test_continuous_rv.py 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567
  1. from sympy.concrete.summations import Sum
  2. from sympy.core.function import (Lambda, diff, expand_func)
  3. from sympy.core.mul import Mul
  4. from sympy.core import EulerGamma
  5. from sympy.core.numbers import (E as e, I, Rational, pi)
  6. from sympy.core.relational import (Eq, Ne)
  7. from sympy.core.singleton import S
  8. from sympy.core.symbol import (Dummy, Symbol, symbols)
  9. from sympy.functions.combinatorial.factorials import (binomial, factorial)
  10. from sympy.functions.elementary.complexes import (Abs, im, re, sign)
  11. from sympy.functions.elementary.exponential import (exp, log)
  12. from sympy.functions.elementary.hyperbolic import (cosh, sinh)
  13. from sympy.functions.elementary.integers import floor
  14. from sympy.functions.elementary.miscellaneous import sqrt
  15. from sympy.functions.elementary.piecewise import Piecewise
  16. from sympy.functions.elementary.trigonometric import (asin, atan, cos, sin, tan)
  17. from sympy.functions.special.bessel import (besseli, besselj, besselk)
  18. from sympy.functions.special.beta_functions import beta
  19. from sympy.functions.special.error_functions import (erf, erfc, erfi, expint)
  20. from sympy.functions.special.gamma_functions import (gamma, lowergamma, uppergamma)
  21. from sympy.functions.special.hyper import hyper
  22. from sympy.integrals.integrals import Integral
  23. from sympy.logic.boolalg import (And, Or)
  24. from sympy.sets.sets import Interval
  25. from sympy.simplify.simplify import simplify
  26. from sympy.utilities.lambdify import lambdify
  27. from sympy.functions.special.error_functions import erfinv
  28. from sympy.functions.special.hyper import meijerg
  29. from sympy.sets.sets import FiniteSet, Complement, Intersection
  30. from sympy.stats import (P, E, where, density, variance, covariance, skewness, kurtosis, median,
  31. given, pspace, cdf, characteristic_function, moment_generating_function,
  32. ContinuousRV, Arcsin, Benini, Beta, BetaNoncentral, BetaPrime,
  33. Cauchy, Chi, ChiSquared, ChiNoncentral, Dagum, Erlang, ExGaussian,
  34. Exponential, ExponentialPower, FDistribution, FisherZ, Frechet, Gamma,
  35. GammaInverse, Gompertz, Gumbel, Kumaraswamy, Laplace, Levy, Logistic, LogCauchy,
  36. LogLogistic, LogitNormal, LogNormal, Maxwell, Moyal, Nakagami, Normal, GaussianInverse,
  37. Pareto, PowerFunction, QuadraticU, RaisedCosine, Rayleigh, Reciprocal, ShiftedGompertz, StudentT,
  38. Trapezoidal, Triangular, Uniform, UniformSum, VonMises, Weibull, coskewness,
  39. WignerSemicircle, Wald, correlation, moment, cmoment, smoment, quantile,
  40. Lomax, BoundedPareto)
  41. from sympy.stats.crv_types import NormalDistribution, ExponentialDistribution, ContinuousDistributionHandmade
  42. from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution, MultivariateNormalDistribution
  43. from sympy.stats.crv import SingleContinuousPSpace, SingleContinuousDomain
  44. from sympy.stats.compound_rv import CompoundPSpace
  45. from sympy.stats.symbolic_probability import Probability
  46. from sympy.testing.pytest import raises, XFAIL, slow, ignore_warnings
  47. from sympy.core.random import verify_numerically as tn
  48. oo = S.Infinity
  49. x, y, z = map(Symbol, 'xyz')
  50. def test_single_normal():
  51. mu = Symbol('mu', real=True)
  52. sigma = Symbol('sigma', positive=True)
  53. X = Normal('x', 0, 1)
  54. Y = X*sigma + mu
  55. assert E(Y) == mu
  56. assert variance(Y) == sigma**2
  57. pdf = density(Y)
  58. x = Symbol('x', real=True)
  59. assert (pdf(x) ==
  60. 2**S.Half*exp(-(x - mu)**2/(2*sigma**2))/(2*pi**S.Half*sigma))
  61. assert P(X**2 < 1) == erf(2**S.Half/2)
  62. ans = quantile(Y)(x)
  63. assert ans == Complement(Intersection(FiniteSet(
  64. sqrt(2)*sigma*(sqrt(2)*mu/(2*sigma)+ erfinv(2*x - 1))),
  65. Interval(-oo, oo)), FiniteSet(mu))
  66. assert E(X, Eq(X, mu)) == mu
  67. assert median(X) == FiniteSet(0)
  68. # issue 8248
  69. assert X.pspace.compute_expectation(1).doit() == 1
  70. def test_conditional_1d():
  71. X = Normal('x', 0, 1)
  72. Y = given(X, X >= 0)
  73. z = Symbol('z')
  74. assert density(Y)(z) == 2 * density(X)(z)
  75. assert Y.pspace.domain.set == Interval(0, oo)
  76. assert E(Y) == sqrt(2) / sqrt(pi)
  77. assert E(X**2) == E(Y**2)
  78. def test_ContinuousDomain():
  79. X = Normal('x', 0, 1)
  80. assert where(X**2 <= 1).set == Interval(-1, 1)
  81. assert where(X**2 <= 1).symbol == X.symbol
  82. assert where(And(X**2 <= 1, X >= 0)).set == Interval(0, 1)
  83. raises(ValueError, lambda: where(sin(X) > 1))
  84. Y = given(X, X >= 0)
  85. assert Y.pspace.domain.set == Interval(0, oo)
  86. def test_multiple_normal():
  87. X, Y = Normal('x', 0, 1), Normal('y', 0, 1)
  88. p = Symbol("p", positive=True)
  89. assert E(X + Y) == 0
  90. assert variance(X + Y) == 2
  91. assert variance(X + X) == 4
  92. assert covariance(X, Y) == 0
  93. assert covariance(2*X + Y, -X) == -2*variance(X)
  94. assert skewness(X) == 0
  95. assert skewness(X + Y) == 0
  96. assert kurtosis(X) == 3
  97. assert kurtosis(X+Y) == 3
  98. assert correlation(X, Y) == 0
  99. assert correlation(X, X + Y) == correlation(X, X - Y)
  100. assert moment(X, 2) == 1
  101. assert cmoment(X, 3) == 0
  102. assert moment(X + Y, 4) == 12
  103. assert cmoment(X, 2) == variance(X)
  104. assert smoment(X*X, 2) == 1
  105. assert smoment(X + Y, 3) == skewness(X + Y)
  106. assert smoment(X + Y, 4) == kurtosis(X + Y)
  107. assert E(X, Eq(X + Y, 0)) == 0
  108. assert variance(X, Eq(X + Y, 0)) == S.Half
  109. assert quantile(X)(p) == sqrt(2)*erfinv(2*p - S.One)
  110. def test_symbolic():
  111. mu1, mu2 = symbols('mu1 mu2', real=True)
  112. s1, s2 = symbols('sigma1 sigma2', positive=True)
  113. rate = Symbol('lambda', positive=True)
  114. X = Normal('x', mu1, s1)
  115. Y = Normal('y', mu2, s2)
  116. Z = Exponential('z', rate)
  117. a, b, c = symbols('a b c', real=True)
  118. assert E(X) == mu1
  119. assert E(X + Y) == mu1 + mu2
  120. assert E(a*X + b) == a*E(X) + b
  121. assert variance(X) == s1**2
  122. assert variance(X + a*Y + b) == variance(X) + a**2*variance(Y)
  123. assert E(Z) == 1/rate
  124. assert E(a*Z + b) == a*E(Z) + b
  125. assert E(X + a*Z + b) == mu1 + a/rate + b
  126. assert median(X) == FiniteSet(mu1)
  127. def test_cdf():
  128. X = Normal('x', 0, 1)
  129. d = cdf(X)
  130. assert P(X < 1) == d(1).rewrite(erfc)
  131. assert d(0) == S.Half
  132. d = cdf(X, X > 0) # given X>0
  133. assert d(0) == 0
  134. Y = Exponential('y', 10)
  135. d = cdf(Y)
  136. assert d(-5) == 0
  137. assert P(Y > 3) == 1 - d(3)
  138. raises(ValueError, lambda: cdf(X + Y))
  139. Z = Exponential('z', 1)
  140. f = cdf(Z)
  141. assert f(z) == Piecewise((1 - exp(-z), z >= 0), (0, True))
  142. def test_characteristic_function():
  143. X = Uniform('x', 0, 1)
  144. cf = characteristic_function(X)
  145. assert cf(1) == -I*(-1 + exp(I))
  146. Y = Normal('y', 1, 1)
  147. cf = characteristic_function(Y)
  148. assert cf(0) == 1
  149. assert cf(1) == exp(I - S.Half)
  150. Z = Exponential('z', 5)
  151. cf = characteristic_function(Z)
  152. assert cf(0) == 1
  153. assert cf(1).expand() == Rational(25, 26) + I*5/26
  154. X = GaussianInverse('x', 1, 1)
  155. cf = characteristic_function(X)
  156. assert cf(0) == 1
  157. assert cf(1) == exp(1 - sqrt(1 - 2*I))
  158. X = ExGaussian('x', 0, 1, 1)
  159. cf = characteristic_function(X)
  160. assert cf(0) == 1
  161. assert cf(1) == (1 + I)*exp(Rational(-1, 2))/2
  162. L = Levy('x', 0, 1)
  163. cf = characteristic_function(L)
  164. assert cf(0) == 1
  165. assert cf(1) == exp(-sqrt(2)*sqrt(-I))
  166. def test_moment_generating_function():
  167. t = symbols('t', positive=True)
  168. # Symbolic tests
  169. a, b, c = symbols('a b c')
  170. mgf = moment_generating_function(Beta('x', a, b))(t)
  171. assert mgf == hyper((a,), (a + b,), t)
  172. mgf = moment_generating_function(Chi('x', a))(t)
  173. assert mgf == sqrt(2)*t*gamma(a/2 + S.Half)*\
  174. hyper((a/2 + S.Half,), (Rational(3, 2),), t**2/2)/gamma(a/2) +\
  175. hyper((a/2,), (S.Half,), t**2/2)
  176. mgf = moment_generating_function(ChiSquared('x', a))(t)
  177. assert mgf == (1 - 2*t)**(-a/2)
  178. mgf = moment_generating_function(Erlang('x', a, b))(t)
  179. assert mgf == (1 - t/b)**(-a)
  180. mgf = moment_generating_function(ExGaussian("x", a, b, c))(t)
  181. assert mgf == exp(a*t + b**2*t**2/2)/(1 - t/c)
  182. mgf = moment_generating_function(Exponential('x', a))(t)
  183. assert mgf == a/(a - t)
  184. mgf = moment_generating_function(Gamma('x', a, b))(t)
  185. assert mgf == (-b*t + 1)**(-a)
  186. mgf = moment_generating_function(Gumbel('x', a, b))(t)
  187. assert mgf == exp(b*t)*gamma(-a*t + 1)
  188. mgf = moment_generating_function(Gompertz('x', a, b))(t)
  189. assert mgf == b*exp(b)*expint(t/a, b)
  190. mgf = moment_generating_function(Laplace('x', a, b))(t)
  191. assert mgf == exp(a*t)/(-b**2*t**2 + 1)
  192. mgf = moment_generating_function(Logistic('x', a, b))(t)
  193. assert mgf == exp(a*t)*beta(-b*t + 1, b*t + 1)
  194. mgf = moment_generating_function(Normal('x', a, b))(t)
  195. assert mgf == exp(a*t + b**2*t**2/2)
  196. mgf = moment_generating_function(Pareto('x', a, b))(t)
  197. assert mgf == b*(-a*t)**b*uppergamma(-b, -a*t)
  198. mgf = moment_generating_function(QuadraticU('x', a, b))(t)
  199. assert str(mgf) == ("(3*(t*(-4*b + (a + b)**2) + 4)*exp(b*t) - "
  200. "3*(t*(a**2 + 2*a*(b - 2) + b**2) + 4)*exp(a*t))/(t**2*(a - b)**3)")
  201. mgf = moment_generating_function(RaisedCosine('x', a, b))(t)
  202. assert mgf == pi**2*exp(a*t)*sinh(b*t)/(b*t*(b**2*t**2 + pi**2))
  203. mgf = moment_generating_function(Rayleigh('x', a))(t)
  204. assert mgf == sqrt(2)*sqrt(pi)*a*t*(erf(sqrt(2)*a*t/2) + 1)\
  205. *exp(a**2*t**2/2)/2 + 1
  206. mgf = moment_generating_function(Triangular('x', a, b, c))(t)
  207. assert str(mgf) == ("(-2*(-a + b)*exp(c*t) + 2*(-a + c)*exp(b*t) + "
  208. "2*(b - c)*exp(a*t))/(t**2*(-a + b)*(-a + c)*(b - c))")
  209. mgf = moment_generating_function(Uniform('x', a, b))(t)
  210. assert mgf == (-exp(a*t) + exp(b*t))/(t*(-a + b))
  211. mgf = moment_generating_function(UniformSum('x', a))(t)
  212. assert mgf == ((exp(t) - 1)/t)**a
  213. mgf = moment_generating_function(WignerSemicircle('x', a))(t)
  214. assert mgf == 2*besseli(1, a*t)/(a*t)
  215. # Numeric tests
  216. mgf = moment_generating_function(Beta('x', 1, 1))(t)
  217. assert mgf.diff(t).subs(t, 1) == hyper((2,), (3,), 1)/2
  218. mgf = moment_generating_function(Chi('x', 1))(t)
  219. assert mgf.diff(t).subs(t, 1) == sqrt(2)*hyper((1,), (Rational(3, 2),), S.Half
  220. )/sqrt(pi) + hyper((Rational(3, 2),), (Rational(3, 2),), S.Half) + 2*sqrt(2)*hyper((2,),
  221. (Rational(5, 2),), S.Half)/(3*sqrt(pi))
  222. mgf = moment_generating_function(ChiSquared('x', 1))(t)
  223. assert mgf.diff(t).subs(t, 1) == I
  224. mgf = moment_generating_function(Erlang('x', 1, 1))(t)
  225. assert mgf.diff(t).subs(t, 0) == 1
  226. mgf = moment_generating_function(ExGaussian("x", 0, 1, 1))(t)
  227. assert mgf.diff(t).subs(t, 2) == -exp(2)
  228. mgf = moment_generating_function(Exponential('x', 1))(t)
  229. assert mgf.diff(t).subs(t, 0) == 1
  230. mgf = moment_generating_function(Gamma('x', 1, 1))(t)
  231. assert mgf.diff(t).subs(t, 0) == 1
  232. mgf = moment_generating_function(Gumbel('x', 1, 1))(t)
  233. assert mgf.diff(t).subs(t, 0) == EulerGamma + 1
  234. mgf = moment_generating_function(Gompertz('x', 1, 1))(t)
  235. assert mgf.diff(t).subs(t, 1) == -e*meijerg(((), (1, 1)),
  236. ((0, 0, 0), ()), 1)
  237. mgf = moment_generating_function(Laplace('x', 1, 1))(t)
  238. assert mgf.diff(t).subs(t, 0) == 1
  239. mgf = moment_generating_function(Logistic('x', 1, 1))(t)
  240. assert mgf.diff(t).subs(t, 0) == beta(1, 1)
  241. mgf = moment_generating_function(Normal('x', 0, 1))(t)
  242. assert mgf.diff(t).subs(t, 1) == exp(S.Half)
  243. mgf = moment_generating_function(Pareto('x', 1, 1))(t)
  244. assert mgf.diff(t).subs(t, 0) == expint(1, 0)
  245. mgf = moment_generating_function(QuadraticU('x', 1, 2))(t)
  246. assert mgf.diff(t).subs(t, 1) == -12*e - 3*exp(2)
  247. mgf = moment_generating_function(RaisedCosine('x', 1, 1))(t)
  248. assert mgf.diff(t).subs(t, 1) == -2*e*pi**2*sinh(1)/\
  249. (1 + pi**2)**2 + e*pi**2*cosh(1)/(1 + pi**2)
  250. mgf = moment_generating_function(Rayleigh('x', 1))(t)
  251. assert mgf.diff(t).subs(t, 0) == sqrt(2)*sqrt(pi)/2
  252. mgf = moment_generating_function(Triangular('x', 1, 3, 2))(t)
  253. assert mgf.diff(t).subs(t, 1) == -e + exp(3)
  254. mgf = moment_generating_function(Uniform('x', 0, 1))(t)
  255. assert mgf.diff(t).subs(t, 1) == 1
  256. mgf = moment_generating_function(UniformSum('x', 1))(t)
  257. assert mgf.diff(t).subs(t, 1) == 1
  258. mgf = moment_generating_function(WignerSemicircle('x', 1))(t)
  259. assert mgf.diff(t).subs(t, 1) == -2*besseli(1, 1) + besseli(2, 1) +\
  260. besseli(0, 1)
  261. def test_ContinuousRV():
  262. pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution
  263. # X and Y should be equivalent
  264. X = ContinuousRV(x, pdf, check=True)
  265. Y = Normal('y', 0, 1)
  266. assert variance(X) == variance(Y)
  267. assert P(X > 0) == P(Y > 0)
  268. Z = ContinuousRV(z, exp(-z), set=Interval(0, oo))
  269. assert Z.pspace.domain.set == Interval(0, oo)
  270. assert E(Z) == 1
  271. assert P(Z > 5) == exp(-5)
  272. raises(ValueError, lambda: ContinuousRV(z, exp(-z), set=Interval(0, 10), check=True))
  273. # the correct pdf for Gamma(k, theta) but the integral in `check`
  274. # integrates to something equivalent to 1 and not to 1 exactly
  275. _x, k, theta = symbols("x k theta", positive=True)
  276. pdf = 1/(gamma(k)*theta**k)*_x**(k-1)*exp(-_x/theta)
  277. X = ContinuousRV(_x, pdf, set=Interval(0, oo))
  278. Y = Gamma('y', k, theta)
  279. assert (E(X) - E(Y)).simplify() == 0
  280. assert (variance(X) - variance(Y)).simplify() == 0
  281. def test_arcsin():
  282. a = Symbol("a", real=True)
  283. b = Symbol("b", real=True)
  284. X = Arcsin('x', a, b)
  285. assert density(X)(x) == 1/(pi*sqrt((-x + b)*(x - a)))
  286. assert cdf(X)(x) == Piecewise((0, a > x),
  287. (2*asin(sqrt((-a + x)/(-a + b)))/pi, b >= x),
  288. (1, True))
  289. assert pspace(X).domain.set == Interval(a, b)
  290. def test_benini():
  291. alpha = Symbol("alpha", positive=True)
  292. beta = Symbol("beta", positive=True)
  293. sigma = Symbol("sigma", positive=True)
  294. X = Benini('x', alpha, beta, sigma)
  295. assert density(X)(x) == ((alpha/x + 2*beta*log(x/sigma)/x)
  296. *exp(-alpha*log(x/sigma) - beta*log(x/sigma)**2))
  297. assert pspace(X).domain.set == Interval(sigma, oo)
  298. raises(NotImplementedError, lambda: moment_generating_function(X))
  299. alpha = Symbol("alpha", nonpositive=True)
  300. raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
  301. beta = Symbol("beta", nonpositive=True)
  302. raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
  303. alpha = Symbol("alpha", positive=True)
  304. raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
  305. beta = Symbol("beta", positive=True)
  306. sigma = Symbol("sigma", nonpositive=True)
  307. raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
  308. def test_beta():
  309. a, b = symbols('alpha beta', positive=True)
  310. B = Beta('x', a, b)
  311. assert pspace(B).domain.set == Interval(0, 1)
  312. assert characteristic_function(B)(x) == hyper((a,), (a + b,), I*x)
  313. assert density(B)(x) == x**(a - 1)*(1 - x)**(b - 1)/beta(a, b)
  314. assert simplify(E(B)) == a / (a + b)
  315. assert simplify(variance(B)) == a*b / (a**3 + 3*a**2*b + a**2 + 3*a*b**2 + 2*a*b + b**3 + b**2)
  316. # Full symbolic solution is too much, test with numeric version
  317. a, b = 1, 2
  318. B = Beta('x', a, b)
  319. assert expand_func(E(B)) == a / S(a + b)
  320. assert expand_func(variance(B)) == (a*b) / S((a + b)**2 * (a + b + 1))
  321. assert median(B) == FiniteSet(1 - 1/sqrt(2))
  322. def test_beta_noncentral():
  323. a, b = symbols('a b', positive=True)
  324. c = Symbol('c', nonnegative=True)
  325. _k = Dummy('k')
  326. X = BetaNoncentral('x', a, b, c)
  327. assert pspace(X).domain.set == Interval(0, 1)
  328. dens = density(X)
  329. z = Symbol('z')
  330. res = Sum( z**(_k + a - 1)*(c/2)**_k*(1 - z)**(b - 1)*exp(-c/2)/
  331. (beta(_k + a, b)*factorial(_k)), (_k, 0, oo))
  332. assert dens(z).dummy_eq(res)
  333. # BetaCentral should not raise if the assumptions
  334. # on the symbols can not be determined
  335. a, b, c = symbols('a b c')
  336. assert BetaNoncentral('x', a, b, c)
  337. a = Symbol('a', positive=False, real=True)
  338. raises(ValueError, lambda: BetaNoncentral('x', a, b, c))
  339. a = Symbol('a', positive=True)
  340. b = Symbol('b', positive=False, real=True)
  341. raises(ValueError, lambda: BetaNoncentral('x', a, b, c))
  342. a = Symbol('a', positive=True)
  343. b = Symbol('b', positive=True)
  344. c = Symbol('c', nonnegative=False, real=True)
  345. raises(ValueError, lambda: BetaNoncentral('x', a, b, c))
  346. def test_betaprime():
  347. alpha = Symbol("alpha", positive=True)
  348. betap = Symbol("beta", positive=True)
  349. X = BetaPrime('x', alpha, betap)
  350. assert density(X)(x) == x**(alpha - 1)*(x + 1)**(-alpha - betap)/beta(alpha, betap)
  351. alpha = Symbol("alpha", nonpositive=True)
  352. raises(ValueError, lambda: BetaPrime('x', alpha, betap))
  353. alpha = Symbol("alpha", positive=True)
  354. betap = Symbol("beta", nonpositive=True)
  355. raises(ValueError, lambda: BetaPrime('x', alpha, betap))
  356. X = BetaPrime('x', 1, 1)
  357. assert median(X) == FiniteSet(1)
  358. def test_BoundedPareto():
  359. L, H = symbols('L, H', negative=True)
  360. raises(ValueError, lambda: BoundedPareto('X', 1, L, H))
  361. L, H = symbols('L, H', real=False)
  362. raises(ValueError, lambda: BoundedPareto('X', 1, L, H))
  363. L, H = symbols('L, H', positive=True)
  364. raises(ValueError, lambda: BoundedPareto('X', -1, L, H))
  365. X = BoundedPareto('X', 2, L, H)
  366. assert X.pspace.domain.set == Interval(L, H)
  367. assert density(X)(x) == 2*L**2/(x**3*(1 - L**2/H**2))
  368. assert cdf(X)(x) == Piecewise((-H**2*L**2/(x**2*(H**2 - L**2)) \
  369. + H**2/(H**2 - L**2), L <= x), (0, True))
  370. assert E(X).simplify() == 2*H*L/(H + L)
  371. X = BoundedPareto('X', 1, 2, 4)
  372. assert E(X).simplify() == log(16)
  373. assert median(X) == FiniteSet(Rational(8, 3))
  374. assert variance(X).simplify() == 8 - 16*log(2)**2
  375. def test_cauchy():
  376. x0 = Symbol("x0", real=True)
  377. gamma = Symbol("gamma", positive=True)
  378. p = Symbol("p", positive=True)
  379. X = Cauchy('x', x0, gamma)
  380. # Tests the characteristic function
  381. assert characteristic_function(X)(x) == exp(-gamma*Abs(x) + I*x*x0)
  382. raises(NotImplementedError, lambda: moment_generating_function(X))
  383. assert density(X)(x) == 1/(pi*gamma*(1 + (x - x0)**2/gamma**2))
  384. assert diff(cdf(X)(x), x) == density(X)(x)
  385. assert quantile(X)(p) == gamma*tan(pi*(p - S.Half)) + x0
  386. x1 = Symbol("x1", real=False)
  387. raises(ValueError, lambda: Cauchy('x', x1, gamma))
  388. gamma = Symbol("gamma", nonpositive=True)
  389. raises(ValueError, lambda: Cauchy('x', x0, gamma))
  390. assert median(X) == FiniteSet(x0)
  391. def test_chi():
  392. from sympy.core.numbers import I
  393. k = Symbol("k", integer=True)
  394. X = Chi('x', k)
  395. assert density(X)(x) == 2**(-k/2 + 1)*x**(k - 1)*exp(-x**2/2)/gamma(k/2)
  396. # Tests the characteristic function
  397. assert characteristic_function(X)(x) == sqrt(2)*I*x*gamma(k/2 + S(1)/2)*hyper((k/2 + S(1)/2,),
  398. (S(3)/2,), -x**2/2)/gamma(k/2) + hyper((k/2,), (S(1)/2,), -x**2/2)
  399. # Tests the moment generating function
  400. assert moment_generating_function(X)(x) == sqrt(2)*x*gamma(k/2 + S(1)/2)*hyper((k/2 + S(1)/2,),
  401. (S(3)/2,), x**2/2)/gamma(k/2) + hyper((k/2,), (S(1)/2,), x**2/2)
  402. k = Symbol("k", integer=True, positive=False)
  403. raises(ValueError, lambda: Chi('x', k))
  404. k = Symbol("k", integer=False, positive=True)
  405. raises(ValueError, lambda: Chi('x', k))
  406. def test_chi_noncentral():
  407. k = Symbol("k", integer=True)
  408. l = Symbol("l")
  409. X = ChiNoncentral("x", k, l)
  410. assert density(X)(x) == (x**k*l*(x*l)**(-k/2)*
  411. exp(-x**2/2 - l**2/2)*besseli(k/2 - 1, x*l))
  412. k = Symbol("k", integer=True, positive=False)
  413. raises(ValueError, lambda: ChiNoncentral('x', k, l))
  414. k = Symbol("k", integer=True, positive=True)
  415. l = Symbol("l", nonpositive=True)
  416. raises(ValueError, lambda: ChiNoncentral('x', k, l))
  417. k = Symbol("k", integer=False)
  418. l = Symbol("l", positive=True)
  419. raises(ValueError, lambda: ChiNoncentral('x', k, l))
  420. def test_chi_squared():
  421. k = Symbol("k", integer=True)
  422. X = ChiSquared('x', k)
  423. # Tests the characteristic function
  424. assert characteristic_function(X)(x) == ((-2*I*x + 1)**(-k/2))
  425. assert density(X)(x) == 2**(-k/2)*x**(k/2 - 1)*exp(-x/2)/gamma(k/2)
  426. assert cdf(X)(x) == Piecewise((lowergamma(k/2, x/2)/gamma(k/2), x >= 0), (0, True))
  427. assert E(X) == k
  428. assert variance(X) == 2*k
  429. X = ChiSquared('x', 15)
  430. assert cdf(X)(3) == -14873*sqrt(6)*exp(Rational(-3, 2))/(5005*sqrt(pi)) + erf(sqrt(6)/2)
  431. k = Symbol("k", integer=True, positive=False)
  432. raises(ValueError, lambda: ChiSquared('x', k))
  433. k = Symbol("k", integer=False, positive=True)
  434. raises(ValueError, lambda: ChiSquared('x', k))
  435. def test_dagum():
  436. p = Symbol("p", positive=True)
  437. b = Symbol("b", positive=True)
  438. a = Symbol("a", positive=True)
  439. X = Dagum('x', p, a, b)
  440. assert density(X)(x) == a*p*(x/b)**(a*p)*((x/b)**a + 1)**(-p - 1)/x
  441. assert cdf(X)(x) == Piecewise(((1 + (x/b)**(-a))**(-p), x >= 0),
  442. (0, True))
  443. p = Symbol("p", nonpositive=True)
  444. raises(ValueError, lambda: Dagum('x', p, a, b))
  445. p = Symbol("p", positive=True)
  446. b = Symbol("b", nonpositive=True)
  447. raises(ValueError, lambda: Dagum('x', p, a, b))
  448. b = Symbol("b", positive=True)
  449. a = Symbol("a", nonpositive=True)
  450. raises(ValueError, lambda: Dagum('x', p, a, b))
  451. X = Dagum('x', 1, 1, 1)
  452. assert median(X) == FiniteSet(1)
  453. def test_erlang():
  454. k = Symbol("k", integer=True, positive=True)
  455. l = Symbol("l", positive=True)
  456. X = Erlang("x", k, l)
  457. assert density(X)(x) == x**(k - 1)*l**k*exp(-x*l)/gamma(k)
  458. assert cdf(X)(x) == Piecewise((lowergamma(k, l*x)/gamma(k), x > 0),
  459. (0, True))
  460. def test_exgaussian():
  461. m, z = symbols("m, z")
  462. s, l = symbols("s, l", positive=True)
  463. X = ExGaussian("x", m, s, l)
  464. assert density(X)(z) == l*exp(l*(l*s**2 + 2*m - 2*z)/2) *\
  465. erfc(sqrt(2)*(l*s**2 + m - z)/(2*s))/2
  466. # Note: actual_output simplifies to expected_output.
  467. # Ideally cdf(X)(z) would return expected_output
  468. # expected_output = (erf(sqrt(2)*(l*s**2 + m - z)/(2*s)) - 1)*exp(l*(l*s**2 + 2*m - 2*z)/2)/2 - erf(sqrt(2)*(m - z)/(2*s))/2 + S.Half
  469. u = l*(z - m)
  470. v = l*s
  471. GaussianCDF1 = cdf(Normal('x', 0, v))(u)
  472. GaussianCDF2 = cdf(Normal('x', v**2, v))(u)
  473. actual_output = GaussianCDF1 - exp(-u + (v**2/2) + log(GaussianCDF2))
  474. assert cdf(X)(z) == actual_output
  475. # assert simplify(actual_output) == expected_output
  476. assert variance(X).expand() == s**2 + l**(-2)
  477. assert skewness(X).expand() == 2/(l**3*s**2*sqrt(s**2 + l**(-2)) + l *
  478. sqrt(s**2 + l**(-2)))
  479. @slow
  480. def test_exponential():
  481. rate = Symbol('lambda', positive=True)
  482. X = Exponential('x', rate)
  483. p = Symbol("p", positive=True, real=True)
  484. assert E(X) == 1/rate
  485. assert variance(X) == 1/rate**2
  486. assert skewness(X) == 2
  487. assert skewness(X) == smoment(X, 3)
  488. assert kurtosis(X) == 9
  489. assert kurtosis(X) == smoment(X, 4)
  490. assert smoment(2*X, 4) == smoment(X, 4)
  491. assert moment(X, 3) == 3*2*1/rate**3
  492. assert P(X > 0) is S.One
  493. assert P(X > 1) == exp(-rate)
  494. assert P(X > 10) == exp(-10*rate)
  495. assert quantile(X)(p) == -log(1-p)/rate
  496. assert where(X <= 1).set == Interval(0, 1)
  497. Y = Exponential('y', 1)
  498. assert median(Y) == FiniteSet(log(2))
  499. #Test issue 9970
  500. z = Dummy('z')
  501. assert P(X > z) == exp(-z*rate)
  502. assert P(X < z) == 0
  503. #Test issue 10076 (Distribution with interval(0,oo))
  504. x = Symbol('x')
  505. _z = Dummy('_z')
  506. b = SingleContinuousPSpace(x, ExponentialDistribution(2))
  507. with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
  508. expected1 = Integral(2*exp(-2*_z), (_z, 3, oo))
  509. assert b.probability(x > 3, evaluate=False).rewrite(Integral).dummy_eq(expected1)
  510. expected2 = Integral(2*exp(-2*_z), (_z, 0, 4))
  511. assert b.probability(x < 4, evaluate=False).rewrite(Integral).dummy_eq(expected2)
  512. Y = Exponential('y', 2*rate)
  513. assert coskewness(X, X, X) == skewness(X)
  514. assert coskewness(X, Y + rate*X, Y + 2*rate*X) == \
  515. 4/(sqrt(1 + 1/(4*rate**2))*sqrt(4 + 1/(4*rate**2)))
  516. assert coskewness(X + 2*Y, Y + X, Y + 2*X, X > 3) == \
  517. sqrt(170)*Rational(9, 85)
  518. def test_exponential_power():
  519. mu = Symbol('mu')
  520. z = Symbol('z')
  521. alpha = Symbol('alpha', positive=True)
  522. beta = Symbol('beta', positive=True)
  523. X = ExponentialPower('x', mu, alpha, beta)
  524. assert density(X)(z) == beta*exp(-(Abs(mu - z)/alpha)
  525. ** beta)/(2*alpha*gamma(1/beta))
  526. assert cdf(X)(z) == S.Half + lowergamma(1/beta,
  527. (Abs(mu - z)/alpha)**beta)*sign(-mu + z)/\
  528. (2*gamma(1/beta))
  529. def test_f_distribution():
  530. d1 = Symbol("d1", positive=True)
  531. d2 = Symbol("d2", positive=True)
  532. X = FDistribution("x", d1, d2)
  533. assert density(X)(x) == (d2**(d2/2)*sqrt((d1*x)**d1*(d1*x + d2)**(-d1 - d2))
  534. /(x*beta(d1/2, d2/2)))
  535. raises(NotImplementedError, lambda: moment_generating_function(X))
  536. d1 = Symbol("d1", nonpositive=True)
  537. raises(ValueError, lambda: FDistribution('x', d1, d1))
  538. d1 = Symbol("d1", positive=True, integer=False)
  539. raises(ValueError, lambda: FDistribution('x', d1, d1))
  540. d1 = Symbol("d1", positive=True)
  541. d2 = Symbol("d2", nonpositive=True)
  542. raises(ValueError, lambda: FDistribution('x', d1, d2))
  543. d2 = Symbol("d2", positive=True, integer=False)
  544. raises(ValueError, lambda: FDistribution('x', d1, d2))
  545. def test_fisher_z():
  546. d1 = Symbol("d1", positive=True)
  547. d2 = Symbol("d2", positive=True)
  548. X = FisherZ("x", d1, d2)
  549. assert density(X)(x) == (2*d1**(d1/2)*d2**(d2/2)*(d1*exp(2*x) + d2)
  550. **(-d1/2 - d2/2)*exp(d1*x)/beta(d1/2, d2/2))
  551. def test_frechet():
  552. a = Symbol("a", positive=True)
  553. s = Symbol("s", positive=True)
  554. m = Symbol("m", real=True)
  555. X = Frechet("x", a, s=s, m=m)
  556. assert density(X)(x) == a*((x - m)/s)**(-a - 1)*exp(-((x - m)/s)**(-a))/s
  557. assert cdf(X)(x) == Piecewise((exp(-((-m + x)/s)**(-a)), m <= x), (0, True))
  558. @slow
  559. def test_gamma():
  560. k = Symbol("k", positive=True)
  561. theta = Symbol("theta", positive=True)
  562. X = Gamma('x', k, theta)
  563. # Tests characteristic function
  564. assert characteristic_function(X)(x) == ((-I*theta*x + 1)**(-k))
  565. assert density(X)(x) == x**(k - 1)*theta**(-k)*exp(-x/theta)/gamma(k)
  566. assert cdf(X, meijerg=True)(z) == Piecewise(
  567. (-k*lowergamma(k, 0)/gamma(k + 1) +
  568. k*lowergamma(k, z/theta)/gamma(k + 1), z >= 0),
  569. (0, True))
  570. # assert simplify(variance(X)) == k*theta**2 # handled numerically below
  571. assert E(X) == moment(X, 1)
  572. k, theta = symbols('k theta', positive=True)
  573. X = Gamma('x', k, theta)
  574. assert E(X) == k*theta
  575. assert variance(X) == k*theta**2
  576. assert skewness(X).expand() == 2/sqrt(k)
  577. assert kurtosis(X).expand() == 3 + 6/k
  578. Y = Gamma('y', 2*k, 3*theta)
  579. assert coskewness(X, theta*X + Y, k*X + Y).simplify() == \
  580. 2*531441**(-k)*sqrt(k)*theta*(3*3**(12*k) - 2*531441**k) \
  581. /(sqrt(k**2 + 18)*sqrt(theta**2 + 18))
  582. def test_gamma_inverse():
  583. a = Symbol("a", positive=True)
  584. b = Symbol("b", positive=True)
  585. X = GammaInverse("x", a, b)
  586. assert density(X)(x) == x**(-a - 1)*b**a*exp(-b/x)/gamma(a)
  587. assert cdf(X)(x) == Piecewise((uppergamma(a, b/x)/gamma(a), x > 0), (0, True))
  588. assert characteristic_function(X)(x) == 2 * (-I*b*x)**(a/2) \
  589. * besselk(a, 2*sqrt(b)*sqrt(-I*x))/gamma(a)
  590. raises(NotImplementedError, lambda: moment_generating_function(X))
  591. def test_gompertz():
  592. b = Symbol("b", positive=True)
  593. eta = Symbol("eta", positive=True)
  594. X = Gompertz("x", b, eta)
  595. assert density(X)(x) == b*eta*exp(eta)*exp(b*x)*exp(-eta*exp(b*x))
  596. assert cdf(X)(x) == 1 - exp(eta)*exp(-eta*exp(b*x))
  597. assert diff(cdf(X)(x), x) == density(X)(x)
  598. def test_gumbel():
  599. beta = Symbol("beta", positive=True)
  600. mu = Symbol("mu")
  601. x = Symbol("x")
  602. y = Symbol("y")
  603. X = Gumbel("x", beta, mu)
  604. Y = Gumbel("y", beta, mu, minimum=True)
  605. assert density(X)(x).expand() == \
  606. exp(mu/beta)*exp(-x/beta)*exp(-exp(mu/beta)*exp(-x/beta))/beta
  607. assert density(Y)(y).expand() == \
  608. exp(-mu/beta)*exp(y/beta)*exp(-exp(-mu/beta)*exp(y/beta))/beta
  609. assert cdf(X)(x).expand() == \
  610. exp(-exp(mu/beta)*exp(-x/beta))
  611. assert characteristic_function(X)(x) == exp(I*mu*x)*gamma(-I*beta*x + 1)
  612. def test_kumaraswamy():
  613. a = Symbol("a", positive=True)
  614. b = Symbol("b", positive=True)
  615. X = Kumaraswamy("x", a, b)
  616. assert density(X)(x) == x**(a - 1)*a*b*(-x**a + 1)**(b - 1)
  617. assert cdf(X)(x) == Piecewise((0, x < 0),
  618. (-(-x**a + 1)**b + 1, x <= 1),
  619. (1, True))
  620. def test_laplace():
  621. mu = Symbol("mu")
  622. b = Symbol("b", positive=True)
  623. X = Laplace('x', mu, b)
  624. #Tests characteristic_function
  625. assert characteristic_function(X)(x) == (exp(I*mu*x)/(b**2*x**2 + 1))
  626. assert density(X)(x) == exp(-Abs(x - mu)/b)/(2*b)
  627. assert cdf(X)(x) == Piecewise((exp((-mu + x)/b)/2, mu > x),
  628. (-exp((mu - x)/b)/2 + 1, True))
  629. X = Laplace('x', [1, 2], [[1, 0], [0, 1]])
  630. assert isinstance(pspace(X).distribution, MultivariateLaplaceDistribution)
  631. def test_levy():
  632. mu = Symbol("mu", real=True)
  633. c = Symbol("c", positive=True)
  634. X = Levy('x', mu, c)
  635. assert X.pspace.domain.set == Interval(mu, oo)
  636. assert density(X)(x) == sqrt(c/(2*pi))*exp(-c/(2*(x - mu)))/((x - mu)**(S.One + S.Half))
  637. assert cdf(X)(x) == erfc(sqrt(c/(2*(x - mu))))
  638. raises(NotImplementedError, lambda: moment_generating_function(X))
  639. mu = Symbol("mu", real=False)
  640. raises(ValueError, lambda: Levy('x',mu,c))
  641. c = Symbol("c", nonpositive=True)
  642. raises(ValueError, lambda: Levy('x',mu,c))
  643. mu = Symbol("mu", real=True)
  644. raises(ValueError, lambda: Levy('x',mu,c))
  645. def test_logcauchy():
  646. mu = Symbol("mu", positive=True)
  647. sigma = Symbol("sigma", positive=True)
  648. X = LogCauchy("x", mu, sigma)
  649. assert density(X)(x) == sigma/(x*pi*(sigma**2 + (-mu + log(x))**2))
  650. assert cdf(X)(x) == atan((log(x) - mu)/sigma)/pi + S.Half
  651. def test_logistic():
  652. mu = Symbol("mu", real=True)
  653. s = Symbol("s", positive=True)
  654. p = Symbol("p", positive=True)
  655. X = Logistic('x', mu, s)
  656. #Tests characteristics_function
  657. assert characteristic_function(X)(x) == \
  658. (Piecewise((pi*s*x*exp(I*mu*x)/sinh(pi*s*x), Ne(x, 0)), (1, True)))
  659. assert density(X)(x) == exp((-x + mu)/s)/(s*(exp((-x + mu)/s) + 1)**2)
  660. assert cdf(X)(x) == 1/(exp((mu - x)/s) + 1)
  661. assert quantile(X)(p) == mu - s*log(-S.One + 1/p)
  662. def test_loglogistic():
  663. a, b = symbols('a b')
  664. assert LogLogistic('x', a, b)
  665. a = Symbol('a', negative=True)
  666. b = Symbol('b', positive=True)
  667. raises(ValueError, lambda: LogLogistic('x', a, b))
  668. a = Symbol('a', positive=True)
  669. b = Symbol('b', negative=True)
  670. raises(ValueError, lambda: LogLogistic('x', a, b))
  671. a, b, z, p = symbols('a b z p', positive=True)
  672. X = LogLogistic('x', a, b)
  673. assert density(X)(z) == b*(z/a)**(b - 1)/(a*((z/a)**b + 1)**2)
  674. assert cdf(X)(z) == 1/(1 + (z/a)**(-b))
  675. assert quantile(X)(p) == a*(p/(1 - p))**(1/b)
  676. # Expectation
  677. assert E(X) == Piecewise((S.NaN, b <= 1), (pi*a/(b*sin(pi/b)), True))
  678. b = symbols('b', prime=True) # b > 1
  679. X = LogLogistic('x', a, b)
  680. assert E(X) == pi*a/(b*sin(pi/b))
  681. X = LogLogistic('x', 1, 2)
  682. assert median(X) == FiniteSet(1)
  683. def test_logitnormal():
  684. mu = Symbol('mu', real=True)
  685. s = Symbol('s', positive=True)
  686. X = LogitNormal('x', mu, s)
  687. x = Symbol('x')
  688. assert density(X)(x) == sqrt(2)*exp(-(-mu + log(x/(1 - x)))**2/(2*s**2))/(2*sqrt(pi)*s*x*(1 - x))
  689. assert cdf(X)(x) == erf(sqrt(2)*(-mu + log(x/(1 - x)))/(2*s))/2 + S(1)/2
  690. def test_lognormal():
  691. mean = Symbol('mu', real=True)
  692. std = Symbol('sigma', positive=True)
  693. X = LogNormal('x', mean, std)
  694. # The sympy integrator can't do this too well
  695. #assert E(X) == exp(mean+std**2/2)
  696. #assert variance(X) == (exp(std**2)-1) * exp(2*mean + std**2)
  697. # The sympy integrator can't do this too well
  698. #assert E(X) ==
  699. raises(NotImplementedError, lambda: moment_generating_function(X))
  700. mu = Symbol("mu", real=True)
  701. sigma = Symbol("sigma", positive=True)
  702. X = LogNormal('x', mu, sigma)
  703. assert density(X)(x) == (sqrt(2)*exp(-(-mu + log(x))**2
  704. /(2*sigma**2))/(2*x*sqrt(pi)*sigma))
  705. # Tests cdf
  706. assert cdf(X)(x) == Piecewise(
  707. (erf(sqrt(2)*(-mu + log(x))/(2*sigma))/2
  708. + S(1)/2, x > 0), (0, True))
  709. X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1
  710. assert density(X)(x) == sqrt(2)*exp(-log(x)**2/2)/(2*x*sqrt(pi))
  711. def test_Lomax():
  712. a, l = symbols('a, l', negative=True)
  713. raises(ValueError, lambda: Lomax('X', a, l))
  714. a, l = symbols('a, l', real=False)
  715. raises(ValueError, lambda: Lomax('X', a, l))
  716. a, l = symbols('a, l', positive=True)
  717. X = Lomax('X', a, l)
  718. assert X.pspace.domain.set == Interval(0, oo)
  719. assert density(X)(x) == a*(1 + x/l)**(-a - 1)/l
  720. assert cdf(X)(x) == Piecewise((1 - (1 + x/l)**(-a), x >= 0), (0, True))
  721. a = 3
  722. X = Lomax('X', a, l)
  723. assert E(X) == l/2
  724. assert median(X) == FiniteSet(l*(-1 + 2**Rational(1, 3)))
  725. assert variance(X) == 3*l**2/4
  726. def test_maxwell():
  727. a = Symbol("a", positive=True)
  728. X = Maxwell('x', a)
  729. assert density(X)(x) == (sqrt(2)*x**2*exp(-x**2/(2*a**2))/
  730. (sqrt(pi)*a**3))
  731. assert E(X) == 2*sqrt(2)*a/sqrt(pi)
  732. assert variance(X) == -8*a**2/pi + 3*a**2
  733. assert cdf(X)(x) == erf(sqrt(2)*x/(2*a)) - sqrt(2)*x*exp(-x**2/(2*a**2))/(sqrt(pi)*a)
  734. assert diff(cdf(X)(x), x) == density(X)(x)
  735. @slow
  736. def test_Moyal():
  737. mu = Symbol('mu',real=False)
  738. sigma = Symbol('sigma', positive=True)
  739. raises(ValueError, lambda: Moyal('M',mu, sigma))
  740. mu = Symbol('mu', real=True)
  741. sigma = Symbol('sigma', negative=True)
  742. raises(ValueError, lambda: Moyal('M',mu, sigma))
  743. sigma = Symbol('sigma', positive=True)
  744. M = Moyal('M', mu, sigma)
  745. assert density(M)(z) == sqrt(2)*exp(-exp((mu - z)/sigma)/2
  746. - (-mu + z)/(2*sigma))/(2*sqrt(pi)*sigma)
  747. assert cdf(M)(z).simplify() == 1 - erf(sqrt(2)*exp((mu - z)/(2*sigma))/2)
  748. assert characteristic_function(M)(z) == 2**(-I*sigma*z)*exp(I*mu*z) \
  749. *gamma(-I*sigma*z + Rational(1, 2))/sqrt(pi)
  750. assert E(M) == mu + EulerGamma*sigma + sigma*log(2)
  751. assert moment_generating_function(M)(z) == 2**(-sigma*z)*exp(mu*z) \
  752. *gamma(-sigma*z + Rational(1, 2))/sqrt(pi)
  753. def test_nakagami():
  754. mu = Symbol("mu", positive=True)
  755. omega = Symbol("omega", positive=True)
  756. X = Nakagami('x', mu, omega)
  757. assert density(X)(x) == (2*x**(2*mu - 1)*mu**mu*omega**(-mu)
  758. *exp(-x**2*mu/omega)/gamma(mu))
  759. assert simplify(E(X)) == (sqrt(mu)*sqrt(omega)
  760. *gamma(mu + S.Half)/gamma(mu + 1))
  761. assert simplify(variance(X)) == (
  762. omega - omega*gamma(mu + S.Half)**2/(gamma(mu)*gamma(mu + 1)))
  763. assert cdf(X)(x) == Piecewise(
  764. (lowergamma(mu, mu*x**2/omega)/gamma(mu), x > 0),
  765. (0, True))
  766. X = Nakagami('x', 1, 1)
  767. assert median(X) == FiniteSet(sqrt(log(2)))
  768. def test_gaussian_inverse():
  769. # test for symbolic parameters
  770. a, b = symbols('a b')
  771. assert GaussianInverse('x', a, b)
  772. # Inverse Gaussian distribution is also known as Wald distribution
  773. # `GaussianInverse` can also be referred by the name `Wald`
  774. a, b, z = symbols('a b z')
  775. X = Wald('x', a, b)
  776. assert density(X)(z) == sqrt(2)*sqrt(b/z**3)*exp(-b*(-a + z)**2/(2*a**2*z))/(2*sqrt(pi))
  777. a, b = symbols('a b', positive=True)
  778. z = Symbol('z', positive=True)
  779. X = GaussianInverse('x', a, b)
  780. assert density(X)(z) == sqrt(2)*sqrt(b)*sqrt(z**(-3))*exp(-b*(-a + z)**2/(2*a**2*z))/(2*sqrt(pi))
  781. assert E(X) == a
  782. assert variance(X).expand() == a**3/b
  783. assert cdf(X)(z) == (S.Half - erf(sqrt(2)*sqrt(b)*(1 + z/a)/(2*sqrt(z)))/2)*exp(2*b/a) +\
  784. erf(sqrt(2)*sqrt(b)*(-1 + z/a)/(2*sqrt(z)))/2 + S.Half
  785. a = symbols('a', nonpositive=True)
  786. raises(ValueError, lambda: GaussianInverse('x', a, b))
  787. a = symbols('a', positive=True)
  788. b = symbols('b', nonpositive=True)
  789. raises(ValueError, lambda: GaussianInverse('x', a, b))
  790. def test_pareto():
  791. xm, beta = symbols('xm beta', positive=True)
  792. alpha = beta + 5
  793. X = Pareto('x', xm, alpha)
  794. dens = density(X)
  795. #Tests cdf function
  796. assert cdf(X)(x) == \
  797. Piecewise((-x**(-beta - 5)*xm**(beta + 5) + 1, x >= xm), (0, True))
  798. #Tests characteristic_function
  799. assert characteristic_function(X)(x) == \
  800. ((-I*x*xm)**(beta + 5)*(beta + 5)*uppergamma(-beta - 5, -I*x*xm))
  801. assert dens(x) == x**(-(alpha + 1))*xm**(alpha)*(alpha)
  802. assert simplify(E(X)) == alpha*xm/(alpha-1)
  803. # computation of taylor series for MGF still too slow
  804. #assert simplify(variance(X)) == xm**2*alpha / ((alpha-1)**2*(alpha-2))
  805. def test_pareto_numeric():
  806. xm, beta = 3, 2
  807. alpha = beta + 5
  808. X = Pareto('x', xm, alpha)
  809. assert E(X) == alpha*xm/S(alpha - 1)
  810. assert variance(X) == xm**2*alpha / S((alpha - 1)**2*(alpha - 2))
  811. assert median(X) == FiniteSet(3*2**Rational(1, 7))
  812. # Skewness tests too slow. Try shortcutting function?
  813. def test_PowerFunction():
  814. alpha = Symbol("alpha", nonpositive=True)
  815. a, b = symbols('a, b', real=True)
  816. raises (ValueError, lambda: PowerFunction('x', alpha, a, b))
  817. a, b = symbols('a, b', real=False)
  818. raises (ValueError, lambda: PowerFunction('x', alpha, a, b))
  819. alpha = Symbol("alpha", positive=True)
  820. a, b = symbols('a, b', real=True)
  821. raises (ValueError, lambda: PowerFunction('x', alpha, 5, 2))
  822. X = PowerFunction('X', 2, a, b)
  823. assert density(X)(z) == (-2*a + 2*z)/(-a + b)**2
  824. assert cdf(X)(z) == Piecewise((a**2/(a**2 - 2*a*b + b**2) -
  825. 2*a*z/(a**2 - 2*a*b + b**2) + z**2/(a**2 - 2*a*b + b**2), a <= z), (0, True))
  826. X = PowerFunction('X', 2, 0, 1)
  827. assert density(X)(z) == 2*z
  828. assert cdf(X)(z) == Piecewise((z**2, z >= 0), (0,True))
  829. assert E(X) == Rational(2,3)
  830. assert P(X < 0) == 0
  831. assert P(X < 1) == 1
  832. assert median(X) == FiniteSet(1/sqrt(2))
  833. def test_raised_cosine():
  834. mu = Symbol("mu", real=True)
  835. s = Symbol("s", positive=True)
  836. X = RaisedCosine("x", mu, s)
  837. assert pspace(X).domain.set == Interval(mu - s, mu + s)
  838. #Tests characteristics_function
  839. assert characteristic_function(X)(x) == \
  840. Piecewise((exp(-I*pi*mu/s)/2, Eq(x, -pi/s)), (exp(I*pi*mu/s)/2, Eq(x, pi/s)), (pi**2*exp(I*mu*x)*sin(s*x)/(s*x*(-s**2*x**2 + pi**2)), True))
  841. assert density(X)(x) == (Piecewise(((cos(pi*(x - mu)/s) + 1)/(2*s),
  842. And(x <= mu + s, mu - s <= x)), (0, True)))
  843. def test_rayleigh():
  844. sigma = Symbol("sigma", positive=True)
  845. X = Rayleigh('x', sigma)
  846. #Tests characteristic_function
  847. assert characteristic_function(X)(x) == (-sqrt(2)*sqrt(pi)*sigma*x*(erfi(sqrt(2)*sigma*x/2) - I)*exp(-sigma**2*x**2/2)/2 + 1)
  848. assert density(X)(x) == x*exp(-x**2/(2*sigma**2))/sigma**2
  849. assert E(X) == sqrt(2)*sqrt(pi)*sigma/2
  850. assert variance(X) == -pi*sigma**2/2 + 2*sigma**2
  851. assert cdf(X)(x) == 1 - exp(-x**2/(2*sigma**2))
  852. assert diff(cdf(X)(x), x) == density(X)(x)
  853. def test_reciprocal():
  854. a = Symbol("a", real=True)
  855. b = Symbol("b", real=True)
  856. X = Reciprocal('x', a, b)
  857. assert density(X)(x) == 1/(x*(-log(a) + log(b)))
  858. assert cdf(X)(x) == Piecewise((log(a)/(log(a) - log(b)) - log(x)/(log(a) - log(b)), a <= x), (0, True))
  859. X = Reciprocal('x', 5, 30)
  860. assert E(X) == 25/(log(30) - log(5))
  861. assert P(X < 4) == S.Zero
  862. assert P(X < 20) == log(20) / (log(30) - log(5)) - log(5) / (log(30) - log(5))
  863. assert cdf(X)(10) == log(10) / (log(30) - log(5)) - log(5) / (log(30) - log(5))
  864. a = symbols('a', nonpositive=True)
  865. raises(ValueError, lambda: Reciprocal('x', a, b))
  866. a = symbols('a', positive=True)
  867. b = symbols('b', positive=True)
  868. raises(ValueError, lambda: Reciprocal('x', a + b, a))
  869. def test_shiftedgompertz():
  870. b = Symbol("b", positive=True)
  871. eta = Symbol("eta", positive=True)
  872. X = ShiftedGompertz("x", b, eta)
  873. assert density(X)(x) == b*(eta*(1 - exp(-b*x)) + 1)*exp(-b*x)*exp(-eta*exp(-b*x))
  874. def test_studentt():
  875. nu = Symbol("nu", positive=True)
  876. X = StudentT('x', nu)
  877. assert density(X)(x) == (1 + x**2/nu)**(-nu/2 - S.Half)/(sqrt(nu)*beta(S.Half, nu/2))
  878. assert cdf(X)(x) == S.Half + x*gamma(nu/2 + S.Half)*hyper((S.Half, nu/2 + S.Half),
  879. (Rational(3, 2),), -x**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2))
  880. raises(NotImplementedError, lambda: moment_generating_function(X))
  881. def test_trapezoidal():
  882. a = Symbol("a", real=True)
  883. b = Symbol("b", real=True)
  884. c = Symbol("c", real=True)
  885. d = Symbol("d", real=True)
  886. X = Trapezoidal('x', a, b, c, d)
  887. assert density(X)(x) == Piecewise(((-2*a + 2*x)/((-a + b)*(-a - b + c + d)), (a <= x) & (x < b)),
  888. (2/(-a - b + c + d), (b <= x) & (x < c)),
  889. ((2*d - 2*x)/((-c + d)*(-a - b + c + d)), (c <= x) & (x <= d)),
  890. (0, True))
  891. X = Trapezoidal('x', 0, 1, 2, 3)
  892. assert E(X) == Rational(3, 2)
  893. assert variance(X) == Rational(5, 12)
  894. assert P(X < 2) == Rational(3, 4)
  895. assert median(X) == FiniteSet(Rational(3, 2))
  896. def test_triangular():
  897. a = Symbol("a")
  898. b = Symbol("b")
  899. c = Symbol("c")
  900. X = Triangular('x', a, b, c)
  901. assert pspace(X).domain.set == Interval(a, b)
  902. assert str(density(X)(x)) == ("Piecewise(((-2*a + 2*x)/((-a + b)*(-a + c)), (a <= x) & (c > x)), "
  903. "(2/(-a + b), Eq(c, x)), ((2*b - 2*x)/((-a + b)*(b - c)), (b >= x) & (c < x)), (0, True))")
  904. #Tests moment_generating_function
  905. assert moment_generating_function(X)(x).expand() == \
  906. ((-2*(-a + b)*exp(c*x) + 2*(-a + c)*exp(b*x) + 2*(b - c)*exp(a*x))/(x**2*(-a + b)*(-a + c)*(b - c))).expand()
  907. assert str(characteristic_function(X)(x)) == \
  908. '(2*(-a + b)*exp(I*c*x) - 2*(-a + c)*exp(I*b*x) - 2*(b - c)*exp(I*a*x))/(x**2*(-a + b)*(-a + c)*(b - c))'
  909. def test_quadratic_u():
  910. a = Symbol("a", real=True)
  911. b = Symbol("b", real=True)
  912. X = QuadraticU("x", a, b)
  913. Y = QuadraticU("x", 1, 2)
  914. assert pspace(X).domain.set == Interval(a, b)
  915. # Tests _moment_generating_function
  916. assert moment_generating_function(Y)(1) == -15*exp(2) + 27*exp(1)
  917. assert moment_generating_function(Y)(2) == -9*exp(4)/2 + 21*exp(2)/2
  918. assert characteristic_function(Y)(1) == 3*I*(-1 + 4*I)*exp(I*exp(2*I))
  919. assert density(X)(x) == (Piecewise((12*(x - a/2 - b/2)**2/(-a + b)**3,
  920. And(x <= b, a <= x)), (0, True)))
  921. def test_uniform():
  922. l = Symbol('l', real=True)
  923. w = Symbol('w', positive=True)
  924. X = Uniform('x', l, l + w)
  925. assert E(X) == l + w/2
  926. assert variance(X).expand() == w**2/12
  927. # With numbers all is well
  928. X = Uniform('x', 3, 5)
  929. assert P(X < 3) == 0 and P(X > 5) == 0
  930. assert P(X < 4) == P(X > 4) == S.Half
  931. assert median(X) == FiniteSet(4)
  932. z = Symbol('z')
  933. p = density(X)(z)
  934. assert p.subs(z, 3.7) == S.Half
  935. assert p.subs(z, -1) == 0
  936. assert p.subs(z, 6) == 0
  937. c = cdf(X)
  938. assert c(2) == 0 and c(3) == 0
  939. assert c(Rational(7, 2)) == Rational(1, 4)
  940. assert c(5) == 1 and c(6) == 1
  941. @XFAIL
  942. @slow
  943. def test_uniform_P():
  944. """ This stopped working because SingleContinuousPSpace.compute_density no
  945. longer calls integrate on a DiracDelta but rather just solves directly.
  946. integrate used to call UniformDistribution.expectation which special-cased
  947. subsed out the Min and Max terms that Uniform produces
  948. I decided to regress on this class for general cleanliness (and I suspect
  949. speed) of the algorithm.
  950. """
  951. l = Symbol('l', real=True)
  952. w = Symbol('w', positive=True)
  953. X = Uniform('x', l, l + w)
  954. assert P(X < l) == 0 and P(X > l + w) == 0
  955. def test_uniformsum():
  956. n = Symbol("n", integer=True)
  957. _k = Dummy("k")
  958. x = Symbol("x")
  959. X = UniformSum('x', n)
  960. res = Sum((-1)**_k*(-_k + x)**(n - 1)*binomial(n, _k), (_k, 0, floor(x)))/factorial(n - 1)
  961. assert density(X)(x).dummy_eq(res)
  962. #Tests set functions
  963. assert X.pspace.domain.set == Interval(0, n)
  964. #Tests the characteristic_function
  965. assert characteristic_function(X)(x) == (-I*(exp(I*x) - 1)/x)**n
  966. #Tests the moment_generating_function
  967. assert moment_generating_function(X)(x) == ((exp(x) - 1)/x)**n
  968. def test_von_mises():
  969. mu = Symbol("mu")
  970. k = Symbol("k", positive=True)
  971. X = VonMises("x", mu, k)
  972. assert density(X)(x) == exp(k*cos(x - mu))/(2*pi*besseli(0, k))
  973. def test_weibull():
  974. a, b = symbols('a b', positive=True)
  975. # FIXME: simplify(E(X)) seems to hang without extended_positive=True
  976. # On a Linux machine this had a rapid memory leak...
  977. # a, b = symbols('a b', positive=True)
  978. X = Weibull('x', a, b)
  979. assert E(X).expand() == a * gamma(1 + 1/b)
  980. assert variance(X).expand() == (a**2 * gamma(1 + 2/b) - E(X)**2).expand()
  981. assert simplify(skewness(X)) == (2*gamma(1 + 1/b)**3 - 3*gamma(1 + 1/b)*gamma(1 + 2/b) + gamma(1 + 3/b))/(-gamma(1 + 1/b)**2 + gamma(1 + 2/b))**Rational(3, 2)
  982. assert simplify(kurtosis(X)) == (-3*gamma(1 + 1/b)**4 +\
  983. 6*gamma(1 + 1/b)**2*gamma(1 + 2/b) - 4*gamma(1 + 1/b)*gamma(1 + 3/b) + gamma(1 + 4/b))/(gamma(1 + 1/b)**2 - gamma(1 + 2/b))**2
  984. def test_weibull_numeric():
  985. # Test for integers and rationals
  986. a = 1
  987. bvals = [S.Half, 1, Rational(3, 2), 5]
  988. for b in bvals:
  989. X = Weibull('x', a, b)
  990. assert simplify(E(X)) == expand_func(a * gamma(1 + 1/S(b)))
  991. assert simplify(variance(X)) == simplify(
  992. a**2 * gamma(1 + 2/S(b)) - E(X)**2)
  993. # Not testing Skew... it's slow with int/frac values > 3/2
  994. def test_wignersemicircle():
  995. R = Symbol("R", positive=True)
  996. X = WignerSemicircle('x', R)
  997. assert pspace(X).domain.set == Interval(-R, R)
  998. assert density(X)(x) == 2*sqrt(-x**2 + R**2)/(pi*R**2)
  999. assert E(X) == 0
  1000. #Tests ChiNoncentralDistribution
  1001. assert characteristic_function(X)(x) == \
  1002. Piecewise((2*besselj(1, R*x)/(R*x), Ne(x, 0)), (1, True))
  1003. def test_input_value_assertions():
  1004. a, b = symbols('a b')
  1005. p, q = symbols('p q', positive=True)
  1006. m, n = symbols('m n', positive=False, real=True)
  1007. raises(ValueError, lambda: Normal('x', 3, 0))
  1008. raises(ValueError, lambda: Normal('x', m, n))
  1009. Normal('X', a, p) # No error raised
  1010. raises(ValueError, lambda: Exponential('x', m))
  1011. Exponential('Ex', p) # No error raised
  1012. for fn in [Pareto, Weibull, Beta, Gamma]:
  1013. raises(ValueError, lambda: fn('x', m, p))
  1014. raises(ValueError, lambda: fn('x', p, n))
  1015. fn('x', p, q) # No error raised
  1016. def test_unevaluated():
  1017. X = Normal('x', 0, 1)
  1018. k = Dummy('k')
  1019. expr1 = Integral(sqrt(2)*k*exp(-k**2/2)/(2*sqrt(pi)), (k, -oo, oo))
  1020. expr2 = Integral(sqrt(2)*exp(-k**2/2)/(2*sqrt(pi)), (k, 0, oo))
  1021. with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
  1022. assert E(X, evaluate=False).rewrite(Integral).dummy_eq(expr1)
  1023. assert E(X + 1, evaluate=False).rewrite(Integral).dummy_eq(expr1 + 1)
  1024. assert P(X > 0, evaluate=False).rewrite(Integral).dummy_eq(expr2)
  1025. assert P(X > 0, X**2 < 1) == S.Half
  1026. def test_probability_unevaluated():
  1027. T = Normal('T', 30, 3)
  1028. with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
  1029. assert type(P(T > 33, evaluate=False)) == Probability
  1030. def test_density_unevaluated():
  1031. X = Normal('X', 0, 1)
  1032. Y = Normal('Y', 0, 2)
  1033. assert isinstance(density(X+Y, evaluate=False)(z), Integral)
  1034. def test_NormalDistribution():
  1035. nd = NormalDistribution(0, 1)
  1036. x = Symbol('x')
  1037. assert nd.cdf(x) == erf(sqrt(2)*x/2)/2 + S.Half
  1038. assert nd.expectation(1, x) == 1
  1039. assert nd.expectation(x, x) == 0
  1040. assert nd.expectation(x**2, x) == 1
  1041. #Test issue 10076
  1042. a = SingleContinuousPSpace(x, NormalDistribution(2, 4))
  1043. _z = Dummy('_z')
  1044. expected1 = Integral(sqrt(2)*exp(-(_z - 2)**2/32)/(8*sqrt(pi)),(_z, -oo, 1))
  1045. assert a.probability(x < 1, evaluate=False).dummy_eq(expected1) is True
  1046. expected2 = Integral(sqrt(2)*exp(-(_z - 2)**2/32)/(8*sqrt(pi)),(_z, 1, oo))
  1047. assert a.probability(x > 1, evaluate=False).dummy_eq(expected2) is True
  1048. b = SingleContinuousPSpace(x, NormalDistribution(1, 9))
  1049. expected3 = Integral(sqrt(2)*exp(-(_z - 1)**2/162)/(18*sqrt(pi)),(_z, 6, oo))
  1050. assert b.probability(x > 6, evaluate=False).dummy_eq(expected3) is True
  1051. expected4 = Integral(sqrt(2)*exp(-(_z - 1)**2/162)/(18*sqrt(pi)),(_z, -oo, 6))
  1052. assert b.probability(x < 6, evaluate=False).dummy_eq(expected4) is True
  1053. def test_random_parameters():
  1054. mu = Normal('mu', 2, 3)
  1055. meas = Normal('T', mu, 1)
  1056. assert density(meas, evaluate=False)(z)
  1057. assert isinstance(pspace(meas), CompoundPSpace)
  1058. X = Normal('x', [1, 2], [[1, 0], [0, 1]])
  1059. assert isinstance(pspace(X).distribution, MultivariateNormalDistribution)
  1060. assert density(meas)(z).simplify() == sqrt(5)*exp(-z**2/20 + z/5 - S(1)/5)/(10*sqrt(pi))
  1061. def test_random_parameters_given():
  1062. mu = Normal('mu', 2, 3)
  1063. meas = Normal('T', mu, 1)
  1064. assert given(meas, Eq(mu, 5)) == Normal('T', 5, 1)
  1065. def test_conjugate_priors():
  1066. mu = Normal('mu', 2, 3)
  1067. x = Normal('x', mu, 1)
  1068. assert isinstance(simplify(density(mu, Eq(x, y), evaluate=False)(z)),
  1069. Mul)
  1070. def test_difficult_univariate():
  1071. """ Since using solve in place of deltaintegrate we're able to perform
  1072. substantially more complex density computations on single continuous random
  1073. variables """
  1074. x = Normal('x', 0, 1)
  1075. assert density(x**3)
  1076. assert density(exp(x**2))
  1077. assert density(log(x))
  1078. def test_issue_10003():
  1079. X = Exponential('x', 3)
  1080. G = Gamma('g', 1, 2)
  1081. assert P(X < -1) is S.Zero
  1082. assert P(G < -1) is S.Zero
  1083. def test_precomputed_cdf():
  1084. x = symbols("x", real=True)
  1085. mu = symbols("mu", real=True)
  1086. sigma, xm, alpha = symbols("sigma xm alpha", positive=True)
  1087. n = symbols("n", integer=True, positive=True)
  1088. distribs = [
  1089. Normal("X", mu, sigma),
  1090. Pareto("P", xm, alpha),
  1091. ChiSquared("C", n),
  1092. Exponential("E", sigma),
  1093. # LogNormal("L", mu, sigma),
  1094. ]
  1095. for X in distribs:
  1096. compdiff = cdf(X)(x) - simplify(X.pspace.density.compute_cdf()(x))
  1097. compdiff = simplify(compdiff.rewrite(erfc))
  1098. assert compdiff == 0
  1099. @slow
  1100. def test_precomputed_characteristic_functions():
  1101. import mpmath
  1102. def test_cf(dist, support_lower_limit, support_upper_limit):
  1103. pdf = density(dist)
  1104. t = Symbol('t')
  1105. # first function is the hardcoded CF of the distribution
  1106. cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath')
  1107. # second function is the Fourier transform of the density function
  1108. f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath')
  1109. cf2 = lambda t: mpmath.quad(lambda x: f(x, t), [support_lower_limit, support_upper_limit], maxdegree=10)
  1110. # compare the two functions at various points
  1111. for test_point in [2, 5, 8, 11]:
  1112. n1 = cf1(test_point)
  1113. n2 = cf2(test_point)
  1114. assert abs(re(n1) - re(n2)) < 1e-12
  1115. assert abs(im(n1) - im(n2)) < 1e-12
  1116. test_cf(Beta('b', 1, 2), 0, 1)
  1117. test_cf(Chi('c', 3), 0, mpmath.inf)
  1118. test_cf(ChiSquared('c', 2), 0, mpmath.inf)
  1119. test_cf(Exponential('e', 6), 0, mpmath.inf)
  1120. test_cf(Logistic('l', 1, 2), -mpmath.inf, mpmath.inf)
  1121. test_cf(Normal('n', -1, 5), -mpmath.inf, mpmath.inf)
  1122. test_cf(RaisedCosine('r', 3, 1), 2, 4)
  1123. test_cf(Rayleigh('r', 0.5), 0, mpmath.inf)
  1124. test_cf(Uniform('u', -1, 1), -1, 1)
  1125. test_cf(WignerSemicircle('w', 3), -3, 3)
  1126. def test_long_precomputed_cdf():
  1127. x = symbols("x", real=True)
  1128. distribs = [
  1129. Arcsin("A", -5, 9),
  1130. Dagum("D", 4, 10, 3),
  1131. Erlang("E", 14, 5),
  1132. Frechet("F", 2, 6, -3),
  1133. Gamma("G", 2, 7),
  1134. GammaInverse("GI", 3, 5),
  1135. Kumaraswamy("K", 6, 8),
  1136. Laplace("LA", -5, 4),
  1137. Logistic("L", -6, 7),
  1138. Nakagami("N", 2, 7),
  1139. StudentT("S", 4)
  1140. ]
  1141. for distr in distribs:
  1142. for _ in range(5):
  1143. assert tn(diff(cdf(distr)(x), x), density(distr)(x), x, a=0, b=0, c=1, d=0)
  1144. US = UniformSum("US", 5)
  1145. pdf01 = density(US)(x).subs(floor(x), 0).doit() # pdf on (0, 1)
  1146. cdf01 = cdf(US, evaluate=False)(x).subs(floor(x), 0).doit() # cdf on (0, 1)
  1147. assert tn(diff(cdf01, x), pdf01, x, a=0, b=0, c=1, d=0)
  1148. def test_issue_13324():
  1149. X = Uniform('X', 0, 1)
  1150. assert E(X, X > S.Half) == Rational(3, 4)
  1151. assert E(X, X > 0) == S.Half
  1152. def test_issue_20756():
  1153. X = Uniform('X', -1, +1)
  1154. Y = Uniform('Y', -1, +1)
  1155. assert E(X * Y) == S.Zero
  1156. assert E(X * ((Y + 1) - 1)) == S.Zero
  1157. assert E(Y * (X*(X + 1) - X*X)) == S.Zero
  1158. def test_FiniteSet_prob():
  1159. E = Exponential('E', 3)
  1160. N = Normal('N', 5, 7)
  1161. assert P(Eq(E, 1)) is S.Zero
  1162. assert P(Eq(N, 2)) is S.Zero
  1163. assert P(Eq(N, x)) is S.Zero
  1164. def test_prob_neq():
  1165. E = Exponential('E', 4)
  1166. X = ChiSquared('X', 4)
  1167. assert P(Ne(E, 2)) == 1
  1168. assert P(Ne(X, 4)) == 1
  1169. assert P(Ne(X, 4)) == 1
  1170. assert P(Ne(X, 5)) == 1
  1171. assert P(Ne(E, x)) == 1
  1172. def test_union():
  1173. N = Normal('N', 3, 2)
  1174. assert simplify(P(N**2 - N > 2)) == \
  1175. -erf(sqrt(2))/2 - erfc(sqrt(2)/4)/2 + Rational(3, 2)
  1176. assert simplify(P(N**2 - 4 > 0)) == \
  1177. -erf(5*sqrt(2)/4)/2 - erfc(sqrt(2)/4)/2 + Rational(3, 2)
  1178. def test_Or():
  1179. N = Normal('N', 0, 1)
  1180. assert simplify(P(Or(N > 2, N < 1))) == \
  1181. -erf(sqrt(2))/2 - erfc(sqrt(2)/2)/2 + Rational(3, 2)
  1182. assert P(Or(N < 0, N < 1)) == P(N < 1)
  1183. assert P(Or(N > 0, N < 0)) == 1
  1184. def test_conditional_eq():
  1185. E = Exponential('E', 1)
  1186. assert P(Eq(E, 1), Eq(E, 1)) == 1
  1187. assert P(Eq(E, 1), Eq(E, 2)) == 0
  1188. assert P(E > 1, Eq(E, 2)) == 1
  1189. assert P(E < 1, Eq(E, 2)) == 0
  1190. def test_ContinuousDistributionHandmade():
  1191. x = Symbol('x')
  1192. z = Dummy('z')
  1193. dens = Lambda(x, Piecewise((S.Half, (0<=x)&(x<1)), (0, (x>=1)&(x<2)),
  1194. (S.Half, (x>=2)&(x<3)), (0, True)))
  1195. dens = ContinuousDistributionHandmade(dens, set=Interval(0, 3))
  1196. space = SingleContinuousPSpace(z, dens)
  1197. assert dens.pdf == Lambda(x, Piecewise((S(1)/2, (x >= 0) & (x < 1)),
  1198. (0, (x >= 1) & (x < 2)), (S(1)/2, (x >= 2) & (x < 3)), (0, True)))
  1199. assert median(space.value) == Interval(1, 2)
  1200. assert E(space.value) == Rational(3, 2)
  1201. assert variance(space.value) == Rational(13, 12)
  1202. def test_issue_16318():
  1203. # test compute_expectation function of the SingleContinuousDomain
  1204. N = SingleContinuousDomain(x, Interval(0, 1))
  1205. raises(ValueError, lambda: SingleContinuousDomain.compute_expectation(N, x+1, {x, y}))