fields.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631
  1. """Sparse rational function fields. """
  2. from __future__ import annotations
  3. from typing import Any
  4. from functools import reduce
  5. from operator import add, mul, lt, le, gt, ge
  6. from sympy.core.expr import Expr
  7. from sympy.core.mod import Mod
  8. from sympy.core.numbers import Exp1
  9. from sympy.core.singleton import S
  10. from sympy.core.symbol import Symbol
  11. from sympy.core.sympify import CantSympify, sympify
  12. from sympy.functions.elementary.exponential import ExpBase
  13. from sympy.polys.domains.domainelement import DomainElement
  14. from sympy.polys.domains.fractionfield import FractionField
  15. from sympy.polys.domains.polynomialring import PolynomialRing
  16. from sympy.polys.constructor import construct_domain
  17. from sympy.polys.orderings import lex
  18. from sympy.polys.polyerrors import CoercionFailed
  19. from sympy.polys.polyoptions import build_options
  20. from sympy.polys.polyutils import _parallel_dict_from_expr
  21. from sympy.polys.rings import PolyElement
  22. from sympy.printing.defaults import DefaultPrinting
  23. from sympy.utilities import public
  24. from sympy.utilities.iterables import is_sequence
  25. from sympy.utilities.magic import pollute
  26. @public
  27. def field(symbols, domain, order=lex):
  28. """Construct new rational function field returning (field, x1, ..., xn). """
  29. _field = FracField(symbols, domain, order)
  30. return (_field,) + _field.gens
  31. @public
  32. def xfield(symbols, domain, order=lex):
  33. """Construct new rational function field returning (field, (x1, ..., xn)). """
  34. _field = FracField(symbols, domain, order)
  35. return (_field, _field.gens)
  36. @public
  37. def vfield(symbols, domain, order=lex):
  38. """Construct new rational function field and inject generators into global namespace. """
  39. _field = FracField(symbols, domain, order)
  40. pollute([ sym.name for sym in _field.symbols ], _field.gens)
  41. return _field
  42. @public
  43. def sfield(exprs, *symbols, **options):
  44. """Construct a field deriving generators and domain
  45. from options and input expressions.
  46. Parameters
  47. ==========
  48. exprs : py:class:`~.Expr` or sequence of :py:class:`~.Expr` (sympifiable)
  49. symbols : sequence of :py:class:`~.Symbol`/:py:class:`~.Expr`
  50. options : keyword arguments understood by :py:class:`~.Options`
  51. Examples
  52. ========
  53. >>> from sympy import exp, log, symbols, sfield
  54. >>> x = symbols("x")
  55. >>> K, f = sfield((x*log(x) + 4*x**2)*exp(1/x + log(x)/3)/x**2)
  56. >>> K
  57. Rational function field in x, exp(1/x), log(x), x**(1/3) over ZZ with lex order
  58. >>> f
  59. (4*x**2*(exp(1/x)) + x*(exp(1/x))*(log(x)))/((x**(1/3))**5)
  60. """
  61. single = False
  62. if not is_sequence(exprs):
  63. exprs, single = [exprs], True
  64. exprs = list(map(sympify, exprs))
  65. opt = build_options(symbols, options)
  66. numdens = []
  67. for expr in exprs:
  68. numdens.extend(expr.as_numer_denom())
  69. reps, opt = _parallel_dict_from_expr(numdens, opt)
  70. if opt.domain is None:
  71. # NOTE: this is inefficient because construct_domain() automatically
  72. # performs conversion to the target domain. It shouldn't do this.
  73. coeffs = sum([list(rep.values()) for rep in reps], [])
  74. opt.domain, _ = construct_domain(coeffs, opt=opt)
  75. _field = FracField(opt.gens, opt.domain, opt.order)
  76. fracs = []
  77. for i in range(0, len(reps), 2):
  78. fracs.append(_field(tuple(reps[i:i+2])))
  79. if single:
  80. return (_field, fracs[0])
  81. else:
  82. return (_field, fracs)
  83. _field_cache: dict[Any, Any] = {}
  84. class FracField(DefaultPrinting):
  85. """Multivariate distributed rational function field. """
  86. def __new__(cls, symbols, domain, order=lex):
  87. from sympy.polys.rings import PolyRing
  88. ring = PolyRing(symbols, domain, order)
  89. symbols = ring.symbols
  90. ngens = ring.ngens
  91. domain = ring.domain
  92. order = ring.order
  93. _hash_tuple = (cls.__name__, symbols, ngens, domain, order)
  94. obj = _field_cache.get(_hash_tuple)
  95. if obj is None:
  96. obj = object.__new__(cls)
  97. obj._hash_tuple = _hash_tuple
  98. obj._hash = hash(_hash_tuple)
  99. obj.ring = ring
  100. obj.dtype = type("FracElement", (FracElement,), {"field": obj})
  101. obj.symbols = symbols
  102. obj.ngens = ngens
  103. obj.domain = domain
  104. obj.order = order
  105. obj.zero = obj.dtype(ring.zero)
  106. obj.one = obj.dtype(ring.one)
  107. obj.gens = obj._gens()
  108. for symbol, generator in zip(obj.symbols, obj.gens):
  109. if isinstance(symbol, Symbol):
  110. name = symbol.name
  111. if not hasattr(obj, name):
  112. setattr(obj, name, generator)
  113. _field_cache[_hash_tuple] = obj
  114. return obj
  115. def _gens(self):
  116. """Return a list of polynomial generators. """
  117. return tuple([ self.dtype(gen) for gen in self.ring.gens ])
  118. def __getnewargs__(self):
  119. return (self.symbols, self.domain, self.order)
  120. def __hash__(self):
  121. return self._hash
  122. def index(self, gen):
  123. if isinstance(gen, self.dtype):
  124. return self.ring.index(gen.to_poly())
  125. else:
  126. raise ValueError("expected a %s, got %s instead" % (self.dtype,gen))
  127. def __eq__(self, other):
  128. return isinstance(other, FracField) and \
  129. (self.symbols, self.ngens, self.domain, self.order) == \
  130. (other.symbols, other.ngens, other.domain, other.order)
  131. def __ne__(self, other):
  132. return not self == other
  133. def raw_new(self, numer, denom=None):
  134. return self.dtype(numer, denom)
  135. def new(self, numer, denom=None):
  136. if denom is None: denom = self.ring.one
  137. numer, denom = numer.cancel(denom)
  138. return self.raw_new(numer, denom)
  139. def domain_new(self, element):
  140. return self.domain.convert(element)
  141. def ground_new(self, element):
  142. try:
  143. return self.new(self.ring.ground_new(element))
  144. except CoercionFailed:
  145. domain = self.domain
  146. if not domain.is_Field and domain.has_assoc_Field:
  147. ring = self.ring
  148. ground_field = domain.get_field()
  149. element = ground_field.convert(element)
  150. numer = ring.ground_new(ground_field.numer(element))
  151. denom = ring.ground_new(ground_field.denom(element))
  152. return self.raw_new(numer, denom)
  153. else:
  154. raise
  155. def field_new(self, element):
  156. if isinstance(element, FracElement):
  157. if self == element.field:
  158. return element
  159. if isinstance(self.domain, FractionField) and \
  160. self.domain.field == element.field:
  161. return self.ground_new(element)
  162. elif isinstance(self.domain, PolynomialRing) and \
  163. self.domain.ring.to_field() == element.field:
  164. return self.ground_new(element)
  165. else:
  166. raise NotImplementedError("conversion")
  167. elif isinstance(element, PolyElement):
  168. denom, numer = element.clear_denoms()
  169. if isinstance(self.domain, PolynomialRing) and \
  170. numer.ring == self.domain.ring:
  171. numer = self.ring.ground_new(numer)
  172. elif isinstance(self.domain, FractionField) and \
  173. numer.ring == self.domain.field.to_ring():
  174. numer = self.ring.ground_new(numer)
  175. else:
  176. numer = numer.set_ring(self.ring)
  177. denom = self.ring.ground_new(denom)
  178. return self.raw_new(numer, denom)
  179. elif isinstance(element, tuple) and len(element) == 2:
  180. numer, denom = list(map(self.ring.ring_new, element))
  181. return self.new(numer, denom)
  182. elif isinstance(element, str):
  183. raise NotImplementedError("parsing")
  184. elif isinstance(element, Expr):
  185. return self.from_expr(element)
  186. else:
  187. return self.ground_new(element)
  188. __call__ = field_new
  189. def _rebuild_expr(self, expr, mapping):
  190. domain = self.domain
  191. powers = tuple((gen, gen.as_base_exp()) for gen in mapping.keys()
  192. if gen.is_Pow or isinstance(gen, ExpBase))
  193. def _rebuild(expr):
  194. generator = mapping.get(expr)
  195. if generator is not None:
  196. return generator
  197. elif expr.is_Add:
  198. return reduce(add, list(map(_rebuild, expr.args)))
  199. elif expr.is_Mul:
  200. return reduce(mul, list(map(_rebuild, expr.args)))
  201. elif expr.is_Pow or isinstance(expr, (ExpBase, Exp1)):
  202. b, e = expr.as_base_exp()
  203. # look for bg**eg whose integer power may be b**e
  204. for gen, (bg, eg) in powers:
  205. if bg == b and Mod(e, eg) == 0:
  206. return mapping.get(gen)**int(e/eg)
  207. if e.is_Integer and e is not S.One:
  208. return _rebuild(b)**int(e)
  209. elif mapping.get(1/expr) is not None:
  210. return 1/mapping.get(1/expr)
  211. try:
  212. return domain.convert(expr)
  213. except CoercionFailed:
  214. if not domain.is_Field and domain.has_assoc_Field:
  215. return domain.get_field().convert(expr)
  216. else:
  217. raise
  218. return _rebuild(expr)
  219. def from_expr(self, expr):
  220. mapping = dict(list(zip(self.symbols, self.gens)))
  221. try:
  222. frac = self._rebuild_expr(sympify(expr), mapping)
  223. except CoercionFailed:
  224. raise ValueError("expected an expression convertible to a rational function in %s, got %s" % (self, expr))
  225. else:
  226. return self.field_new(frac)
  227. def to_domain(self):
  228. return FractionField(self)
  229. def to_ring(self):
  230. from sympy.polys.rings import PolyRing
  231. return PolyRing(self.symbols, self.domain, self.order)
  232. class FracElement(DomainElement, DefaultPrinting, CantSympify):
  233. """Element of multivariate distributed rational function field. """
  234. def __init__(self, numer, denom=None):
  235. if denom is None:
  236. denom = self.field.ring.one
  237. elif not denom:
  238. raise ZeroDivisionError("zero denominator")
  239. self.numer = numer
  240. self.denom = denom
  241. def raw_new(f, numer, denom):
  242. return f.__class__(numer, denom)
  243. def new(f, numer, denom):
  244. return f.raw_new(*numer.cancel(denom))
  245. def to_poly(f):
  246. if f.denom != 1:
  247. raise ValueError("f.denom should be 1")
  248. return f.numer
  249. def parent(self):
  250. return self.field.to_domain()
  251. def __getnewargs__(self):
  252. return (self.field, self.numer, self.denom)
  253. _hash = None
  254. def __hash__(self):
  255. _hash = self._hash
  256. if _hash is None:
  257. self._hash = _hash = hash((self.field, self.numer, self.denom))
  258. return _hash
  259. def copy(self):
  260. return self.raw_new(self.numer.copy(), self.denom.copy())
  261. def set_field(self, new_field):
  262. if self.field == new_field:
  263. return self
  264. else:
  265. new_ring = new_field.ring
  266. numer = self.numer.set_ring(new_ring)
  267. denom = self.denom.set_ring(new_ring)
  268. return new_field.new(numer, denom)
  269. def as_expr(self, *symbols):
  270. return self.numer.as_expr(*symbols)/self.denom.as_expr(*symbols)
  271. def __eq__(f, g):
  272. if isinstance(g, FracElement) and f.field == g.field:
  273. return f.numer == g.numer and f.denom == g.denom
  274. else:
  275. return f.numer == g and f.denom == f.field.ring.one
  276. def __ne__(f, g):
  277. return not f == g
  278. def __bool__(f):
  279. return bool(f.numer)
  280. def sort_key(self):
  281. return (self.denom.sort_key(), self.numer.sort_key())
  282. def _cmp(f1, f2, op):
  283. if isinstance(f2, f1.field.dtype):
  284. return op(f1.sort_key(), f2.sort_key())
  285. else:
  286. return NotImplemented
  287. def __lt__(f1, f2):
  288. return f1._cmp(f2, lt)
  289. def __le__(f1, f2):
  290. return f1._cmp(f2, le)
  291. def __gt__(f1, f2):
  292. return f1._cmp(f2, gt)
  293. def __ge__(f1, f2):
  294. return f1._cmp(f2, ge)
  295. def __pos__(f):
  296. """Negate all coefficients in ``f``. """
  297. return f.raw_new(f.numer, f.denom)
  298. def __neg__(f):
  299. """Negate all coefficients in ``f``. """
  300. return f.raw_new(-f.numer, f.denom)
  301. def _extract_ground(self, element):
  302. domain = self.field.domain
  303. try:
  304. element = domain.convert(element)
  305. except CoercionFailed:
  306. if not domain.is_Field and domain.has_assoc_Field:
  307. ground_field = domain.get_field()
  308. try:
  309. element = ground_field.convert(element)
  310. except CoercionFailed:
  311. pass
  312. else:
  313. return -1, ground_field.numer(element), ground_field.denom(element)
  314. return 0, None, None
  315. else:
  316. return 1, element, None
  317. def __add__(f, g):
  318. """Add rational functions ``f`` and ``g``. """
  319. field = f.field
  320. if not g:
  321. return f
  322. elif not f:
  323. return g
  324. elif isinstance(g, field.dtype):
  325. if f.denom == g.denom:
  326. return f.new(f.numer + g.numer, f.denom)
  327. else:
  328. return f.new(f.numer*g.denom + f.denom*g.numer, f.denom*g.denom)
  329. elif isinstance(g, field.ring.dtype):
  330. return f.new(f.numer + f.denom*g, f.denom)
  331. else:
  332. if isinstance(g, FracElement):
  333. if isinstance(field.domain, FractionField) and field.domain.field == g.field:
  334. pass
  335. elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
  336. return g.__radd__(f)
  337. else:
  338. return NotImplemented
  339. elif isinstance(g, PolyElement):
  340. if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
  341. pass
  342. else:
  343. return g.__radd__(f)
  344. return f.__radd__(g)
  345. def __radd__(f, c):
  346. if isinstance(c, f.field.ring.dtype):
  347. return f.new(f.numer + f.denom*c, f.denom)
  348. op, g_numer, g_denom = f._extract_ground(c)
  349. if op == 1:
  350. return f.new(f.numer + f.denom*g_numer, f.denom)
  351. elif not op:
  352. return NotImplemented
  353. else:
  354. return f.new(f.numer*g_denom + f.denom*g_numer, f.denom*g_denom)
  355. def __sub__(f, g):
  356. """Subtract rational functions ``f`` and ``g``. """
  357. field = f.field
  358. if not g:
  359. return f
  360. elif not f:
  361. return -g
  362. elif isinstance(g, field.dtype):
  363. if f.denom == g.denom:
  364. return f.new(f.numer - g.numer, f.denom)
  365. else:
  366. return f.new(f.numer*g.denom - f.denom*g.numer, f.denom*g.denom)
  367. elif isinstance(g, field.ring.dtype):
  368. return f.new(f.numer - f.denom*g, f.denom)
  369. else:
  370. if isinstance(g, FracElement):
  371. if isinstance(field.domain, FractionField) and field.domain.field == g.field:
  372. pass
  373. elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
  374. return g.__rsub__(f)
  375. else:
  376. return NotImplemented
  377. elif isinstance(g, PolyElement):
  378. if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
  379. pass
  380. else:
  381. return g.__rsub__(f)
  382. op, g_numer, g_denom = f._extract_ground(g)
  383. if op == 1:
  384. return f.new(f.numer - f.denom*g_numer, f.denom)
  385. elif not op:
  386. return NotImplemented
  387. else:
  388. return f.new(f.numer*g_denom - f.denom*g_numer, f.denom*g_denom)
  389. def __rsub__(f, c):
  390. if isinstance(c, f.field.ring.dtype):
  391. return f.new(-f.numer + f.denom*c, f.denom)
  392. op, g_numer, g_denom = f._extract_ground(c)
  393. if op == 1:
  394. return f.new(-f.numer + f.denom*g_numer, f.denom)
  395. elif not op:
  396. return NotImplemented
  397. else:
  398. return f.new(-f.numer*g_denom + f.denom*g_numer, f.denom*g_denom)
  399. def __mul__(f, g):
  400. """Multiply rational functions ``f`` and ``g``. """
  401. field = f.field
  402. if not f or not g:
  403. return field.zero
  404. elif isinstance(g, field.dtype):
  405. return f.new(f.numer*g.numer, f.denom*g.denom)
  406. elif isinstance(g, field.ring.dtype):
  407. return f.new(f.numer*g, f.denom)
  408. else:
  409. if isinstance(g, FracElement):
  410. if isinstance(field.domain, FractionField) and field.domain.field == g.field:
  411. pass
  412. elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
  413. return g.__rmul__(f)
  414. else:
  415. return NotImplemented
  416. elif isinstance(g, PolyElement):
  417. if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
  418. pass
  419. else:
  420. return g.__rmul__(f)
  421. return f.__rmul__(g)
  422. def __rmul__(f, c):
  423. if isinstance(c, f.field.ring.dtype):
  424. return f.new(f.numer*c, f.denom)
  425. op, g_numer, g_denom = f._extract_ground(c)
  426. if op == 1:
  427. return f.new(f.numer*g_numer, f.denom)
  428. elif not op:
  429. return NotImplemented
  430. else:
  431. return f.new(f.numer*g_numer, f.denom*g_denom)
  432. def __truediv__(f, g):
  433. """Computes quotient of fractions ``f`` and ``g``. """
  434. field = f.field
  435. if not g:
  436. raise ZeroDivisionError
  437. elif isinstance(g, field.dtype):
  438. return f.new(f.numer*g.denom, f.denom*g.numer)
  439. elif isinstance(g, field.ring.dtype):
  440. return f.new(f.numer, f.denom*g)
  441. else:
  442. if isinstance(g, FracElement):
  443. if isinstance(field.domain, FractionField) and field.domain.field == g.field:
  444. pass
  445. elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
  446. return g.__rtruediv__(f)
  447. else:
  448. return NotImplemented
  449. elif isinstance(g, PolyElement):
  450. if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
  451. pass
  452. else:
  453. return g.__rtruediv__(f)
  454. op, g_numer, g_denom = f._extract_ground(g)
  455. if op == 1:
  456. return f.new(f.numer, f.denom*g_numer)
  457. elif not op:
  458. return NotImplemented
  459. else:
  460. return f.new(f.numer*g_denom, f.denom*g_numer)
  461. def __rtruediv__(f, c):
  462. if not f:
  463. raise ZeroDivisionError
  464. elif isinstance(c, f.field.ring.dtype):
  465. return f.new(f.denom*c, f.numer)
  466. op, g_numer, g_denom = f._extract_ground(c)
  467. if op == 1:
  468. return f.new(f.denom*g_numer, f.numer)
  469. elif not op:
  470. return NotImplemented
  471. else:
  472. return f.new(f.denom*g_numer, f.numer*g_denom)
  473. def __pow__(f, n):
  474. """Raise ``f`` to a non-negative power ``n``. """
  475. if n >= 0:
  476. return f.raw_new(f.numer**n, f.denom**n)
  477. elif not f:
  478. raise ZeroDivisionError
  479. else:
  480. return f.raw_new(f.denom**-n, f.numer**-n)
  481. def diff(f, x):
  482. """Computes partial derivative in ``x``.
  483. Examples
  484. ========
  485. >>> from sympy.polys.fields import field
  486. >>> from sympy.polys.domains import ZZ
  487. >>> _, x, y, z = field("x,y,z", ZZ)
  488. >>> ((x**2 + y)/(z + 1)).diff(x)
  489. 2*x/(z + 1)
  490. """
  491. x = x.to_poly()
  492. return f.new(f.numer.diff(x)*f.denom - f.numer*f.denom.diff(x), f.denom**2)
  493. def __call__(f, *values):
  494. if 0 < len(values) <= f.field.ngens:
  495. return f.evaluate(list(zip(f.field.gens, values)))
  496. else:
  497. raise ValueError("expected at least 1 and at most %s values, got %s" % (f.field.ngens, len(values)))
  498. def evaluate(f, x, a=None):
  499. if isinstance(x, list) and a is None:
  500. x = [ (X.to_poly(), a) for X, a in x ]
  501. numer, denom = f.numer.evaluate(x), f.denom.evaluate(x)
  502. else:
  503. x = x.to_poly()
  504. numer, denom = f.numer.evaluate(x, a), f.denom.evaluate(x, a)
  505. field = numer.ring.to_field()
  506. return field.new(numer, denom)
  507. def subs(f, x, a=None):
  508. if isinstance(x, list) and a is None:
  509. x = [ (X.to_poly(), a) for X, a in x ]
  510. numer, denom = f.numer.subs(x), f.denom.subs(x)
  511. else:
  512. x = x.to_poly()
  513. numer, denom = f.numer.subs(x, a), f.denom.subs(x, a)
  514. return f.new(numer, denom)
  515. def compose(f, x, a=None):
  516. raise NotImplementedError