123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- """Benchmarks for polynomials over Galois fields. """
- from sympy.polys.galoistools import gf_from_dict, gf_factor_sqf
- from sympy.polys.domains import ZZ
- from sympy.core.numbers import pi
- from sympy.ntheory.generate import nextprime
- def gathen_poly(n, p, K):
- return gf_from_dict({n: K.one, 1: K.one, 0: K.one}, p, K)
- def shoup_poly(n, p, K):
- f = [K.one] * (n + 1)
- for i in range(1, n + 1):
- f[i] = (f[i - 1]**2 + K.one) % p
- return f
- def genprime(n, K):
- return K(nextprime(int((2**n * pi).evalf())))
- p_10 = genprime(10, ZZ)
- f_10 = gathen_poly(10, p_10, ZZ)
- p_20 = genprime(20, ZZ)
- f_20 = gathen_poly(20, p_20, ZZ)
- def timeit_gathen_poly_f10_zassenhaus():
- gf_factor_sqf(f_10, p_10, ZZ, method='zassenhaus')
- def timeit_gathen_poly_f10_shoup():
- gf_factor_sqf(f_10, p_10, ZZ, method='shoup')
- def timeit_gathen_poly_f20_zassenhaus():
- gf_factor_sqf(f_20, p_20, ZZ, method='zassenhaus')
- def timeit_gathen_poly_f20_shoup():
- gf_factor_sqf(f_20, p_20, ZZ, method='shoup')
- P_08 = genprime(8, ZZ)
- F_10 = shoup_poly(10, P_08, ZZ)
- P_18 = genprime(18, ZZ)
- F_20 = shoup_poly(20, P_18, ZZ)
- def timeit_shoup_poly_F10_zassenhaus():
- gf_factor_sqf(F_10, P_08, ZZ, method='zassenhaus')
- def timeit_shoup_poly_F10_shoup():
- gf_factor_sqf(F_10, P_08, ZZ, method='shoup')
- def timeit_shoup_poly_F20_zassenhaus():
- gf_factor_sqf(F_20, P_18, ZZ, method='zassenhaus')
- def timeit_shoup_poly_F20_shoup():
- gf_factor_sqf(F_20, P_18, ZZ, method='shoup')
|