1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- from sympy.core import Symbol, S, oo
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.polys import poly
- from sympy.polys.dispersion import dispersion, dispersionset
- def test_dispersion():
- x = Symbol("x")
- a = Symbol("a")
- fp = poly(S.Zero, x)
- assert sorted(dispersionset(fp)) == [0]
- fp = poly(S(2), x)
- assert sorted(dispersionset(fp)) == [0]
- fp = poly(x + 1, x)
- assert sorted(dispersionset(fp)) == [0]
- assert dispersion(fp) == 0
- fp = poly((x + 1)*(x + 2), x)
- assert sorted(dispersionset(fp)) == [0, 1]
- assert dispersion(fp) == 1
- fp = poly(x*(x + 3), x)
- assert sorted(dispersionset(fp)) == [0, 3]
- assert dispersion(fp) == 3
- fp = poly((x - 3)*(x + 3), x)
- assert sorted(dispersionset(fp)) == [0, 6]
- assert dispersion(fp) == 6
- fp = poly(x**4 - 3*x**2 + 1, x)
- gp = fp.shift(-3)
- assert sorted(dispersionset(fp, gp)) == [2, 3, 4]
- assert dispersion(fp, gp) == 4
- assert sorted(dispersionset(gp, fp)) == []
- assert dispersion(gp, fp) is -oo
- fp = poly(x*(3*x**2+a)*(x-2536)*(x**3+a), x)
- gp = fp.as_expr().subs(x, x-345).as_poly(x)
- assert sorted(dispersionset(fp, gp)) == [345, 2881]
- assert sorted(dispersionset(gp, fp)) == [2191]
- gp = poly((x-2)**2*(x-3)**3*(x-5)**3, x)
- assert sorted(dispersionset(gp)) == [0, 1, 2, 3]
- assert sorted(dispersionset(gp, (gp+4)**2)) == [1, 2]
- fp = poly(x*(x+2)*(x-1), x)
- assert sorted(dispersionset(fp)) == [0, 1, 2, 3]
- fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
- gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
- assert sorted(dispersionset(fp, gp)) == [2]
- assert sorted(dispersionset(gp, fp)) == [1, 4]
- # There are some difficulties if we compute over Z[a]
- # and alpha happenes to lie in Z[a] instead of simply Z.
- # Hence we can not decide if alpha is indeed integral
- # in general.
- fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
- assert sorted(dispersionset(fp)) == [0, 1]
- # For any specific value of a, the dispersion is 3*a
- # but the algorithm can not find this in general.
- # This is the point where the resultant based Ansatz
- # is superior to the current one.
- fp = poly(a**2*x**3 + (a**3 + a**2 + a + 1)*x, x)
- gp = fp.as_expr().subs(x, x - 3*a).as_poly(x)
- assert sorted(dispersionset(fp, gp)) == []
- fpa = fp.as_expr().subs(a, 2).as_poly(x)
- gpa = gp.as_expr().subs(a, 2).as_poly(x)
- assert sorted(dispersionset(fpa, gpa)) == [6]
- # Work with Expr instead of Poly
- f = (x + 1)*(x + 2)
- assert sorted(dispersionset(f)) == [0, 1]
- assert dispersion(f) == 1
- f = x**4 - 3*x**2 + 1
- g = x**4 - 12*x**3 + 51*x**2 - 90*x + 55
- assert sorted(dispersionset(f, g)) == [2, 3, 4]
- assert dispersion(f, g) == 4
- # Work with Expr and specify a generator
- f = (x + 1)*(x + 2)
- assert sorted(dispersionset(f, None, x)) == [0, 1]
- assert dispersion(f, None, x) == 1
- f = x**4 - 3*x**2 + 1
- g = x**4 - 12*x**3 + 51*x**2 - 90*x + 55
- assert sorted(dispersionset(f, g, x)) == [2, 3, 4]
- assert dispersion(f, g, x) == 4
|