123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- from sympy.core.symbol import symbols
- from sympy.physics.mechanics import Point, ReferenceFrame, Dyadic, RigidBody
- from sympy.physics.mechanics import dynamicsymbols, outer, inertia
- from sympy.physics.mechanics import inertia_of_point_mass
- from sympy.core.backend import expand, zeros, _simplify_matrix
- from sympy.testing.pytest import raises, warns_deprecated_sympy
- def test_rigidbody():
- m, m2, v1, v2, v3, omega = symbols('m m2 v1 v2 v3 omega')
- A = ReferenceFrame('A')
- A2 = ReferenceFrame('A2')
- P = Point('P')
- P2 = Point('P2')
- I = Dyadic(0)
- I2 = Dyadic(0)
- B = RigidBody('B', P, A, m, (I, P))
- assert B.mass == m
- assert B.frame == A
- assert B.masscenter == P
- assert B.inertia == (I, B.masscenter)
- B.mass = m2
- B.frame = A2
- B.masscenter = P2
- B.inertia = (I2, B.masscenter)
- raises(TypeError, lambda: RigidBody(P, P, A, m, (I, P)))
- raises(TypeError, lambda: RigidBody('B', P, P, m, (I, P)))
- raises(TypeError, lambda: RigidBody('B', P, A, m, (P, P)))
- raises(TypeError, lambda: RigidBody('B', P, A, m, (I, I)))
- assert B.__str__() == 'B'
- assert B.mass == m2
- assert B.frame == A2
- assert B.masscenter == P2
- assert B.inertia == (I2, B.masscenter)
- assert B.masscenter == P2
- assert B.inertia == (I2, B.masscenter)
- # Testing linear momentum function assuming A2 is the inertial frame
- N = ReferenceFrame('N')
- P2.set_vel(N, v1 * N.x + v2 * N.y + v3 * N.z)
- assert B.linear_momentum(N) == m2 * (v1 * N.x + v2 * N.y + v3 * N.z)
- def test_rigidbody2():
- M, v, r, omega, g, h = dynamicsymbols('M v r omega g h')
- N = ReferenceFrame('N')
- b = ReferenceFrame('b')
- b.set_ang_vel(N, omega * b.x)
- P = Point('P')
- I = outer(b.x, b.x)
- Inertia_tuple = (I, P)
- B = RigidBody('B', P, b, M, Inertia_tuple)
- P.set_vel(N, v * b.x)
- assert B.angular_momentum(P, N) == omega * b.x
- O = Point('O')
- O.set_vel(N, v * b.x)
- P.set_pos(O, r * b.y)
- assert B.angular_momentum(O, N) == omega * b.x - M*v*r*b.z
- B.potential_energy = M * g * h
- assert B.potential_energy == M * g * h
- assert expand(2 * B.kinetic_energy(N)) == omega**2 + M * v**2
- def test_rigidbody3():
- q1, q2, q3, q4 = dynamicsymbols('q1:5')
- p1, p2, p3 = symbols('p1:4')
- m = symbols('m')
- A = ReferenceFrame('A')
- B = A.orientnew('B', 'axis', [q1, A.x])
- O = Point('O')
- O.set_vel(A, q2*A.x + q3*A.y + q4*A.z)
- P = O.locatenew('P', p1*B.x + p2*B.y + p3*B.z)
- P.v2pt_theory(O, A, B)
- I = outer(B.x, B.x)
- rb1 = RigidBody('rb1', P, B, m, (I, P))
- # I_S/O = I_S/S* + I_S*/O
- rb2 = RigidBody('rb2', P, B, m,
- (I + inertia_of_point_mass(m, P.pos_from(O), B), O))
- assert rb1.central_inertia == rb2.central_inertia
- assert rb1.angular_momentum(O, A) == rb2.angular_momentum(O, A)
- def test_pendulum_angular_momentum():
- """Consider a pendulum of length OA = 2a, of mass m as a rigid body of
- center of mass G (OG = a) which turn around (O,z). The angle between the
- reference frame R and the rod is q. The inertia of the body is I =
- (G,0,ma^2/3,ma^2/3). """
- m, a = symbols('m, a')
- q = dynamicsymbols('q')
- R = ReferenceFrame('R')
- R1 = R.orientnew('R1', 'Axis', [q, R.z])
- R1.set_ang_vel(R, q.diff() * R.z)
- I = inertia(R1, 0, m * a**2 / 3, m * a**2 / 3)
- O = Point('O')
- A = O.locatenew('A', 2*a * R1.x)
- G = O.locatenew('G', a * R1.x)
- S = RigidBody('S', G, R1, m, (I, G))
- O.set_vel(R, 0)
- A.v2pt_theory(O, R, R1)
- G.v2pt_theory(O, R, R1)
- assert (4 * m * a**2 / 3 * q.diff() * R.z -
- S.angular_momentum(O, R).express(R)) == 0
- def test_rigidbody_inertia():
- N = ReferenceFrame('N')
- m, Ix, Iy, Iz, a, b = symbols('m, I_x, I_y, I_z, a, b')
- Io = inertia(N, Ix, Iy, Iz)
- o = Point('o')
- p = o.locatenew('p', a * N.x + b * N.y)
- R = RigidBody('R', o, N, m, (Io, p))
- I_check = inertia(N, Ix - b ** 2 * m, Iy - a ** 2 * m,
- Iz - m * (a ** 2 + b ** 2), m * a * b)
- assert R.inertia == (Io, p)
- assert R.central_inertia == I_check
- R.central_inertia = Io
- assert R.inertia == (Io, o)
- assert R.central_inertia == Io
- R.inertia = (Io, p)
- assert R.inertia == (Io, p)
- assert R.central_inertia == I_check
- def test_parallel_axis():
- N = ReferenceFrame('N')
- m, Ix, Iy, Iz, a, b = symbols('m, I_x, I_y, I_z, a, b')
- Io = inertia(N, Ix, Iy, Iz)
- o = Point('o')
- p = o.locatenew('p', a * N.x + b * N.y)
- R = RigidBody('R', o, N, m, (Io, o))
- Ip = R.parallel_axis(p)
- Ip_expected = inertia(N, Ix + m * b**2, Iy + m * a**2,
- Iz + m * (a**2 + b**2), ixy=-m * a * b)
- assert Ip == Ip_expected
- # Reference frame from which the parallel axis is viewed should not matter
- A = ReferenceFrame('A')
- A.orient_axis(N, N.z, 1)
- assert _simplify_matrix(
- (R.parallel_axis(p, A) - Ip_expected).to_matrix(A)) == zeros(3, 3)
- def test_deprecated_set_potential_energy():
- m, g, h = symbols('m g h')
- A = ReferenceFrame('A')
- P = Point('P')
- I = Dyadic(0)
- B = RigidBody('B', P, A, m, (I, P))
- with warns_deprecated_sympy():
- B.set_potential_energy(m*g*h)
|