123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406 |
- '''Functions returning normal forms of matrices'''
- from collections import defaultdict
- from .domainmatrix import DomainMatrix
- from .exceptions import DMDomainError, DMShapeError
- from sympy.ntheory.modular import symmetric_residue
- from sympy.polys.domains import QQ, ZZ
- # TODO (future work):
- # There are faster algorithms for Smith and Hermite normal forms, which
- # we should implement. See e.g. the Kannan-Bachem algorithm:
- # <https://www.researchgate.net/publication/220617516_Polynomial_Algorithms_for_Computing_the_Smith_and_Hermite_Normal_Forms_of_an_Integer_Matrix>
- def smith_normal_form(m):
- '''
- Return the Smith Normal Form of a matrix `m` over the ring `domain`.
- This will only work if the ring is a principal ideal domain.
- Examples
- ========
- >>> from sympy import ZZ
- >>> from sympy.polys.matrices import DomainMatrix
- >>> from sympy.polys.matrices.normalforms import smith_normal_form
- >>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)],
- ... [ZZ(3), ZZ(9), ZZ(6)],
- ... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ)
- >>> print(smith_normal_form(m).to_Matrix())
- Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]])
- '''
- invs = invariant_factors(m)
- smf = DomainMatrix.diag(invs, m.domain, m.shape)
- return smf
- def add_columns(m, i, j, a, b, c, d):
- # replace m[:, i] by a*m[:, i] + b*m[:, j]
- # and m[:, j] by c*m[:, i] + d*m[:, j]
- for k in range(len(m)):
- e = m[k][i]
- m[k][i] = a*e + b*m[k][j]
- m[k][j] = c*e + d*m[k][j]
- def invariant_factors(m):
- '''
- Return the tuple of abelian invariants for a matrix `m`
- (as in the Smith-Normal form)
- References
- ==========
- [1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm
- [2] https://web.archive.org/web/20200331143852/https://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf
- '''
- domain = m.domain
- if not domain.is_PID:
- msg = "The matrix entries must be over a principal ideal domain"
- raise ValueError(msg)
- if 0 in m.shape:
- return ()
- rows, cols = shape = m.shape
- m = list(m.to_dense().rep)
- def add_rows(m, i, j, a, b, c, d):
- # replace m[i, :] by a*m[i, :] + b*m[j, :]
- # and m[j, :] by c*m[i, :] + d*m[j, :]
- for k in range(cols):
- e = m[i][k]
- m[i][k] = a*e + b*m[j][k]
- m[j][k] = c*e + d*m[j][k]
- def clear_column(m):
- # make m[1:, 0] zero by row and column operations
- if m[0][0] == 0:
- return m # pragma: nocover
- pivot = m[0][0]
- for j in range(1, rows):
- if m[j][0] == 0:
- continue
- d, r = domain.div(m[j][0], pivot)
- if r == 0:
- add_rows(m, 0, j, 1, 0, -d, 1)
- else:
- a, b, g = domain.gcdex(pivot, m[j][0])
- d_0 = domain.div(m[j][0], g)[0]
- d_j = domain.div(pivot, g)[0]
- add_rows(m, 0, j, a, b, d_0, -d_j)
- pivot = g
- return m
- def clear_row(m):
- # make m[0, 1:] zero by row and column operations
- if m[0][0] == 0:
- return m # pragma: nocover
- pivot = m[0][0]
- for j in range(1, cols):
- if m[0][j] == 0:
- continue
- d, r = domain.div(m[0][j], pivot)
- if r == 0:
- add_columns(m, 0, j, 1, 0, -d, 1)
- else:
- a, b, g = domain.gcdex(pivot, m[0][j])
- d_0 = domain.div(m[0][j], g)[0]
- d_j = domain.div(pivot, g)[0]
- add_columns(m, 0, j, a, b, d_0, -d_j)
- pivot = g
- return m
- # permute the rows and columns until m[0,0] is non-zero if possible
- ind = [i for i in range(rows) if m[i][0] != 0]
- if ind and ind[0] != 0:
- m[0], m[ind[0]] = m[ind[0]], m[0]
- else:
- ind = [j for j in range(cols) if m[0][j] != 0]
- if ind and ind[0] != 0:
- for row in m:
- row[0], row[ind[0]] = row[ind[0]], row[0]
- # make the first row and column except m[0,0] zero
- while (any(m[0][i] != 0 for i in range(1,cols)) or
- any(m[i][0] != 0 for i in range(1,rows))):
- m = clear_column(m)
- m = clear_row(m)
- if 1 in shape:
- invs = ()
- else:
- lower_right = DomainMatrix([r[1:] for r in m[1:]], (rows-1, cols-1), domain)
- invs = invariant_factors(lower_right)
- if m[0][0]:
- result = [m[0][0]]
- result.extend(invs)
- # in case m[0] doesn't divide the invariants of the rest of the matrix
- for i in range(len(result)-1):
- if result[i] and domain.div(result[i+1], result[i])[1] != 0:
- g = domain.gcd(result[i+1], result[i])
- result[i+1] = domain.div(result[i], g)[0]*result[i+1]
- result[i] = g
- else:
- break
- else:
- result = invs + (m[0][0],)
- return tuple(result)
- def _gcdex(a, b):
- r"""
- This supports the functions that compute Hermite Normal Form.
- Explanation
- ===========
- Let x, y be the coefficients returned by the extended Euclidean
- Algorithm, so that x*a + y*b = g. In the algorithms for computing HNF,
- it is critical that x, y not only satisfy the condition of being small
- in magnitude -- namely that |x| <= |b|/g, |y| <- |a|/g -- but also that
- y == 0 when a | b.
- """
- x, y, g = ZZ.gcdex(a, b)
- if a != 0 and b % a == 0:
- y = 0
- x = -1 if a < 0 else 1
- return x, y, g
- def _hermite_normal_form(A):
- r"""
- Compute the Hermite Normal Form of DomainMatrix *A* over :ref:`ZZ`.
- Parameters
- ==========
- A : :py:class:`~.DomainMatrix` over domain :ref:`ZZ`.
- Returns
- =======
- :py:class:`~.DomainMatrix`
- The HNF of matrix *A*.
- Raises
- ======
- DMDomainError
- If the domain of the matrix is not :ref:`ZZ`.
- References
- ==========
- .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
- (See Algorithm 2.4.5.)
- """
- if not A.domain.is_ZZ:
- raise DMDomainError('Matrix must be over domain ZZ.')
- # We work one row at a time, starting from the bottom row, and working our
- # way up.
- m, n = A.shape
- A = A.to_dense().rep.copy()
- # Our goal is to put pivot entries in the rightmost columns.
- # Invariant: Before processing each row, k should be the index of the
- # leftmost column in which we have so far put a pivot.
- k = n
- for i in range(m - 1, -1, -1):
- if k == 0:
- # This case can arise when n < m and we've already found n pivots.
- # We don't need to consider any more rows, because this is already
- # the maximum possible number of pivots.
- break
- k -= 1
- # k now points to the column in which we want to put a pivot.
- # We want zeros in all entries to the left of the pivot column.
- for j in range(k - 1, -1, -1):
- if A[i][j] != 0:
- # Replace cols j, k by lin combs of these cols such that, in row i,
- # col j has 0, while col k has the gcd of their row i entries. Note
- # that this ensures a nonzero entry in col k.
- u, v, d = _gcdex(A[i][k], A[i][j])
- r, s = A[i][k] // d, A[i][j] // d
- add_columns(A, k, j, u, v, -s, r)
- b = A[i][k]
- # Do not want the pivot entry to be negative.
- if b < 0:
- add_columns(A, k, k, -1, 0, -1, 0)
- b = -b
- # The pivot entry will be 0 iff the row was 0 from the pivot col all the
- # way to the left. In this case, we are still working on the same pivot
- # col for the next row. Therefore:
- if b == 0:
- k += 1
- # If the pivot entry is nonzero, then we want to reduce all entries to its
- # right in the sense of the division algorithm, i.e. make them all remainders
- # w.r.t. the pivot as divisor.
- else:
- for j in range(k + 1, n):
- q = A[i][j] // b
- add_columns(A, j, k, 1, -q, 0, 1)
- # Finally, the HNF consists of those columns of A in which we succeeded in making
- # a nonzero pivot.
- return DomainMatrix.from_rep(A)[:, k:]
- def _hermite_normal_form_modulo_D(A, D):
- r"""
- Perform the mod *D* Hermite Normal Form reduction algorithm on
- :py:class:`~.DomainMatrix` *A*.
- Explanation
- ===========
- If *A* is an $m \times n$ matrix of rank $m$, having Hermite Normal Form
- $W$, and if *D* is any positive integer known in advance to be a multiple
- of $\det(W)$, then the HNF of *A* can be computed by an algorithm that
- works mod *D* in order to prevent coefficient explosion.
- Parameters
- ==========
- A : :py:class:`~.DomainMatrix` over :ref:`ZZ`
- $m \times n$ matrix, having rank $m$.
- D : :ref:`ZZ`
- Positive integer, known to be a multiple of the determinant of the
- HNF of *A*.
- Returns
- =======
- :py:class:`~.DomainMatrix`
- The HNF of matrix *A*.
- Raises
- ======
- DMDomainError
- If the domain of the matrix is not :ref:`ZZ`, or
- if *D* is given but is not in :ref:`ZZ`.
- DMShapeError
- If the matrix has more rows than columns.
- References
- ==========
- .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
- (See Algorithm 2.4.8.)
- """
- if not A.domain.is_ZZ:
- raise DMDomainError('Matrix must be over domain ZZ.')
- if not ZZ.of_type(D) or D < 1:
- raise DMDomainError('Modulus D must be positive element of domain ZZ.')
- def add_columns_mod_R(m, R, i, j, a, b, c, d):
- # replace m[:, i] by (a*m[:, i] + b*m[:, j]) % R
- # and m[:, j] by (c*m[:, i] + d*m[:, j]) % R
- for k in range(len(m)):
- e = m[k][i]
- m[k][i] = symmetric_residue((a * e + b * m[k][j]) % R, R)
- m[k][j] = symmetric_residue((c * e + d * m[k][j]) % R, R)
- W = defaultdict(dict)
- m, n = A.shape
- if n < m:
- raise DMShapeError('Matrix must have at least as many columns as rows.')
- A = A.to_dense().rep.copy()
- k = n
- R = D
- for i in range(m - 1, -1, -1):
- k -= 1
- for j in range(k - 1, -1, -1):
- if A[i][j] != 0:
- u, v, d = _gcdex(A[i][k], A[i][j])
- r, s = A[i][k] // d, A[i][j] // d
- add_columns_mod_R(A, R, k, j, u, v, -s, r)
- b = A[i][k]
- if b == 0:
- A[i][k] = b = R
- u, v, d = _gcdex(b, R)
- for ii in range(m):
- W[ii][i] = u*A[ii][k] % R
- if W[i][i] == 0:
- W[i][i] = R
- for j in range(i + 1, m):
- q = W[i][j] // W[i][i]
- add_columns(W, j, i, 1, -q, 0, 1)
- R //= d
- return DomainMatrix(W, (m, m), ZZ).to_dense()
- def hermite_normal_form(A, *, D=None, check_rank=False):
- r"""
- Compute the Hermite Normal Form of :py:class:`~.DomainMatrix` *A* over
- :ref:`ZZ`.
- Examples
- ========
- >>> from sympy import ZZ
- >>> from sympy.polys.matrices import DomainMatrix
- >>> from sympy.polys.matrices.normalforms import hermite_normal_form
- >>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)],
- ... [ZZ(3), ZZ(9), ZZ(6)],
- ... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ)
- >>> print(hermite_normal_form(m).to_Matrix())
- Matrix([[10, 0, 2], [0, 15, 3], [0, 0, 2]])
- Parameters
- ==========
- A : $m \times n$ ``DomainMatrix`` over :ref:`ZZ`.
- D : :ref:`ZZ`, optional
- Let $W$ be the HNF of *A*. If known in advance, a positive integer *D*
- being any multiple of $\det(W)$ may be provided. In this case, if *A*
- also has rank $m$, then we may use an alternative algorithm that works
- mod *D* in order to prevent coefficient explosion.
- check_rank : boolean, optional (default=False)
- The basic assumption is that, if you pass a value for *D*, then
- you already believe that *A* has rank $m$, so we do not waste time
- checking it for you. If you do want this to be checked (and the
- ordinary, non-modulo *D* algorithm to be used if the check fails), then
- set *check_rank* to ``True``.
- Returns
- =======
- :py:class:`~.DomainMatrix`
- The HNF of matrix *A*.
- Raises
- ======
- DMDomainError
- If the domain of the matrix is not :ref:`ZZ`, or
- if *D* is given but is not in :ref:`ZZ`.
- DMShapeError
- If the mod *D* algorithm is used but the matrix has more rows than
- columns.
- References
- ==========
- .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
- (See Algorithms 2.4.5 and 2.4.8.)
- """
- if not A.domain.is_ZZ:
- raise DMDomainError('Matrix must be over domain ZZ.')
- if D is not None and (not check_rank or A.convert_to(QQ).rank() == A.shape[0]):
- return _hermite_normal_form_modulo_D(A, D)
- else:
- return _hermite_normal_form(A)
|