test_sho1d.py 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120
  1. """Tests for sho1d.py"""
  2. from sympy.core.numbers import (I, Integer)
  3. from sympy.core.singleton import S
  4. from sympy.core.symbol import Symbol
  5. from sympy.functions.elementary.miscellaneous import sqrt
  6. from sympy.physics.quantum import Dagger
  7. from sympy.physics.quantum.constants import hbar
  8. from sympy.physics.quantum import Commutator
  9. from sympy.physics.quantum.qapply import qapply
  10. from sympy.physics.quantum.innerproduct import InnerProduct
  11. from sympy.physics.quantum.cartesian import X, Px
  12. from sympy.functions.special.tensor_functions import KroneckerDelta
  13. from sympy.physics.quantum.hilbert import ComplexSpace
  14. from sympy.physics.quantum.represent import represent
  15. from sympy.external import import_module
  16. from sympy.testing.pytest import skip
  17. from sympy.physics.quantum.sho1d import (RaisingOp, LoweringOp,
  18. SHOKet, SHOBra,
  19. Hamiltonian, NumberOp)
  20. ad = RaisingOp('a')
  21. a = LoweringOp('a')
  22. k = SHOKet('k')
  23. kz = SHOKet(0)
  24. kf = SHOKet(1)
  25. k3 = SHOKet(3)
  26. b = SHOBra('b')
  27. b3 = SHOBra(3)
  28. H = Hamiltonian('H')
  29. N = NumberOp('N')
  30. omega = Symbol('omega')
  31. m = Symbol('m')
  32. ndim = Integer(4)
  33. np = import_module('numpy')
  34. scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']})
  35. ad_rep_sympy = represent(ad, basis=N, ndim=4, format='sympy')
  36. a_rep = represent(a, basis=N, ndim=4, format='sympy')
  37. N_rep = represent(N, basis=N, ndim=4, format='sympy')
  38. H_rep = represent(H, basis=N, ndim=4, format='sympy')
  39. k3_rep = represent(k3, basis=N, ndim=4, format='sympy')
  40. b3_rep = represent(b3, basis=N, ndim=4, format='sympy')
  41. def test_RaisingOp():
  42. assert Dagger(ad) == a
  43. assert Commutator(ad, a).doit() == Integer(-1)
  44. assert Commutator(ad, N).doit() == Integer(-1)*ad
  45. assert qapply(ad*k) == (sqrt(k.n + 1)*SHOKet(k.n + 1)).expand()
  46. assert qapply(ad*kz) == (sqrt(kz.n + 1)*SHOKet(kz.n + 1)).expand()
  47. assert qapply(ad*kf) == (sqrt(kf.n + 1)*SHOKet(kf.n + 1)).expand()
  48. assert ad.rewrite('xp').doit() == \
  49. (Integer(1)/sqrt(Integer(2)*hbar*m*omega))*(Integer(-1)*I*Px + m*omega*X)
  50. assert ad.hilbert_space == ComplexSpace(S.Infinity)
  51. for i in range(ndim - 1):
  52. assert ad_rep_sympy[i + 1,i] == sqrt(i + 1)
  53. if not np:
  54. skip("numpy not installed.")
  55. ad_rep_numpy = represent(ad, basis=N, ndim=4, format='numpy')
  56. for i in range(ndim - 1):
  57. assert ad_rep_numpy[i + 1,i] == float(sqrt(i + 1))
  58. if not np:
  59. skip("numpy not installed.")
  60. if not scipy:
  61. skip("scipy not installed.")
  62. ad_rep_scipy = represent(ad, basis=N, ndim=4, format='scipy.sparse', spmatrix='lil')
  63. for i in range(ndim - 1):
  64. assert ad_rep_scipy[i + 1,i] == float(sqrt(i + 1))
  65. assert ad_rep_numpy.dtype == 'float64'
  66. assert ad_rep_scipy.dtype == 'float64'
  67. def test_LoweringOp():
  68. assert Dagger(a) == ad
  69. assert Commutator(a, ad).doit() == Integer(1)
  70. assert Commutator(a, N).doit() == a
  71. assert qapply(a*k) == (sqrt(k.n)*SHOKet(k.n-Integer(1))).expand()
  72. assert qapply(a*kz) == Integer(0)
  73. assert qapply(a*kf) == (sqrt(kf.n)*SHOKet(kf.n-Integer(1))).expand()
  74. assert a.rewrite('xp').doit() == \
  75. (Integer(1)/sqrt(Integer(2)*hbar*m*omega))*(I*Px + m*omega*X)
  76. for i in range(ndim - 1):
  77. assert a_rep[i,i + 1] == sqrt(i + 1)
  78. def test_NumberOp():
  79. assert Commutator(N, ad).doit() == ad
  80. assert Commutator(N, a).doit() == Integer(-1)*a
  81. assert Commutator(N, H).doit() == Integer(0)
  82. assert qapply(N*k) == (k.n*k).expand()
  83. assert N.rewrite('a').doit() == ad*a
  84. assert N.rewrite('xp').doit() == (Integer(1)/(Integer(2)*m*hbar*omega))*(
  85. Px**2 + (m*omega*X)**2) - Integer(1)/Integer(2)
  86. assert N.rewrite('H').doit() == H/(hbar*omega) - Integer(1)/Integer(2)
  87. for i in range(ndim):
  88. assert N_rep[i,i] == i
  89. assert N_rep == ad_rep_sympy*a_rep
  90. def test_Hamiltonian():
  91. assert Commutator(H, N).doit() == Integer(0)
  92. assert qapply(H*k) == ((hbar*omega*(k.n + Integer(1)/Integer(2)))*k).expand()
  93. assert H.rewrite('a').doit() == hbar*omega*(ad*a + Integer(1)/Integer(2))
  94. assert H.rewrite('xp').doit() == \
  95. (Integer(1)/(Integer(2)*m))*(Px**2 + (m*omega*X)**2)
  96. assert H.rewrite('N').doit() == hbar*omega*(N + Integer(1)/Integer(2))
  97. for i in range(ndim):
  98. assert H_rep[i,i] == hbar*omega*(i + Integer(1)/Integer(2))
  99. def test_SHOKet():
  100. assert SHOKet('k').dual_class() == SHOBra
  101. assert SHOBra('b').dual_class() == SHOKet
  102. assert InnerProduct(b,k).doit() == KroneckerDelta(k.n, b.n)
  103. assert k.hilbert_space == ComplexSpace(S.Infinity)
  104. assert k3_rep[k3.n, 0] == Integer(1)
  105. assert b3_rep[0, b3.n] == Integer(1)