123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304 |
- """Tests for the subfield problem and allied problems. """
- from sympy.core.numbers import (AlgebraicNumber, I, pi, Rational)
- from sympy.core.singleton import S
- from sympy.functions.elementary.exponential import exp
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.external.gmpy import MPQ
- from sympy.polys.numberfields.subfield import (
- is_isomorphism_possible,
- field_isomorphism_pslq,
- field_isomorphism,
- primitive_element,
- to_number_field,
- )
- from sympy.polys.polyerrors import IsomorphismFailed
- from sympy.polys.polytools import Poly
- from sympy.polys.rootoftools import CRootOf
- from sympy.testing.pytest import raises
- from sympy.abc import x
- Q = Rational
- def test_field_isomorphism_pslq():
- a = AlgebraicNumber(I)
- b = AlgebraicNumber(I*sqrt(3))
- raises(NotImplementedError, lambda: field_isomorphism_pslq(a, b))
- a = AlgebraicNumber(sqrt(2))
- b = AlgebraicNumber(sqrt(3))
- c = AlgebraicNumber(sqrt(7))
- d = AlgebraicNumber(sqrt(2) + sqrt(3))
- e = AlgebraicNumber(sqrt(2) + sqrt(3) + sqrt(7))
- assert field_isomorphism_pslq(a, a) == [1, 0]
- assert field_isomorphism_pslq(a, b) is None
- assert field_isomorphism_pslq(a, c) is None
- assert field_isomorphism_pslq(a, d) == [Q(1, 2), 0, -Q(9, 2), 0]
- assert field_isomorphism_pslq(
- a, e) == [Q(1, 80), 0, -Q(1, 2), 0, Q(59, 20), 0]
- assert field_isomorphism_pslq(b, a) is None
- assert field_isomorphism_pslq(b, b) == [1, 0]
- assert field_isomorphism_pslq(b, c) is None
- assert field_isomorphism_pslq(b, d) == [-Q(1, 2), 0, Q(11, 2), 0]
- assert field_isomorphism_pslq(b, e) == [-Q(
- 3, 640), 0, Q(67, 320), 0, -Q(297, 160), 0, Q(313, 80), 0]
- assert field_isomorphism_pslq(c, a) is None
- assert field_isomorphism_pslq(c, b) is None
- assert field_isomorphism_pslq(c, c) == [1, 0]
- assert field_isomorphism_pslq(c, d) is None
- assert field_isomorphism_pslq(c, e) == [Q(
- 3, 640), 0, -Q(71, 320), 0, Q(377, 160), 0, -Q(469, 80), 0]
- assert field_isomorphism_pslq(d, a) is None
- assert field_isomorphism_pslq(d, b) is None
- assert field_isomorphism_pslq(d, c) is None
- assert field_isomorphism_pslq(d, d) == [1, 0]
- assert field_isomorphism_pslq(d, e) == [-Q(
- 3, 640), 0, Q(71, 320), 0, -Q(377, 160), 0, Q(549, 80), 0]
- assert field_isomorphism_pslq(e, a) is None
- assert field_isomorphism_pslq(e, b) is None
- assert field_isomorphism_pslq(e, c) is None
- assert field_isomorphism_pslq(e, d) is None
- assert field_isomorphism_pslq(e, e) == [1, 0]
- f = AlgebraicNumber(3*sqrt(2) + 8*sqrt(7) - 5)
- assert field_isomorphism_pslq(
- f, e) == [Q(3, 80), 0, -Q(139, 80), 0, Q(347, 20), 0, -Q(761, 20), -5]
- def test_field_isomorphism():
- assert field_isomorphism(3, sqrt(2)) == [3]
- assert field_isomorphism( I*sqrt(3), I*sqrt(3)/2) == [ 2, 0]
- assert field_isomorphism(-I*sqrt(3), I*sqrt(3)/2) == [-2, 0]
- assert field_isomorphism( I*sqrt(3), -I*sqrt(3)/2) == [-2, 0]
- assert field_isomorphism(-I*sqrt(3), -I*sqrt(3)/2) == [ 2, 0]
- assert field_isomorphism( 2*I*sqrt(3)/7, 5*I*sqrt(3)/3) == [ Rational(6, 35), 0]
- assert field_isomorphism(-2*I*sqrt(3)/7, 5*I*sqrt(3)/3) == [Rational(-6, 35), 0]
- assert field_isomorphism( 2*I*sqrt(3)/7, -5*I*sqrt(3)/3) == [Rational(-6, 35), 0]
- assert field_isomorphism(-2*I*sqrt(3)/7, -5*I*sqrt(3)/3) == [ Rational(6, 35), 0]
- assert field_isomorphism(
- 2*I*sqrt(3)/7 + 27, 5*I*sqrt(3)/3) == [ Rational(6, 35), 27]
- assert field_isomorphism(
- -2*I*sqrt(3)/7 + 27, 5*I*sqrt(3)/3) == [Rational(-6, 35), 27]
- assert field_isomorphism(
- 2*I*sqrt(3)/7 + 27, -5*I*sqrt(3)/3) == [Rational(-6, 35), 27]
- assert field_isomorphism(
- -2*I*sqrt(3)/7 + 27, -5*I*sqrt(3)/3) == [ Rational(6, 35), 27]
- p = AlgebraicNumber( sqrt(2) + sqrt(3))
- q = AlgebraicNumber(-sqrt(2) + sqrt(3))
- r = AlgebraicNumber( sqrt(2) - sqrt(3))
- s = AlgebraicNumber(-sqrt(2) - sqrt(3))
- pos_coeffs = [ S.Half, S.Zero, Rational(-9, 2), S.Zero]
- neg_coeffs = [Rational(-1, 2), S.Zero, Rational(9, 2), S.Zero]
- a = AlgebraicNumber(sqrt(2))
- assert is_isomorphism_possible(a, p) is True
- assert is_isomorphism_possible(a, q) is True
- assert is_isomorphism_possible(a, r) is True
- assert is_isomorphism_possible(a, s) is True
- assert field_isomorphism(a, p, fast=True) == pos_coeffs
- assert field_isomorphism(a, q, fast=True) == neg_coeffs
- assert field_isomorphism(a, r, fast=True) == pos_coeffs
- assert field_isomorphism(a, s, fast=True) == neg_coeffs
- assert field_isomorphism(a, p, fast=False) == pos_coeffs
- assert field_isomorphism(a, q, fast=False) == neg_coeffs
- assert field_isomorphism(a, r, fast=False) == pos_coeffs
- assert field_isomorphism(a, s, fast=False) == neg_coeffs
- a = AlgebraicNumber(-sqrt(2))
- assert is_isomorphism_possible(a, p) is True
- assert is_isomorphism_possible(a, q) is True
- assert is_isomorphism_possible(a, r) is True
- assert is_isomorphism_possible(a, s) is True
- assert field_isomorphism(a, p, fast=True) == neg_coeffs
- assert field_isomorphism(a, q, fast=True) == pos_coeffs
- assert field_isomorphism(a, r, fast=True) == neg_coeffs
- assert field_isomorphism(a, s, fast=True) == pos_coeffs
- assert field_isomorphism(a, p, fast=False) == neg_coeffs
- assert field_isomorphism(a, q, fast=False) == pos_coeffs
- assert field_isomorphism(a, r, fast=False) == neg_coeffs
- assert field_isomorphism(a, s, fast=False) == pos_coeffs
- pos_coeffs = [ S.Half, S.Zero, Rational(-11, 2), S.Zero]
- neg_coeffs = [Rational(-1, 2), S.Zero, Rational(11, 2), S.Zero]
- a = AlgebraicNumber(sqrt(3))
- assert is_isomorphism_possible(a, p) is True
- assert is_isomorphism_possible(a, q) is True
- assert is_isomorphism_possible(a, r) is True
- assert is_isomorphism_possible(a, s) is True
- assert field_isomorphism(a, p, fast=True) == neg_coeffs
- assert field_isomorphism(a, q, fast=True) == neg_coeffs
- assert field_isomorphism(a, r, fast=True) == pos_coeffs
- assert field_isomorphism(a, s, fast=True) == pos_coeffs
- assert field_isomorphism(a, p, fast=False) == neg_coeffs
- assert field_isomorphism(a, q, fast=False) == neg_coeffs
- assert field_isomorphism(a, r, fast=False) == pos_coeffs
- assert field_isomorphism(a, s, fast=False) == pos_coeffs
- a = AlgebraicNumber(-sqrt(3))
- assert is_isomorphism_possible(a, p) is True
- assert is_isomorphism_possible(a, q) is True
- assert is_isomorphism_possible(a, r) is True
- assert is_isomorphism_possible(a, s) is True
- assert field_isomorphism(a, p, fast=True) == pos_coeffs
- assert field_isomorphism(a, q, fast=True) == pos_coeffs
- assert field_isomorphism(a, r, fast=True) == neg_coeffs
- assert field_isomorphism(a, s, fast=True) == neg_coeffs
- assert field_isomorphism(a, p, fast=False) == pos_coeffs
- assert field_isomorphism(a, q, fast=False) == pos_coeffs
- assert field_isomorphism(a, r, fast=False) == neg_coeffs
- assert field_isomorphism(a, s, fast=False) == neg_coeffs
- pos_coeffs = [ Rational(3, 2), S.Zero, Rational(-33, 2), -S(8)]
- neg_coeffs = [Rational(-3, 2), S.Zero, Rational(33, 2), -S(8)]
- a = AlgebraicNumber(3*sqrt(3) - 8)
- assert is_isomorphism_possible(a, p) is True
- assert is_isomorphism_possible(a, q) is True
- assert is_isomorphism_possible(a, r) is True
- assert is_isomorphism_possible(a, s) is True
- assert field_isomorphism(a, p, fast=True) == neg_coeffs
- assert field_isomorphism(a, q, fast=True) == neg_coeffs
- assert field_isomorphism(a, r, fast=True) == pos_coeffs
- assert field_isomorphism(a, s, fast=True) == pos_coeffs
- assert field_isomorphism(a, p, fast=False) == neg_coeffs
- assert field_isomorphism(a, q, fast=False) == neg_coeffs
- assert field_isomorphism(a, r, fast=False) == pos_coeffs
- assert field_isomorphism(a, s, fast=False) == pos_coeffs
- a = AlgebraicNumber(3*sqrt(2) + 2*sqrt(3) + 1)
- pos_1_coeffs = [ S.Half, S.Zero, Rational(-5, 2), S.One]
- neg_5_coeffs = [Rational(-5, 2), S.Zero, Rational(49, 2), S.One]
- pos_5_coeffs = [ Rational(5, 2), S.Zero, Rational(-49, 2), S.One]
- neg_1_coeffs = [Rational(-1, 2), S.Zero, Rational(5, 2), S.One]
- assert is_isomorphism_possible(a, p) is True
- assert is_isomorphism_possible(a, q) is True
- assert is_isomorphism_possible(a, r) is True
- assert is_isomorphism_possible(a, s) is True
- assert field_isomorphism(a, p, fast=True) == pos_1_coeffs
- assert field_isomorphism(a, q, fast=True) == neg_5_coeffs
- assert field_isomorphism(a, r, fast=True) == pos_5_coeffs
- assert field_isomorphism(a, s, fast=True) == neg_1_coeffs
- assert field_isomorphism(a, p, fast=False) == pos_1_coeffs
- assert field_isomorphism(a, q, fast=False) == neg_5_coeffs
- assert field_isomorphism(a, r, fast=False) == pos_5_coeffs
- assert field_isomorphism(a, s, fast=False) == neg_1_coeffs
- a = AlgebraicNumber(sqrt(2))
- b = AlgebraicNumber(sqrt(3))
- c = AlgebraicNumber(sqrt(7))
- assert is_isomorphism_possible(a, b) is True
- assert is_isomorphism_possible(b, a) is True
- assert is_isomorphism_possible(c, p) is False
- assert field_isomorphism(sqrt(2), sqrt(3), fast=True) is None
- assert field_isomorphism(sqrt(3), sqrt(2), fast=True) is None
- assert field_isomorphism(sqrt(2), sqrt(3), fast=False) is None
- assert field_isomorphism(sqrt(3), sqrt(2), fast=False) is None
- a = AlgebraicNumber(sqrt(2))
- b = AlgebraicNumber(2 ** (S(1) / 3))
- assert is_isomorphism_possible(a, b) is False
- assert field_isomorphism(a, b) is None
- def test_primitive_element():
- assert primitive_element([sqrt(2)], x) == (x**2 - 2, [1])
- assert primitive_element(
- [sqrt(2), sqrt(3)], x) == (x**4 - 10*x**2 + 1, [1, 1])
- assert primitive_element([sqrt(2)], x, polys=True) == (Poly(x**2 - 2, domain='QQ'), [1])
- assert primitive_element([sqrt(
- 2), sqrt(3)], x, polys=True) == (Poly(x**4 - 10*x**2 + 1, domain='QQ'), [1, 1])
- assert primitive_element(
- [sqrt(2)], x, ex=True) == (x**2 - 2, [1], [[1, 0]])
- assert primitive_element([sqrt(2), sqrt(3)], x, ex=True) == \
- (x**4 - 10*x**2 + 1, [1, 1], [[Q(1, 2), 0, -Q(9, 2), 0], [-
- Q(1, 2), 0, Q(11, 2), 0]])
- assert primitive_element(
- [sqrt(2)], x, ex=True, polys=True) == (Poly(x**2 - 2, domain='QQ'), [1], [[1, 0]])
- assert primitive_element([sqrt(2), sqrt(3)], x, ex=True, polys=True) == \
- (Poly(x**4 - 10*x**2 + 1, domain='QQ'), [1, 1], [[Q(1, 2), 0, -Q(9, 2),
- 0], [-Q(1, 2), 0, Q(11, 2), 0]])
- assert primitive_element([sqrt(2)], polys=True) == (Poly(x**2 - 2), [1])
- raises(ValueError, lambda: primitive_element([], x, ex=False))
- raises(ValueError, lambda: primitive_element([], x, ex=True))
- # Issue 14117
- a, b = I*sqrt(2*sqrt(2) + 3), I*sqrt(-2*sqrt(2) + 3)
- assert primitive_element([a, b, I], x) == (x**4 + 6*x**2 + 1, [1, 0, 0])
- assert primitive_element([sqrt(2), 0], x) == (x**2 - 2, [1, 0])
- assert primitive_element([0, sqrt(2)], x) == (x**2 - 2, [1, 1])
- assert primitive_element([sqrt(2), 0], x, ex=True) == (x**2 - 2, [1, 0], [[MPQ(1,1), MPQ(0,1)], []])
- assert primitive_element([0, sqrt(2)], x, ex=True) == (x**2 - 2, [1, 1], [[], [MPQ(1,1), MPQ(0,1)]])
- def test_to_number_field():
- assert to_number_field(sqrt(2)) == AlgebraicNumber(sqrt(2))
- assert to_number_field(
- [sqrt(2), sqrt(3)]) == AlgebraicNumber(sqrt(2) + sqrt(3))
- a = AlgebraicNumber(sqrt(2) + sqrt(3), [S.Half, S.Zero, Rational(-9, 2), S.Zero])
- assert to_number_field(sqrt(2), sqrt(2) + sqrt(3)) == a
- assert to_number_field(sqrt(2), AlgebraicNumber(sqrt(2) + sqrt(3))) == a
- raises(IsomorphismFailed, lambda: to_number_field(sqrt(2), sqrt(3)))
- def test_issue_22561():
- a = to_number_field(sqrt(2), sqrt(2) + sqrt(3))
- b = to_number_field(sqrt(2), sqrt(2) + sqrt(5))
- assert field_isomorphism(a, b) == [1, 0]
- def test_issue_22736():
- a = CRootOf(x**4 + x**3 + x**2 + x + 1, -1)
- a._reset()
- b = exp(2*I*pi/5)
- assert field_isomorphism(a, b) == [1, 0]
|