test_ratsimp.py 2.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778
  1. from sympy.core.numbers import (Rational, pi)
  2. from sympy.functions.elementary.exponential import log
  3. from sympy.functions.elementary.miscellaneous import sqrt
  4. from sympy.functions.special.error_functions import erf
  5. from sympy.polys.domains.finitefield import GF
  6. from sympy.simplify.ratsimp import (ratsimp, ratsimpmodprime)
  7. from sympy.abc import x, y, z, t, a, b, c, d, e
  8. def test_ratsimp():
  9. f, g = 1/x + 1/y, (x + y)/(x*y)
  10. assert f != g and ratsimp(f) == g
  11. f, g = 1/(1 + 1/x), 1 - 1/(x + 1)
  12. assert f != g and ratsimp(f) == g
  13. f, g = x/(x + y) + y/(x + y), 1
  14. assert f != g and ratsimp(f) == g
  15. f, g = -x - y - y**2/(x + y) + x**2/(x + y), -2*y
  16. assert f != g and ratsimp(f) == g
  17. f = (a*c*x*y + a*c*z - b*d*x*y - b*d*z - b*t*x*y - b*t*x - b*t*z +
  18. e*x)/(x*y + z)
  19. G = [a*c - b*d - b*t + (-b*t*x + e*x)/(x*y + z),
  20. a*c - b*d - b*t - ( b*t*x - e*x)/(x*y + z)]
  21. assert f != g and ratsimp(f) in G
  22. A = sqrt(pi)
  23. B = log(erf(x) - 1)
  24. C = log(erf(x) + 1)
  25. D = 8 - 8*erf(x)
  26. f = A*B/D - A*C/D + A*C*erf(x)/D - A*B*erf(x)/D + 2*A/D
  27. assert ratsimp(f) == A*B/8 - A*C/8 - A/(4*erf(x) - 4)
  28. def test_ratsimpmodprime():
  29. a = y**5 + x + y
  30. b = x - y
  31. F = [x*y**5 - x - y]
  32. assert ratsimpmodprime(a/b, F, x, y, order='lex') == \
  33. (-x**2 - x*y - x - y) / (-x**2 + x*y)
  34. a = x + y**2 - 2
  35. b = x + y**2 - y - 1
  36. F = [x*y - 1]
  37. assert ratsimpmodprime(a/b, F, x, y, order='lex') == \
  38. (1 + y - x)/(y - x)
  39. a = 5*x**3 + 21*x**2 + 4*x*y + 23*x + 12*y + 15
  40. b = 7*x**3 - y*x**2 + 31*x**2 + 2*x*y + 15*y + 37*x + 21
  41. F = [x**2 + y**2 - 1]
  42. assert ratsimpmodprime(a/b, F, x, y, order='lex') == \
  43. (1 + 5*y - 5*x)/(8*y - 6*x)
  44. a = x*y - x - 2*y + 4
  45. b = x + y**2 - 2*y
  46. F = [x - 2, y - 3]
  47. assert ratsimpmodprime(a/b, F, x, y, order='lex') == \
  48. Rational(2, 5)
  49. # Test a bug where denominators would be dropped
  50. assert ratsimpmodprime(x, [y - 2*x], order='lex') == \
  51. y/2
  52. a = (x**5 + 2*x**4 + 2*x**3 + 2*x**2 + x + 2/x + x**(-2))
  53. assert ratsimpmodprime(a, [x + 1], domain=GF(2)) == 1
  54. assert ratsimpmodprime(a, [x + 1], domain=GF(3)) == -1