__init__.py 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202
  1. """
  2. SymPy statistics module
  3. Introduces a random variable type into the SymPy language.
  4. Random variables may be declared using prebuilt functions such as
  5. Normal, Exponential, Coin, Die, etc... or built with functions like FiniteRV.
  6. Queries on random expressions can be made using the functions
  7. ========================= =============================
  8. Expression Meaning
  9. ------------------------- -----------------------------
  10. ``P(condition)`` Probability
  11. ``E(expression)`` Expected value
  12. ``H(expression)`` Entropy
  13. ``variance(expression)`` Variance
  14. ``density(expression)`` Probability Density Function
  15. ``sample(expression)`` Produce a realization
  16. ``where(condition)`` Where the condition is true
  17. ========================= =============================
  18. Examples
  19. ========
  20. >>> from sympy.stats import P, E, variance, Die, Normal
  21. >>> from sympy import simplify
  22. >>> X, Y = Die('X', 6), Die('Y', 6) # Define two six sided dice
  23. >>> Z = Normal('Z', 0, 1) # Declare a Normal random variable with mean 0, std 1
  24. >>> P(X>3) # Probability X is greater than 3
  25. 1/2
  26. >>> E(X+Y) # Expectation of the sum of two dice
  27. 7
  28. >>> variance(X+Y) # Variance of the sum of two dice
  29. 35/6
  30. >>> simplify(P(Z>1)) # Probability of Z being greater than 1
  31. 1/2 - erf(sqrt(2)/2)/2
  32. One could also create custom distribution and define custom random variables
  33. as follows:
  34. 1. If you want to create a Continuous Random Variable:
  35. >>> from sympy.stats import ContinuousRV, P, E
  36. >>> from sympy import exp, Symbol, Interval, oo
  37. >>> x = Symbol('x')
  38. >>> pdf = exp(-x) # pdf of the Continuous Distribution
  39. >>> Z = ContinuousRV(x, pdf, set=Interval(0, oo))
  40. >>> E(Z)
  41. 1
  42. >>> P(Z > 5)
  43. exp(-5)
  44. 1.1 To create an instance of Continuous Distribution:
  45. >>> from sympy.stats import ContinuousDistributionHandmade
  46. >>> from sympy import Lambda
  47. >>> dist = ContinuousDistributionHandmade(Lambda(x, pdf), set=Interval(0, oo))
  48. >>> dist.pdf(x)
  49. exp(-x)
  50. 2. If you want to create a Discrete Random Variable:
  51. >>> from sympy.stats import DiscreteRV, P, E
  52. >>> from sympy import Symbol, S
  53. >>> p = S(1)/2
  54. >>> x = Symbol('x', integer=True, positive=True)
  55. >>> pdf = p*(1 - p)**(x - 1)
  56. >>> D = DiscreteRV(x, pdf, set=S.Naturals)
  57. >>> E(D)
  58. 2
  59. >>> P(D > 3)
  60. 1/8
  61. 2.1 To create an instance of Discrete Distribution:
  62. >>> from sympy.stats import DiscreteDistributionHandmade
  63. >>> from sympy import Lambda
  64. >>> dist = DiscreteDistributionHandmade(Lambda(x, pdf), set=S.Naturals)
  65. >>> dist.pdf(x)
  66. 2**(1 - x)/2
  67. 3. If you want to create a Finite Random Variable:
  68. >>> from sympy.stats import FiniteRV, P, E
  69. >>> from sympy import Rational, Eq
  70. >>> pmf = {1: Rational(1, 3), 2: Rational(1, 6), 3: Rational(1, 4), 4: Rational(1, 4)}
  71. >>> X = FiniteRV('X', pmf)
  72. >>> E(X)
  73. 29/12
  74. >>> P(X > 3)
  75. 1/4
  76. 3.1 To create an instance of Finite Distribution:
  77. >>> from sympy.stats import FiniteDistributionHandmade
  78. >>> dist = FiniteDistributionHandmade(pmf)
  79. >>> dist.pmf(x)
  80. Lambda(x, Piecewise((1/3, Eq(x, 1)), (1/6, Eq(x, 2)), (1/4, Eq(x, 3) | Eq(x, 4)), (0, True)))
  81. """
  82. __all__ = [
  83. 'P', 'E', 'H', 'density', 'where', 'given', 'sample', 'cdf','median',
  84. 'characteristic_function', 'pspace', 'sample_iter', 'variance', 'std',
  85. 'skewness', 'kurtosis', 'covariance', 'dependent', 'entropy', 'independent',
  86. 'random_symbols', 'correlation', 'factorial_moment', 'moment', 'cmoment',
  87. 'sampling_density', 'moment_generating_function', 'smoment', 'quantile',
  88. 'coskewness', 'sample_stochastic_process',
  89. 'FiniteRV', 'DiscreteUniform', 'Die', 'Bernoulli', 'Coin', 'Binomial',
  90. 'BetaBinomial', 'Hypergeometric', 'Rademacher', 'IdealSoliton', 'RobustSoliton',
  91. 'FiniteDistributionHandmade',
  92. 'ContinuousRV', 'Arcsin', 'Benini', 'Beta', 'BetaNoncentral', 'BetaPrime',
  93. 'BoundedPareto', 'Cauchy', 'Chi', 'ChiNoncentral', 'ChiSquared', 'Dagum', 'Erlang',
  94. 'ExGaussian', 'Exponential', 'ExponentialPower', 'FDistribution',
  95. 'FisherZ', 'Frechet', 'Gamma', 'GammaInverse', 'Gompertz', 'Gumbel',
  96. 'Kumaraswamy', 'Laplace', 'Levy', 'Logistic','LogCauchy', 'LogLogistic', 'LogitNormal', 'LogNormal', 'Lomax',
  97. 'Moyal', 'Maxwell', 'Nakagami', 'Normal', 'GaussianInverse', 'Pareto', 'PowerFunction',
  98. 'QuadraticU', 'RaisedCosine', 'Rayleigh','Reciprocal', 'StudentT', 'ShiftedGompertz',
  99. 'Trapezoidal', 'Triangular', 'Uniform', 'UniformSum', 'VonMises', 'Wald',
  100. 'Weibull', 'WignerSemicircle', 'ContinuousDistributionHandmade',
  101. 'FlorySchulz', 'Geometric','Hermite', 'Logarithmic', 'NegativeBinomial', 'Poisson', 'Skellam',
  102. 'YuleSimon', 'Zeta', 'DiscreteRV', 'DiscreteDistributionHandmade',
  103. 'JointRV', 'Dirichlet', 'GeneralizedMultivariateLogGamma',
  104. 'GeneralizedMultivariateLogGammaOmega', 'Multinomial', 'MultivariateBeta',
  105. 'MultivariateEwens', 'MultivariateT', 'NegativeMultinomial',
  106. 'NormalGamma', 'MultivariateNormal', 'MultivariateLaplace', 'marginal_distribution',
  107. 'StochasticProcess', 'DiscreteTimeStochasticProcess',
  108. 'DiscreteMarkovChain', 'TransitionMatrixOf', 'StochasticStateSpaceOf',
  109. 'GeneratorMatrixOf', 'ContinuousMarkovChain', 'BernoulliProcess',
  110. 'PoissonProcess', 'WienerProcess', 'GammaProcess',
  111. 'CircularEnsemble', 'CircularUnitaryEnsemble',
  112. 'CircularOrthogonalEnsemble', 'CircularSymplecticEnsemble',
  113. 'GaussianEnsemble', 'GaussianUnitaryEnsemble',
  114. 'GaussianOrthogonalEnsemble', 'GaussianSymplecticEnsemble',
  115. 'joint_eigen_distribution', 'JointEigenDistribution',
  116. 'level_spacing_distribution',
  117. 'MatrixGamma', 'Wishart', 'MatrixNormal', 'MatrixStudentT',
  118. 'Probability', 'Expectation', 'Variance', 'Covariance', 'Moment',
  119. 'CentralMoment',
  120. 'ExpectationMatrix', 'VarianceMatrix', 'CrossCovarianceMatrix'
  121. ]
  122. from .rv_interface import (P, E, H, density, where, given, sample, cdf, median,
  123. characteristic_function, pspace, sample_iter, variance, std, skewness,
  124. kurtosis, covariance, dependent, entropy, independent, random_symbols,
  125. correlation, factorial_moment, moment, cmoment, sampling_density,
  126. moment_generating_function, smoment, quantile, coskewness,
  127. sample_stochastic_process)
  128. from .frv_types import (FiniteRV, DiscreteUniform, Die, Bernoulli, Coin,
  129. Binomial, BetaBinomial, Hypergeometric, Rademacher,
  130. FiniteDistributionHandmade, IdealSoliton, RobustSoliton)
  131. from .crv_types import (ContinuousRV, Arcsin, Benini, Beta, BetaNoncentral,
  132. BetaPrime, BoundedPareto, Cauchy, Chi, ChiNoncentral, ChiSquared,
  133. Dagum, Erlang, ExGaussian, Exponential, ExponentialPower,
  134. FDistribution, FisherZ, Frechet, Gamma, GammaInverse, GaussianInverse,
  135. Gompertz, Gumbel, Kumaraswamy, Laplace, Levy, Logistic, LogCauchy,
  136. LogLogistic, LogitNormal, LogNormal, Lomax, Maxwell, Moyal, Nakagami,
  137. Normal, Pareto, QuadraticU, RaisedCosine, Rayleigh, Reciprocal,
  138. StudentT, PowerFunction, ShiftedGompertz, Trapezoidal, Triangular,
  139. Uniform, UniformSum, VonMises, Wald, Weibull, WignerSemicircle,
  140. ContinuousDistributionHandmade)
  141. from .drv_types import (FlorySchulz, Geometric, Hermite, Logarithmic, NegativeBinomial, Poisson,
  142. Skellam, YuleSimon, Zeta, DiscreteRV, DiscreteDistributionHandmade)
  143. from .joint_rv_types import (JointRV, Dirichlet,
  144. GeneralizedMultivariateLogGamma, GeneralizedMultivariateLogGammaOmega,
  145. Multinomial, MultivariateBeta, MultivariateEwens, MultivariateT,
  146. NegativeMultinomial, NormalGamma, MultivariateNormal, MultivariateLaplace,
  147. marginal_distribution)
  148. from .stochastic_process_types import (StochasticProcess,
  149. DiscreteTimeStochasticProcess, DiscreteMarkovChain,
  150. TransitionMatrixOf, StochasticStateSpaceOf, GeneratorMatrixOf,
  151. ContinuousMarkovChain, BernoulliProcess, PoissonProcess, WienerProcess,
  152. GammaProcess)
  153. from .random_matrix_models import (CircularEnsemble, CircularUnitaryEnsemble,
  154. CircularOrthogonalEnsemble, CircularSymplecticEnsemble,
  155. GaussianEnsemble, GaussianUnitaryEnsemble, GaussianOrthogonalEnsemble,
  156. GaussianSymplecticEnsemble, joint_eigen_distribution,
  157. JointEigenDistribution, level_spacing_distribution)
  158. from .matrix_distributions import MatrixGamma, Wishart, MatrixNormal, MatrixStudentT
  159. from .symbolic_probability import (Probability, Expectation, Variance,
  160. Covariance, Moment, CentralMoment)
  161. from .symbolic_multivariate_probability import (ExpectationMatrix, VarianceMatrix,
  162. CrossCovarianceMatrix)