123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- from sympy.abc import x
- from sympy.core.numbers import (I, Rational)
- from sympy.core.singleton import S
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.polys import Poly, cyclotomic_poly
- from sympy.polys.domains import FF, QQ
- from sympy.polys.matrices import DomainMatrix, DM
- from sympy.polys.matrices.exceptions import DMRankError
- from sympy.polys.numberfields.utilities import (
- AlgIntPowers, coeff_search, extract_fundamental_discriminant,
- isolate, supplement_a_subspace,
- )
- from sympy.printing.lambdarepr import IntervalPrinter
- from sympy.testing.pytest import raises
- def test_AlgIntPowers_01():
- T = Poly(cyclotomic_poly(5))
- zeta_pow = AlgIntPowers(T)
- raises(ValueError, lambda: zeta_pow[-1])
- for e in range(10):
- a = e % 5
- if a < 4:
- c = zeta_pow[e]
- assert c[a] == 1 and all(c[i] == 0 for i in range(4) if i != a)
- else:
- assert zeta_pow[e] == [-1] * 4
- def test_AlgIntPowers_02():
- T = Poly(x**3 + 2*x**2 + 3*x + 4)
- m = 7
- theta_pow = AlgIntPowers(T, m)
- for e in range(10):
- computed = theta_pow[e]
- coeffs = (Poly(x)**e % T + Poly(x**3)).rep.rep[1:]
- expected = [c % m for c in reversed(coeffs)]
- assert computed == expected
- def test_coeff_search():
- C = []
- search = coeff_search(2, 1)
- for i, c in enumerate(search):
- C.append(c)
- if i == 12:
- break
- assert C == [[1, 1], [1, 0], [1, -1], [0, 1], [2, 2], [2, 1], [2, 0], [2, -1], [2, -2], [1, 2], [1, -2], [0, 2], [3, 3]]
- def test_extract_fundamental_discriminant():
- # To extract, integer must be 0 or 1 mod 4.
- raises(ValueError, lambda: extract_fundamental_discriminant(2))
- raises(ValueError, lambda: extract_fundamental_discriminant(3))
- # Try many cases, of different forms:
- cases = (
- (0, {}, {0: 1}),
- (1, {}, {}),
- (8, {2: 3}, {}),
- (-8, {2: 3, -1: 1}, {}),
- (12, {2: 2, 3: 1}, {}),
- (36, {}, {2: 1, 3: 1}),
- (45, {5: 1}, {3: 1}),
- (48, {2: 2, 3: 1}, {2: 1}),
- (1125, {5: 1}, {3: 1, 5: 1}),
- )
- for a, D_expected, F_expected in cases:
- D, F = extract_fundamental_discriminant(a)
- assert D == D_expected
- assert F == F_expected
- def test_supplement_a_subspace_1():
- M = DM([[1, 7, 0], [2, 3, 4]], QQ).transpose()
- # First supplement over QQ:
- B = supplement_a_subspace(M)
- assert B[:, :2] == M
- assert B[:, 2] == DomainMatrix.eye(3, QQ).to_dense()[:, 0]
- # Now supplement over FF(7):
- M = M.convert_to(FF(7))
- B = supplement_a_subspace(M)
- assert B[:, :2] == M
- # When we work mod 7, first col of M goes to [1, 0, 0],
- # so the supplementary vector cannot equal this, as it did
- # when we worked over QQ. Instead, we get the second std basis vector:
- assert B[:, 2] == DomainMatrix.eye(3, FF(7)).to_dense()[:, 1]
- def test_supplement_a_subspace_2():
- M = DM([[1, 0, 0], [2, 0, 0]], QQ).transpose()
- with raises(DMRankError):
- supplement_a_subspace(M)
- def test_IntervalPrinter():
- ip = IntervalPrinter()
- assert ip.doprint(x**Rational(1, 3)) == "x**(mpi('1/3'))"
- assert ip.doprint(sqrt(x)) == "x**(mpi('1/2'))"
- def test_isolate():
- assert isolate(1) == (1, 1)
- assert isolate(S.Half) == (S.Half, S.Half)
- assert isolate(sqrt(2)) == (1, 2)
- assert isolate(-sqrt(2)) == (-2, -1)
- assert isolate(sqrt(2), eps=Rational(1, 100)) == (Rational(24, 17), Rational(17, 12))
- assert isolate(-sqrt(2), eps=Rational(1, 100)) == (Rational(-17, 12), Rational(-24, 17))
- raises(NotImplementedError, lambda: isolate(I))
|