test_kauers.py 1.1 KB

1234567891011121314151617181920212223
  1. from sympy.series.kauers import finite_diff
  2. from sympy.series.kauers import finite_diff_kauers
  3. from sympy.abc import x, y, z, m, n, w
  4. from sympy.core.numbers import pi
  5. from sympy.functions.elementary.trigonometric import (cos, sin)
  6. from sympy.concrete.summations import Sum
  7. def test_finite_diff():
  8. assert finite_diff(x**2 + 2*x + 1, x) == 2*x + 3
  9. assert finite_diff(y**3 + 2*y**2 + 3*y + 5, y) == 3*y**2 + 7*y + 6
  10. assert finite_diff(z**2 - 2*z + 3, z) == 2*z - 1
  11. assert finite_diff(w**2 + 3*w - 2, w) == 2*w + 4
  12. assert finite_diff(sin(x), x, pi/6) == -sin(x) + sin(x + pi/6)
  13. assert finite_diff(cos(y), y, pi/3) == -cos(y) + cos(y + pi/3)
  14. assert finite_diff(x**2 - 2*x + 3, x, 2) == 4*x
  15. assert finite_diff(n**2 - 2*n + 3, n, 3) == 6*n + 3
  16. def test_finite_diff_kauers():
  17. assert finite_diff_kauers(Sum(x**2, (x, 1, n))) == (n + 1)**2
  18. assert finite_diff_kauers(Sum(y, (y, 1, m))) == (m + 1)
  19. assert finite_diff_kauers(Sum((x*y), (x, 1, m), (y, 1, n))) == (m + 1)*(n + 1)
  20. assert finite_diff_kauers(Sum((x*y**2), (x, 1, m), (y, 1, n))) == (n + 1)**2*(m + 1)