]
- c = Symbol('c', integer=True)
- d = Symbol('d', integer=True)
- assert set(rl(c + d)) == {c**d, d**c}
- def test_assumptions():
- rl = rewriterule(x + y, x**y, [x, y], assume=Q.integer(x))
- a, b = map(Symbol, 'ab')
- expr = a + b
- assert list(rl(expr, Q.integer(b))) == [b**a]
|