123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520 |
- from itertools import product
- from sympy.core.function import (Subs, count_ops, diff, expand)
- from sympy.core.numbers import (E, I, Rational, pi)
- from sympy.core.singleton import S
- from sympy.core.symbol import (Symbol, symbols)
- from sympy.functions.elementary.exponential import (exp, log)
- from sympy.functions.elementary.hyperbolic import (cosh, coth, sinh, tanh)
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.functions.elementary.piecewise import Piecewise
- from sympy.functions.elementary.trigonometric import (cos, cot, sin, tan)
- from sympy.functions.elementary.trigonometric import (acos, asin, atan2)
- from sympy.functions.elementary.trigonometric import (asec, acsc)
- from sympy.functions.elementary.trigonometric import (acot, atan)
- from sympy.integrals.integrals import integrate
- from sympy.matrices.dense import Matrix
- from sympy.simplify.simplify import simplify
- from sympy.simplify.trigsimp import (exptrigsimp, trigsimp)
- from sympy.testing.pytest import XFAIL
- from sympy.abc import x, y
- def test_trigsimp1():
- x, y = symbols('x,y')
- assert trigsimp(1 - sin(x)**2) == cos(x)**2
- assert trigsimp(1 - cos(x)**2) == sin(x)**2
- assert trigsimp(sin(x)**2 + cos(x)**2) == 1
- assert trigsimp(1 + tan(x)**2) == 1/cos(x)**2
- assert trigsimp(1/cos(x)**2 - 1) == tan(x)**2
- assert trigsimp(1/cos(x)**2 - tan(x)**2) == 1
- assert trigsimp(1 + cot(x)**2) == 1/sin(x)**2
- assert trigsimp(1/sin(x)**2 - 1) == 1/tan(x)**2
- assert trigsimp(1/sin(x)**2 - cot(x)**2) == 1
- assert trigsimp(5*cos(x)**2 + 5*sin(x)**2) == 5
- assert trigsimp(5*cos(x/2)**2 + 2*sin(x/2)**2) == 3*cos(x)/2 + Rational(7, 2)
- assert trigsimp(sin(x)/cos(x)) == tan(x)
- assert trigsimp(2*tan(x)*cos(x)) == 2*sin(x)
- assert trigsimp(cot(x)**3*sin(x)**3) == cos(x)**3
- assert trigsimp(y*tan(x)**2/sin(x)**2) == y/cos(x)**2
- assert trigsimp(cot(x)/cos(x)) == 1/sin(x)
- assert trigsimp(sin(x + y) + sin(x - y)) == 2*sin(x)*cos(y)
- assert trigsimp(sin(x + y) - sin(x - y)) == 2*sin(y)*cos(x)
- assert trigsimp(cos(x + y) + cos(x - y)) == 2*cos(x)*cos(y)
- assert trigsimp(cos(x + y) - cos(x - y)) == -2*sin(x)*sin(y)
- assert trigsimp(tan(x + y) - tan(x)/(1 - tan(x)*tan(y))) == \
- sin(y)/(-sin(y)*tan(x) + cos(y)) # -tan(y)/(tan(x)*tan(y) - 1)
- assert trigsimp(sinh(x + y) + sinh(x - y)) == 2*sinh(x)*cosh(y)
- assert trigsimp(sinh(x + y) - sinh(x - y)) == 2*sinh(y)*cosh(x)
- assert trigsimp(cosh(x + y) + cosh(x - y)) == 2*cosh(x)*cosh(y)
- assert trigsimp(cosh(x + y) - cosh(x - y)) == 2*sinh(x)*sinh(y)
- assert trigsimp(tanh(x + y) - tanh(x)/(1 + tanh(x)*tanh(y))) == \
- sinh(y)/(sinh(y)*tanh(x) + cosh(y))
- assert trigsimp(cos(0.12345)**2 + sin(0.12345)**2) == 1.0
- e = 2*sin(x)**2 + 2*cos(x)**2
- assert trigsimp(log(e)) == log(2)
- def test_trigsimp1a():
- assert trigsimp(sin(2)**2*cos(3)*exp(2)/cos(2)**2) == tan(2)**2*cos(3)*exp(2)
- assert trigsimp(tan(2)**2*cos(3)*exp(2)*cos(2)**2) == sin(2)**2*cos(3)*exp(2)
- assert trigsimp(cot(2)*cos(3)*exp(2)*sin(2)) == cos(3)*exp(2)*cos(2)
- assert trigsimp(tan(2)*cos(3)*exp(2)/sin(2)) == cos(3)*exp(2)/cos(2)
- assert trigsimp(cot(2)*cos(3)*exp(2)/cos(2)) == cos(3)*exp(2)/sin(2)
- assert trigsimp(cot(2)*cos(3)*exp(2)*tan(2)) == cos(3)*exp(2)
- assert trigsimp(sinh(2)*cos(3)*exp(2)/cosh(2)) == tanh(2)*cos(3)*exp(2)
- assert trigsimp(tanh(2)*cos(3)*exp(2)*cosh(2)) == sinh(2)*cos(3)*exp(2)
- assert trigsimp(coth(2)*cos(3)*exp(2)*sinh(2)) == cosh(2)*cos(3)*exp(2)
- assert trigsimp(tanh(2)*cos(3)*exp(2)/sinh(2)) == cos(3)*exp(2)/cosh(2)
- assert trigsimp(coth(2)*cos(3)*exp(2)/cosh(2)) == cos(3)*exp(2)/sinh(2)
- assert trigsimp(coth(2)*cos(3)*exp(2)*tanh(2)) == cos(3)*exp(2)
- def test_trigsimp2():
- x, y = symbols('x,y')
- assert trigsimp(cos(x)**2*sin(y)**2 + cos(x)**2*cos(y)**2 + sin(x)**2,
- recursive=True) == 1
- assert trigsimp(sin(x)**2*sin(y)**2 + sin(x)**2*cos(y)**2 + cos(x)**2,
- recursive=True) == 1
- assert trigsimp(
- Subs(x, x, sin(y)**2 + cos(y)**2)) == Subs(x, x, 1)
- def test_issue_4373():
- x = Symbol("x")
- assert abs(trigsimp(2.0*sin(x)**2 + 2.0*cos(x)**2) - 2.0) < 1e-10
- def test_trigsimp3():
- x, y = symbols('x,y')
- assert trigsimp(sin(x)/cos(x)) == tan(x)
- assert trigsimp(sin(x)**2/cos(x)**2) == tan(x)**2
- assert trigsimp(sin(x)**3/cos(x)**3) == tan(x)**3
- assert trigsimp(sin(x)**10/cos(x)**10) == tan(x)**10
- assert trigsimp(cos(x)/sin(x)) == 1/tan(x)
- assert trigsimp(cos(x)**2/sin(x)**2) == 1/tan(x)**2
- assert trigsimp(cos(x)**10/sin(x)**10) == 1/tan(x)**10
- assert trigsimp(tan(x)) == trigsimp(sin(x)/cos(x))
- def test_issue_4661():
- a, x, y = symbols('a x y')
- eq = -4*sin(x)**4 + 4*cos(x)**4 - 8*cos(x)**2
- assert trigsimp(eq) == -4
- n = sin(x)**6 + 4*sin(x)**4*cos(x)**2 + 5*sin(x)**2*cos(x)**4 + 2*cos(x)**6
- d = -sin(x)**2 - 2*cos(x)**2
- assert simplify(n/d) == -1
- assert trigsimp(-2*cos(x)**2 + cos(x)**4 - sin(x)**4) == -1
- eq = (- sin(x)**3/4)*cos(x) + (cos(x)**3/4)*sin(x) - sin(2*x)*cos(2*x)/8
- assert trigsimp(eq) == 0
- def test_issue_4494():
- a, b = symbols('a b')
- eq = sin(a)**2*sin(b)**2 + cos(a)**2*cos(b)**2*tan(a)**2 + cos(a)**2
- assert trigsimp(eq) == 1
- def test_issue_5948():
- a, x, y = symbols('a x y')
- assert trigsimp(diff(integrate(cos(x)/sin(x)**7, x), x)) == \
- cos(x)/sin(x)**7
- def test_issue_4775():
- a, x, y = symbols('a x y')
- assert trigsimp(sin(x)*cos(y)+cos(x)*sin(y)) == sin(x + y)
- assert trigsimp(sin(x)*cos(y)+cos(x)*sin(y)+3) == sin(x + y) + 3
- def test_issue_4280():
- a, x, y = symbols('a x y')
- assert trigsimp(cos(x)**2 + cos(y)**2*sin(x)**2 + sin(y)**2*sin(x)**2) == 1
- assert trigsimp(a**2*sin(x)**2 + a**2*cos(y)**2*cos(x)**2 + a**2*cos(x)**2*sin(y)**2) == a**2
- assert trigsimp(a**2*cos(y)**2*sin(x)**2 + a**2*sin(y)**2*sin(x)**2) == a**2*sin(x)**2
- def test_issue_3210():
- eqs = (sin(2)*cos(3) + sin(3)*cos(2),
- -sin(2)*sin(3) + cos(2)*cos(3),
- sin(2)*cos(3) - sin(3)*cos(2),
- sin(2)*sin(3) + cos(2)*cos(3),
- sin(2)*sin(3) + cos(2)*cos(3) + cos(2),
- sinh(2)*cosh(3) + sinh(3)*cosh(2),
- sinh(2)*sinh(3) + cosh(2)*cosh(3),
- )
- assert [trigsimp(e) for e in eqs] == [
- sin(5),
- cos(5),
- -sin(1),
- cos(1),
- cos(1) + cos(2),
- sinh(5),
- cosh(5),
- ]
- def test_trigsimp_issues():
- a, x, y = symbols('a x y')
- # issue 4625 - factor_terms works, too
- assert trigsimp(sin(x)**3 + cos(x)**2*sin(x)) == sin(x)
- # issue 5948
- assert trigsimp(diff(integrate(cos(x)/sin(x)**3, x), x)) == \
- cos(x)/sin(x)**3
- assert trigsimp(diff(integrate(sin(x)/cos(x)**3, x), x)) == \
- sin(x)/cos(x)**3
- # check integer exponents
- e = sin(x)**y/cos(x)**y
- assert trigsimp(e) == e
- assert trigsimp(e.subs(y, 2)) == tan(x)**2
- assert trigsimp(e.subs(x, 1)) == tan(1)**y
- # check for multiple patterns
- assert (cos(x)**2/sin(x)**2*cos(y)**2/sin(y)**2).trigsimp() == \
- 1/tan(x)**2/tan(y)**2
- assert trigsimp(cos(x)/sin(x)*cos(x+y)/sin(x+y)) == \
- 1/(tan(x)*tan(x + y))
- eq = cos(2)*(cos(3) + 1)**2/(cos(3) - 1)**2
- assert trigsimp(eq) == eq.factor() # factor makes denom (-1 + cos(3))**2
- assert trigsimp(cos(2)*(cos(3) + 1)**2*(cos(3) - 1)**2) == \
- cos(2)*sin(3)**4
- # issue 6789; this generates an expression that formerly caused
- # trigsimp to hang
- assert cot(x).equals(tan(x)) is False
- # nan or the unchanged expression is ok, but not sin(1)
- z = cos(x)**2 + sin(x)**2 - 1
- z1 = tan(x)**2 - 1/cot(x)**2
- n = (1 + z1/z)
- assert trigsimp(sin(n)) != sin(1)
- eq = x*(n - 1) - x*n
- assert trigsimp(eq) is S.NaN
- assert trigsimp(eq, recursive=True) is S.NaN
- assert trigsimp(1).is_Integer
- assert trigsimp(-sin(x)**4 - 2*sin(x)**2*cos(x)**2 - cos(x)**4) == -1
- def test_trigsimp_issue_2515():
- x = Symbol('x')
- assert trigsimp(x*cos(x)*tan(x)) == x*sin(x)
- assert trigsimp(-sin(x) + cos(x)*tan(x)) == 0
- def test_trigsimp_issue_3826():
- assert trigsimp(tan(2*x).expand(trig=True)) == tan(2*x)
- def test_trigsimp_issue_4032():
- n = Symbol('n', integer=True, positive=True)
- assert trigsimp(2**(n/2)*cos(pi*n/4)/2 + 2**(n - 1)/2) == \
- 2**(n/2)*cos(pi*n/4)/2 + 2**n/4
- def test_trigsimp_issue_7761():
- assert trigsimp(cosh(pi/4)) == cosh(pi/4)
- def test_trigsimp_noncommutative():
- x, y = symbols('x,y')
- A, B = symbols('A,B', commutative=False)
- assert trigsimp(A - A*sin(x)**2) == A*cos(x)**2
- assert trigsimp(A - A*cos(x)**2) == A*sin(x)**2
- assert trigsimp(A*sin(x)**2 + A*cos(x)**2) == A
- assert trigsimp(A + A*tan(x)**2) == A/cos(x)**2
- assert trigsimp(A/cos(x)**2 - A) == A*tan(x)**2
- assert trigsimp(A/cos(x)**2 - A*tan(x)**2) == A
- assert trigsimp(A + A*cot(x)**2) == A/sin(x)**2
- assert trigsimp(A/sin(x)**2 - A) == A/tan(x)**2
- assert trigsimp(A/sin(x)**2 - A*cot(x)**2) == A
- assert trigsimp(y*A*cos(x)**2 + y*A*sin(x)**2) == y*A
- assert trigsimp(A*sin(x)/cos(x)) == A*tan(x)
- assert trigsimp(A*tan(x)*cos(x)) == A*sin(x)
- assert trigsimp(A*cot(x)**3*sin(x)**3) == A*cos(x)**3
- assert trigsimp(y*A*tan(x)**2/sin(x)**2) == y*A/cos(x)**2
- assert trigsimp(A*cot(x)/cos(x)) == A/sin(x)
- assert trigsimp(A*sin(x + y) + A*sin(x - y)) == 2*A*sin(x)*cos(y)
- assert trigsimp(A*sin(x + y) - A*sin(x - y)) == 2*A*sin(y)*cos(x)
- assert trigsimp(A*cos(x + y) + A*cos(x - y)) == 2*A*cos(x)*cos(y)
- assert trigsimp(A*cos(x + y) - A*cos(x - y)) == -2*A*sin(x)*sin(y)
- assert trigsimp(A*sinh(x + y) + A*sinh(x - y)) == 2*A*sinh(x)*cosh(y)
- assert trigsimp(A*sinh(x + y) - A*sinh(x - y)) == 2*A*sinh(y)*cosh(x)
- assert trigsimp(A*cosh(x + y) + A*cosh(x - y)) == 2*A*cosh(x)*cosh(y)
- assert trigsimp(A*cosh(x + y) - A*cosh(x - y)) == 2*A*sinh(x)*sinh(y)
- assert trigsimp(A*cos(0.12345)**2 + A*sin(0.12345)**2) == 1.0*A
- def test_hyperbolic_simp():
- x, y = symbols('x,y')
- assert trigsimp(sinh(x)**2 + 1) == cosh(x)**2
- assert trigsimp(cosh(x)**2 - 1) == sinh(x)**2
- assert trigsimp(cosh(x)**2 - sinh(x)**2) == 1
- assert trigsimp(1 - tanh(x)**2) == 1/cosh(x)**2
- assert trigsimp(1 - 1/cosh(x)**2) == tanh(x)**2
- assert trigsimp(tanh(x)**2 + 1/cosh(x)**2) == 1
- assert trigsimp(coth(x)**2 - 1) == 1/sinh(x)**2
- assert trigsimp(1/sinh(x)**2 + 1) == 1/tanh(x)**2
- assert trigsimp(coth(x)**2 - 1/sinh(x)**2) == 1
- assert trigsimp(5*cosh(x)**2 - 5*sinh(x)**2) == 5
- assert trigsimp(5*cosh(x/2)**2 - 2*sinh(x/2)**2) == 3*cosh(x)/2 + Rational(7, 2)
- assert trigsimp(sinh(x)/cosh(x)) == tanh(x)
- assert trigsimp(tanh(x)) == trigsimp(sinh(x)/cosh(x))
- assert trigsimp(cosh(x)/sinh(x)) == 1/tanh(x)
- assert trigsimp(2*tanh(x)*cosh(x)) == 2*sinh(x)
- assert trigsimp(coth(x)**3*sinh(x)**3) == cosh(x)**3
- assert trigsimp(y*tanh(x)**2/sinh(x)**2) == y/cosh(x)**2
- assert trigsimp(coth(x)/cosh(x)) == 1/sinh(x)
- for a in (pi/6*I, pi/4*I, pi/3*I):
- assert trigsimp(sinh(a)*cosh(x) + cosh(a)*sinh(x)) == sinh(x + a)
- assert trigsimp(-sinh(a)*cosh(x) + cosh(a)*sinh(x)) == sinh(x - a)
- e = 2*cosh(x)**2 - 2*sinh(x)**2
- assert trigsimp(log(e)) == log(2)
- # issue 19535:
- assert trigsimp(sqrt(cosh(x)**2 - 1)) == sqrt(sinh(x)**2)
- assert trigsimp(cosh(x)**2*cosh(y)**2 - cosh(x)**2*sinh(y)**2 - sinh(x)**2,
- recursive=True) == 1
- assert trigsimp(sinh(x)**2*sinh(y)**2 - sinh(x)**2*cosh(y)**2 + cosh(x)**2,
- recursive=True) == 1
- assert abs(trigsimp(2.0*cosh(x)**2 - 2.0*sinh(x)**2) - 2.0) < 1e-10
- assert trigsimp(sinh(x)**2/cosh(x)**2) == tanh(x)**2
- assert trigsimp(sinh(x)**3/cosh(x)**3) == tanh(x)**3
- assert trigsimp(sinh(x)**10/cosh(x)**10) == tanh(x)**10
- assert trigsimp(cosh(x)**3/sinh(x)**3) == 1/tanh(x)**3
- assert trigsimp(cosh(x)/sinh(x)) == 1/tanh(x)
- assert trigsimp(cosh(x)**2/sinh(x)**2) == 1/tanh(x)**2
- assert trigsimp(cosh(x)**10/sinh(x)**10) == 1/tanh(x)**10
- assert trigsimp(x*cosh(x)*tanh(x)) == x*sinh(x)
- assert trigsimp(-sinh(x) + cosh(x)*tanh(x)) == 0
- assert tan(x) != 1/cot(x) # cot doesn't auto-simplify
- assert trigsimp(tan(x) - 1/cot(x)) == 0
- assert trigsimp(3*tanh(x)**7 - 2/coth(x)**7) == tanh(x)**7
- def test_trigsimp_groebner():
- from sympy.simplify.trigsimp import trigsimp_groebner
- c = cos(x)
- s = sin(x)
- ex = (4*s*c + 12*s + 5*c**3 + 21*c**2 + 23*c + 15)/(
- -s*c**2 + 2*s*c + 15*s + 7*c**3 + 31*c**2 + 37*c + 21)
- resnum = (5*s - 5*c + 1)
- resdenom = (8*s - 6*c)
- results = [resnum/resdenom, (-resnum)/(-resdenom)]
- assert trigsimp_groebner(ex) in results
- assert trigsimp_groebner(s/c, hints=[tan]) == tan(x)
- assert trigsimp_groebner(c*s) == c*s
- assert trigsimp((-s + 1)/c + c/(-s + 1),
- method='groebner') == 2/c
- assert trigsimp((-s + 1)/c + c/(-s + 1),
- method='groebner', polynomial=True) == 2/c
- # Test quick=False works
- assert trigsimp_groebner(ex, hints=[2]) in results
- assert trigsimp_groebner(ex, hints=[int(2)]) in results
- # test "I"
- assert trigsimp_groebner(sin(I*x)/cos(I*x), hints=[tanh]) == I*tanh(x)
- # test hyperbolic / sums
- assert trigsimp_groebner((tanh(x)+tanh(y))/(1+tanh(x)*tanh(y)),
- hints=[(tanh, x, y)]) == tanh(x + y)
- def test_issue_2827_trigsimp_methods():
- measure1 = lambda expr: len(str(expr))
- measure2 = lambda expr: -count_ops(expr)
- # Return the most complicated result
- expr = (x + 1)/(x + sin(x)**2 + cos(x)**2)
- ans = Matrix([1])
- M = Matrix([expr])
- assert trigsimp(M, method='fu', measure=measure1) == ans
- assert trigsimp(M, method='fu', measure=measure2) != ans
- # all methods should work with Basic expressions even if they
- # aren't Expr
- M = Matrix.eye(1)
- assert all(trigsimp(M, method=m) == M for m in
- 'fu matching groebner old'.split())
- # watch for E in exptrigsimp, not only exp()
- eq = 1/sqrt(E) + E
- assert exptrigsimp(eq) == eq
- def test_issue_15129_trigsimp_methods():
- t1 = Matrix([sin(Rational(1, 50)), cos(Rational(1, 50)), 0])
- t2 = Matrix([sin(Rational(1, 25)), cos(Rational(1, 25)), 0])
- t3 = Matrix([cos(Rational(1, 25)), sin(Rational(1, 25)), 0])
- r1 = t1.dot(t2)
- r2 = t1.dot(t3)
- assert trigsimp(r1) == cos(Rational(1, 50))
- assert trigsimp(r2) == sin(Rational(3, 50))
- def test_exptrigsimp():
- def valid(a, b):
- from sympy.core.random import verify_numerically as tn
- if not (tn(a, b) and a == b):
- return False
- return True
- assert exptrigsimp(exp(x) + exp(-x)) == 2*cosh(x)
- assert exptrigsimp(exp(x) - exp(-x)) == 2*sinh(x)
- assert exptrigsimp((2*exp(x)-2*exp(-x))/(exp(x)+exp(-x))) == 2*tanh(x)
- assert exptrigsimp((2*exp(2*x)-2)/(exp(2*x)+1)) == 2*tanh(x)
- e = [cos(x) + I*sin(x), cos(x) - I*sin(x),
- cosh(x) - sinh(x), cosh(x) + sinh(x)]
- ok = [exp(I*x), exp(-I*x), exp(-x), exp(x)]
- assert all(valid(i, j) for i, j in zip(
- [exptrigsimp(ei) for ei in e], ok))
- ue = [cos(x) + sin(x), cos(x) - sin(x),
- cosh(x) + I*sinh(x), cosh(x) - I*sinh(x)]
- assert [exptrigsimp(ei) == ei for ei in ue]
- res = []
- ok = [y*tanh(1), 1/(y*tanh(1)), I*y*tan(1), -I/(y*tan(1)),
- y*tanh(x), 1/(y*tanh(x)), I*y*tan(x), -I/(y*tan(x)),
- y*tanh(1 + I), 1/(y*tanh(1 + I))]
- for a in (1, I, x, I*x, 1 + I):
- w = exp(a)
- eq = y*(w - 1/w)/(w + 1/w)
- res.append(simplify(eq))
- res.append(simplify(1/eq))
- assert all(valid(i, j) for i, j in zip(res, ok))
- for a in range(1, 3):
- w = exp(a)
- e = w + 1/w
- s = simplify(e)
- assert s == exptrigsimp(e)
- assert valid(s, 2*cosh(a))
- e = w - 1/w
- s = simplify(e)
- assert s == exptrigsimp(e)
- assert valid(s, 2*sinh(a))
- def test_exptrigsimp_noncommutative():
- a,b = symbols('a b', commutative=False)
- x = Symbol('x', commutative=True)
- assert exp(a + x) == exptrigsimp(exp(a)*exp(x))
- p = exp(a)*exp(b) - exp(b)*exp(a)
- assert p == exptrigsimp(p) != 0
- def test_powsimp_on_numbers():
- assert 2**(Rational(1, 3) - 2) == 2**Rational(1, 3)/4
- @XFAIL
- def test_issue_6811_fail():
- # from doc/src/modules/physics/mechanics/examples.rst, the current `eq`
- # at Line 576 (in different variables) was formerly the equivalent and
- # shorter expression given below...it would be nice to get the short one
- # back again
- xp, y, x, z = symbols('xp, y, x, z')
- eq = 4*(-19*sin(x)*y + 5*sin(3*x)*y + 15*cos(2*x)*z - 21*z)*xp/(9*cos(x) - 5*cos(3*x))
- assert trigsimp(eq) == -2*(2*cos(x)*tan(x)*y + 3*z)*xp/cos(x)
- def test_Piecewise():
- e1 = x*(x + y) - y*(x + y)
- e2 = sin(x)**2 + cos(x)**2
- e3 = expand((x + y)*y/x)
- # s1 = simplify(e1)
- s2 = simplify(e2)
- # s3 = simplify(e3)
- # trigsimp tries not to touch non-trig containing args
- assert trigsimp(Piecewise((e1, e3 < e2), (e3, True))) == \
- Piecewise((e1, e3 < s2), (e3, True))
- def test_issue_21594():
- assert simplify(exp(Rational(1,2)) + exp(Rational(-1,2))) == cosh(S.Half)*2
- def test_trigsimp_old():
- x, y = symbols('x,y')
- assert trigsimp(1 - sin(x)**2, old=True) == cos(x)**2
- assert trigsimp(1 - cos(x)**2, old=True) == sin(x)**2
- assert trigsimp(sin(x)**2 + cos(x)**2, old=True) == 1
- assert trigsimp(1 + tan(x)**2, old=True) == 1/cos(x)**2
- assert trigsimp(1/cos(x)**2 - 1, old=True) == tan(x)**2
- assert trigsimp(1/cos(x)**2 - tan(x)**2, old=True) == 1
- assert trigsimp(1 + cot(x)**2, old=True) == 1/sin(x)**2
- assert trigsimp(1/sin(x)**2 - cot(x)**2, old=True) == 1
- assert trigsimp(5*cos(x)**2 + 5*sin(x)**2, old=True) == 5
- assert trigsimp(sin(x)/cos(x), old=True) == tan(x)
- assert trigsimp(2*tan(x)*cos(x), old=True) == 2*sin(x)
- assert trigsimp(cot(x)**3*sin(x)**3, old=True) == cos(x)**3
- assert trigsimp(y*tan(x)**2/sin(x)**2, old=True) == y/cos(x)**2
- assert trigsimp(cot(x)/cos(x), old=True) == 1/sin(x)
- assert trigsimp(sin(x + y) + sin(x - y), old=True) == 2*sin(x)*cos(y)
- assert trigsimp(sin(x + y) - sin(x - y), old=True) == 2*sin(y)*cos(x)
- assert trigsimp(cos(x + y) + cos(x - y), old=True) == 2*cos(x)*cos(y)
- assert trigsimp(cos(x + y) - cos(x - y), old=True) == -2*sin(x)*sin(y)
- assert trigsimp(sinh(x + y) + sinh(x - y), old=True) == 2*sinh(x)*cosh(y)
- assert trigsimp(sinh(x + y) - sinh(x - y), old=True) == 2*sinh(y)*cosh(x)
- assert trigsimp(cosh(x + y) + cosh(x - y), old=True) == 2*cosh(x)*cosh(y)
- assert trigsimp(cosh(x + y) - cosh(x - y), old=True) == 2*sinh(x)*sinh(y)
- assert trigsimp(cos(0.12345)**2 + sin(0.12345)**2, old=True) == 1.0
- assert trigsimp(sin(x)/cos(x), old=True, method='combined') == tan(x)
- assert trigsimp(sin(x)/cos(x), old=True, method='groebner') == sin(x)/cos(x)
- assert trigsimp(sin(x)/cos(x), old=True, method='groebner', hints=[tan]) == tan(x)
- assert trigsimp(1-sin(sin(x)**2+cos(x)**2)**2, old=True, deep=True) == cos(1)**2
- def test_trigsimp_inverse():
- alpha = symbols('alpha')
- s, c = sin(alpha), cos(alpha)
- for finv in [asin, acos, asec, acsc, atan, acot]:
- f = finv.inverse(None)
- assert alpha == trigsimp(finv(f(alpha)), inverse=True)
- # test atan2(cos, sin), atan2(sin, cos), etc...
- for a, b in [[c, s], [s, c]]:
- for i, j in product([-1, 1], repeat=2):
- angle = atan2(i*b, j*a)
- angle_inverted = trigsimp(angle, inverse=True)
- assert angle_inverted != angle # assures simplification happened
- assert sin(angle_inverted) == trigsimp(sin(angle))
- assert cos(angle_inverted) == trigsimp(cos(angle))
|