123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287 |
- from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer, Tuple,
- Derivative, Eq, Ne, Le, Lt, Gt, Ge)
- from sympy.integrals import Integral
- from sympy.concrete import Sum
- from sympy.functions import (exp, sin, cos, fresnelc, fresnels, conjugate, Max,
- Min, gamma, polygamma, loggamma, erf, erfi, erfc,
- erf2, expint, erfinv, erfcinv, Ei, Si, Ci, li,
- Shi, Chi, uppergamma, beta, subfactorial, erf2inv,
- factorial, factorial2, catalan, RisingFactorial,
- FallingFactorial, harmonic, atan2, sec, acsc,
- hermite, laguerre, assoc_laguerre, jacobi,
- gegenbauer, chebyshevt, chebyshevu, legendre,
- assoc_legendre, Li, LambertW)
- from sympy.printing.mathematica import mathematica_code as mcode
- x, y, z, w = symbols('x,y,z,w')
- f = Function('f')
- def test_Integer():
- assert mcode(Integer(67)) == "67"
- assert mcode(Integer(-1)) == "-1"
- def test_Rational():
- assert mcode(Rational(3, 7)) == "3/7"
- assert mcode(Rational(18, 9)) == "2"
- assert mcode(Rational(3, -7)) == "-3/7"
- assert mcode(Rational(-3, -7)) == "3/7"
- assert mcode(x + Rational(3, 7)) == "x + 3/7"
- assert mcode(Rational(3, 7)*x) == "(3/7)*x"
- def test_Relational():
- assert mcode(Eq(x, y)) == "x == y"
- assert mcode(Ne(x, y)) == "x != y"
- assert mcode(Le(x, y)) == "x <= y"
- assert mcode(Lt(x, y)) == "x < y"
- assert mcode(Gt(x, y)) == "x > y"
- assert mcode(Ge(x, y)) == "x >= y"
- def test_Function():
- assert mcode(f(x, y, z)) == "f[x, y, z]"
- assert mcode(sin(x) ** cos(x)) == "Sin[x]^Cos[x]"
- assert mcode(sec(x) * acsc(x)) == "ArcCsc[x]*Sec[x]"
- assert mcode(atan2(x, y)) == "ArcTan[x, y]"
- assert mcode(conjugate(x)) == "Conjugate[x]"
- assert mcode(Max(x, y, z)*Min(y, z)) == "Max[x, y, z]*Min[y, z]"
- assert mcode(fresnelc(x)) == "FresnelC[x]"
- assert mcode(fresnels(x)) == "FresnelS[x]"
- assert mcode(gamma(x)) == "Gamma[x]"
- assert mcode(uppergamma(x, y)) == "Gamma[x, y]"
- assert mcode(polygamma(x, y)) == "PolyGamma[x, y]"
- assert mcode(loggamma(x)) == "LogGamma[x]"
- assert mcode(erf(x)) == "Erf[x]"
- assert mcode(erfc(x)) == "Erfc[x]"
- assert mcode(erfi(x)) == "Erfi[x]"
- assert mcode(erf2(x, y)) == "Erf[x, y]"
- assert mcode(expint(x, y)) == "ExpIntegralE[x, y]"
- assert mcode(erfcinv(x)) == "InverseErfc[x]"
- assert mcode(erfinv(x)) == "InverseErf[x]"
- assert mcode(erf2inv(x, y)) == "InverseErf[x, y]"
- assert mcode(Ei(x)) == "ExpIntegralEi[x]"
- assert mcode(Ci(x)) == "CosIntegral[x]"
- assert mcode(li(x)) == "LogIntegral[x]"
- assert mcode(Si(x)) == "SinIntegral[x]"
- assert mcode(Shi(x)) == "SinhIntegral[x]"
- assert mcode(Chi(x)) == "CoshIntegral[x]"
- assert mcode(beta(x, y)) == "Beta[x, y]"
- assert mcode(factorial(x)) == "Factorial[x]"
- assert mcode(factorial2(x)) == "Factorial2[x]"
- assert mcode(subfactorial(x)) == "Subfactorial[x]"
- assert mcode(FallingFactorial(x, y)) == "FactorialPower[x, y]"
- assert mcode(RisingFactorial(x, y)) == "Pochhammer[x, y]"
- assert mcode(catalan(x)) == "CatalanNumber[x]"
- assert mcode(harmonic(x)) == "HarmonicNumber[x]"
- assert mcode(harmonic(x, y)) == "HarmonicNumber[x, y]"
- assert mcode(Li(x)) == "LogIntegral[x] - LogIntegral[2]"
- assert mcode(LambertW(x)) == "ProductLog[x]"
- assert mcode(LambertW(x, -1)) == "ProductLog[-1, x]"
- assert mcode(LambertW(x, y)) == "ProductLog[y, x]"
- def test_special_polynomials():
- assert mcode(hermite(x, y)) == "HermiteH[x, y]"
- assert mcode(laguerre(x, y)) == "LaguerreL[x, y]"
- assert mcode(assoc_laguerre(x, y, z)) == "LaguerreL[x, y, z]"
- assert mcode(jacobi(x, y, z, w)) == "JacobiP[x, y, z, w]"
- assert mcode(gegenbauer(x, y, z)) == "GegenbauerC[x, y, z]"
- assert mcode(chebyshevt(x, y)) == "ChebyshevT[x, y]"
- assert mcode(chebyshevu(x, y)) == "ChebyshevU[x, y]"
- assert mcode(legendre(x, y)) == "LegendreP[x, y]"
- assert mcode(assoc_legendre(x, y, z)) == "LegendreP[x, y, z]"
- def test_Pow():
- assert mcode(x**3) == "x^3"
- assert mcode(x**(y**3)) == "x^(y^3)"
- assert mcode(1/(f(x)*3.5)**(x - y**x)/(x**2 + y)) == \
- "(3.5*f[x])^(-x + y^x)/(x^2 + y)"
- assert mcode(x**-1.0) == 'x^(-1.0)'
- assert mcode(x**Rational(2, 3)) == 'x^(2/3)'
- def test_Mul():
- A, B, C, D = symbols('A B C D', commutative=False)
- assert mcode(x*y*z) == "x*y*z"
- assert mcode(x*y*A) == "x*y*A"
- assert mcode(x*y*A*B) == "x*y*A**B"
- assert mcode(x*y*A*B*C) == "x*y*A**B**C"
- assert mcode(x*A*B*(C + D)*A*y) == "x*y*A**B**(C + D)**A"
- def test_constants():
- assert mcode(S.Zero) == "0"
- assert mcode(S.One) == "1"
- assert mcode(S.NegativeOne) == "-1"
- assert mcode(S.Half) == "1/2"
- assert mcode(S.ImaginaryUnit) == "I"
- assert mcode(oo) == "Infinity"
- assert mcode(S.NegativeInfinity) == "-Infinity"
- assert mcode(S.ComplexInfinity) == "ComplexInfinity"
- assert mcode(S.NaN) == "Indeterminate"
- assert mcode(S.Exp1) == "E"
- assert mcode(pi) == "Pi"
- assert mcode(S.GoldenRatio) == "GoldenRatio"
- assert mcode(S.TribonacciConstant) == \
- "(1/3 + (1/3)*(19 - 3*33^(1/2))^(1/3) + " \
- "(1/3)*(3*33^(1/2) + 19)^(1/3))"
- assert mcode(2*S.TribonacciConstant) == \
- "2*(1/3 + (1/3)*(19 - 3*33^(1/2))^(1/3) + " \
- "(1/3)*(3*33^(1/2) + 19)^(1/3))"
- assert mcode(S.EulerGamma) == "EulerGamma"
- assert mcode(S.Catalan) == "Catalan"
- def test_containers():
- assert mcode([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \
- "{1, 2, 3, {4, 5, {6, 7}}, 8, {9, 10}, 11}"
- assert mcode((1, 2, (3, 4))) == "{1, 2, {3, 4}}"
- assert mcode([1]) == "{1}"
- assert mcode((1,)) == "{1}"
- assert mcode(Tuple(*[1, 2, 3])) == "{1, 2, 3}"
- def test_matrices():
- from sympy.matrices import MutableDenseMatrix, MutableSparseMatrix, \
- ImmutableDenseMatrix, ImmutableSparseMatrix
- A = MutableDenseMatrix(
- [[1, -1, 0, 0],
- [0, 1, -1, 0],
- [0, 0, 1, -1],
- [0, 0, 0, 1]]
- )
- B = MutableSparseMatrix(A)
- C = ImmutableDenseMatrix(A)
- D = ImmutableSparseMatrix(A)
- assert mcode(C) == mcode(A) == \
- "{{1, -1, 0, 0}, " \
- "{0, 1, -1, 0}, " \
- "{0, 0, 1, -1}, " \
- "{0, 0, 0, 1}}"
- assert mcode(D) == mcode(B) == \
- "SparseArray[{" \
- "{1, 1} -> 1, {1, 2} -> -1, {2, 2} -> 1, {2, 3} -> -1, " \
- "{3, 3} -> 1, {3, 4} -> -1, {4, 4} -> 1" \
- "}, {4, 4}]"
- # Trivial cases of matrices
- assert mcode(MutableDenseMatrix(0, 0, [])) == '{}'
- assert mcode(MutableSparseMatrix(0, 0, [])) == 'SparseArray[{}, {0, 0}]'
- assert mcode(MutableDenseMatrix(0, 3, [])) == '{}'
- assert mcode(MutableSparseMatrix(0, 3, [])) == 'SparseArray[{}, {0, 3}]'
- assert mcode(MutableDenseMatrix(3, 0, [])) == '{{}, {}, {}}'
- assert mcode(MutableSparseMatrix(3, 0, [])) == 'SparseArray[{}, {3, 0}]'
- def test_NDArray():
- from sympy.tensor.array import (
- MutableDenseNDimArray, ImmutableDenseNDimArray,
- MutableSparseNDimArray, ImmutableSparseNDimArray)
- example = MutableDenseNDimArray(
- [[[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12]],
- [[13, 14, 15, 16],
- [17, 18, 19, 20],
- [21, 22, 23, 24]]]
- )
- assert mcode(example) == \
- "{{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}, " \
- "{{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}}}"
- example = ImmutableDenseNDimArray(example)
- assert mcode(example) == \
- "{{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}, " \
- "{{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}}}"
- example = MutableSparseNDimArray(example)
- assert mcode(example) == \
- "SparseArray[{" \
- "{1, 1, 1} -> 1, {1, 1, 2} -> 2, {1, 1, 3} -> 3, " \
- "{1, 1, 4} -> 4, {1, 2, 1} -> 5, {1, 2, 2} -> 6, " \
- "{1, 2, 3} -> 7, {1, 2, 4} -> 8, {1, 3, 1} -> 9, " \
- "{1, 3, 2} -> 10, {1, 3, 3} -> 11, {1, 3, 4} -> 12, " \
- "{2, 1, 1} -> 13, {2, 1, 2} -> 14, {2, 1, 3} -> 15, " \
- "{2, 1, 4} -> 16, {2, 2, 1} -> 17, {2, 2, 2} -> 18, " \
- "{2, 2, 3} -> 19, {2, 2, 4} -> 20, {2, 3, 1} -> 21, " \
- "{2, 3, 2} -> 22, {2, 3, 3} -> 23, {2, 3, 4} -> 24" \
- "}, {2, 3, 4}]"
- example = ImmutableSparseNDimArray(example)
- assert mcode(example) == \
- "SparseArray[{" \
- "{1, 1, 1} -> 1, {1, 1, 2} -> 2, {1, 1, 3} -> 3, " \
- "{1, 1, 4} -> 4, {1, 2, 1} -> 5, {1, 2, 2} -> 6, " \
- "{1, 2, 3} -> 7, {1, 2, 4} -> 8, {1, 3, 1} -> 9, " \
- "{1, 3, 2} -> 10, {1, 3, 3} -> 11, {1, 3, 4} -> 12, " \
- "{2, 1, 1} -> 13, {2, 1, 2} -> 14, {2, 1, 3} -> 15, " \
- "{2, 1, 4} -> 16, {2, 2, 1} -> 17, {2, 2, 2} -> 18, " \
- "{2, 2, 3} -> 19, {2, 2, 4} -> 20, {2, 3, 1} -> 21, " \
- "{2, 3, 2} -> 22, {2, 3, 3} -> 23, {2, 3, 4} -> 24" \
- "}, {2, 3, 4}]"
- def test_Integral():
- assert mcode(Integral(sin(sin(x)), x)) == "Hold[Integrate[Sin[Sin[x]], x]]"
- assert mcode(Integral(exp(-x**2 - y**2),
- (x, -oo, oo),
- (y, -oo, oo))) == \
- "Hold[Integrate[Exp[-x^2 - y^2], {x, -Infinity, Infinity}, " \
- "{y, -Infinity, Infinity}]]"
- def test_Derivative():
- assert mcode(Derivative(sin(x), x)) == "Hold[D[Sin[x], x]]"
- assert mcode(Derivative(x, x)) == "Hold[D[x, x]]"
- assert mcode(Derivative(sin(x)*y**4, x, 2)) == "Hold[D[y^4*Sin[x], {x, 2}]]"
- assert mcode(Derivative(sin(x)*y**4, x, y, x)) == "Hold[D[y^4*Sin[x], x, y, x]]"
- assert mcode(Derivative(sin(x)*y**4, x, y, 3, x)) == "Hold[D[y^4*Sin[x], x, {y, 3}, x]]"
- def test_Sum():
- assert mcode(Sum(sin(x), (x, 0, 10))) == "Hold[Sum[Sin[x], {x, 0, 10}]]"
- assert mcode(Sum(exp(-x**2 - y**2),
- (x, -oo, oo),
- (y, -oo, oo))) == \
- "Hold[Sum[Exp[-x^2 - y^2], {x, -Infinity, Infinity}, " \
- "{y, -Infinity, Infinity}]]"
- def test_comment():
- from sympy.printing.mathematica import MCodePrinter
- assert MCodePrinter()._get_comment("Hello World") == \
- "(* Hello World *)"
- def test_userfuncs():
- # Dictionary mutation test
- some_function = symbols("some_function", cls=Function)
- my_user_functions = {"some_function": "SomeFunction"}
- assert mcode(
- some_function(z),
- user_functions=my_user_functions) == \
- 'SomeFunction[z]'
- assert mcode(
- some_function(z),
- user_functions=my_user_functions) == \
- 'SomeFunction[z]'
- # List argument test
- my_user_functions = \
- {"some_function": [(lambda x: True, "SomeOtherFunction")]}
- assert mcode(
- some_function(z),
- user_functions=my_user_functions) == \
- 'SomeOtherFunction[z]'
|