123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247 |
- from sympy.physics.mechanics import (dynamicsymbols, ReferenceFrame, Point,
- RigidBody, LagrangesMethod, Particle,
- inertia, Lagrangian)
- from sympy.core.function import (Derivative, Function)
- from sympy.core.numbers import pi
- from sympy.core.symbol import symbols
- from sympy.functions.elementary.trigonometric import (cos, sin, tan)
- from sympy.matrices.dense import Matrix
- from sympy.simplify.simplify import simplify
- from sympy.testing.pytest import raises
- def test_invalid_coordinates():
- # Simple pendulum, but use symbol instead of dynamicsymbol
- l, m, g = symbols('l m g')
- q = symbols('q') # Generalized coordinate
- N, O = ReferenceFrame('N'), Point('O')
- O.set_vel(N, 0)
- P = Particle('P', Point('P'), m)
- P.point.set_pos(O, l * (sin(q) * N.x - cos(q) * N.y))
- P.potential_energy = m * g * P.point.pos_from(O).dot(N.y)
- L = Lagrangian(N, P)
- raises(ValueError, lambda: LagrangesMethod(L, [q], bodies=P))
- def test_disc_on_an_incline_plane():
- # Disc rolling on an inclined plane
- # First the generalized coordinates are created. The mass center of the
- # disc is located from top vertex of the inclined plane by the generalized
- # coordinate 'y'. The orientation of the disc is defined by the angle
- # 'theta'. The mass of the disc is 'm' and its radius is 'R'. The length of
- # the inclined path is 'l', the angle of inclination is 'alpha'. 'g' is the
- # gravitational constant.
- y, theta = dynamicsymbols('y theta')
- yd, thetad = dynamicsymbols('y theta', 1)
- m, g, R, l, alpha = symbols('m g R l alpha')
- # Next, we create the inertial reference frame 'N'. A reference frame 'A'
- # is attached to the inclined plane. Finally a frame is created which is attached to the disk.
- N = ReferenceFrame('N')
- A = N.orientnew('A', 'Axis', [pi/2 - alpha, N.z])
- B = A.orientnew('B', 'Axis', [-theta, A.z])
- # Creating the disc 'D'; we create the point that represents the mass
- # center of the disc and set its velocity. The inertia dyadic of the disc
- # is created. Finally, we create the disc.
- Do = Point('Do')
- Do.set_vel(N, yd * A.x)
- I = m * R**2/2 * B.z | B.z
- D = RigidBody('D', Do, B, m, (I, Do))
- # To construct the Lagrangian, 'L', of the disc, we determine its kinetic
- # and potential energies, T and U, respectively. L is defined as the
- # difference between T and U.
- D.potential_energy = m * g * (l - y) * sin(alpha)
- L = Lagrangian(N, D)
- # We then create the list of generalized coordinates and constraint
- # equations. The constraint arises due to the disc rolling without slip on
- # on the inclined path. We then invoke the 'LagrangesMethod' class and
- # supply it the necessary arguments and generate the equations of motion.
- # The'rhs' method solves for the q_double_dots (i.e. the second derivative
- # with respect to time of the generalized coordinates and the lagrange
- # multipliers.
- q = [y, theta]
- hol_coneqs = [y - R * theta]
- m = LagrangesMethod(L, q, hol_coneqs=hol_coneqs)
- m.form_lagranges_equations()
- rhs = m.rhs()
- rhs.simplify()
- assert rhs[2] == 2*g*sin(alpha)/3
- def test_simp_pen():
- # This tests that the equations generated by LagrangesMethod are identical
- # to those obtained by hand calculations. The system under consideration is
- # the simple pendulum.
- # We begin by creating the generalized coordinates as per the requirements
- # of LagrangesMethod. Also we created the associate symbols
- # that characterize the system: 'm' is the mass of the bob, l is the length
- # of the massless rigid rod connecting the bob to a point O fixed in the
- # inertial frame.
- q, u = dynamicsymbols('q u')
- qd, ud = dynamicsymbols('q u ', 1)
- l, m, g = symbols('l m g')
- # We then create the inertial frame and a frame attached to the massless
- # string following which we define the inertial angular velocity of the
- # string.
- N = ReferenceFrame('N')
- A = N.orientnew('A', 'Axis', [q, N.z])
- A.set_ang_vel(N, qd * N.z)
- # Next, we create the point O and fix it in the inertial frame. We then
- # locate the point P to which the bob is attached. Its corresponding
- # velocity is then determined by the 'two point formula'.
- O = Point('O')
- O.set_vel(N, 0)
- P = O.locatenew('P', l * A.x)
- P.v2pt_theory(O, N, A)
- # The 'Particle' which represents the bob is then created and its
- # Lagrangian generated.
- Pa = Particle('Pa', P, m)
- Pa.potential_energy = - m * g * l * cos(q)
- L = Lagrangian(N, Pa)
- # The 'LagrangesMethod' class is invoked to obtain equations of motion.
- lm = LagrangesMethod(L, [q])
- lm.form_lagranges_equations()
- RHS = lm.rhs()
- assert RHS[1] == -g*sin(q)/l
- def test_nonminimal_pendulum():
- q1, q2 = dynamicsymbols('q1:3')
- q1d, q2d = dynamicsymbols('q1:3', level=1)
- L, m, t = symbols('L, m, t')
- g = 9.8
- # Compose World Frame
- N = ReferenceFrame('N')
- pN = Point('N*')
- pN.set_vel(N, 0)
- # Create point P, the pendulum mass
- P = pN.locatenew('P1', q1*N.x + q2*N.y)
- P.set_vel(N, P.pos_from(pN).dt(N))
- pP = Particle('pP', P, m)
- # Constraint Equations
- f_c = Matrix([q1**2 + q2**2 - L**2])
- # Calculate the lagrangian, and form the equations of motion
- Lag = Lagrangian(N, pP)
- LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c,
- forcelist=[(P, m*g*N.x)], frame=N)
- LM.form_lagranges_equations()
- # Check solution
- lam1 = LM.lam_vec[0, 0]
- eom_sol = Matrix([[m*Derivative(q1, t, t) - 9.8*m + 2*lam1*q1],
- [m*Derivative(q2, t, t) + 2*lam1*q2]])
- assert LM.eom == eom_sol
- # Check multiplier solution
- lam_sol = Matrix([(19.6*q1 + 2*q1d**2 + 2*q2d**2)/(4*q1**2/m + 4*q2**2/m)])
- assert simplify(LM.solve_multipliers(sol_type='Matrix')) == simplify(lam_sol)
- def test_dub_pen():
- # The system considered is the double pendulum. Like in the
- # test of the simple pendulum above, we begin by creating the generalized
- # coordinates and the simple generalized speeds and accelerations which
- # will be used later. Following this we create frames and points necessary
- # for the kinematics. The procedure isn't explicitly explained as this is
- # similar to the simple pendulum. Also this is documented on the pydy.org
- # website.
- q1, q2 = dynamicsymbols('q1 q2')
- q1d, q2d = dynamicsymbols('q1 q2', 1)
- q1dd, q2dd = dynamicsymbols('q1 q2', 2)
- u1, u2 = dynamicsymbols('u1 u2')
- u1d, u2d = dynamicsymbols('u1 u2', 1)
- l, m, g = symbols('l m g')
- N = ReferenceFrame('N')
- A = N.orientnew('A', 'Axis', [q1, N.z])
- B = N.orientnew('B', 'Axis', [q2, N.z])
- A.set_ang_vel(N, q1d * A.z)
- B.set_ang_vel(N, q2d * A.z)
- O = Point('O')
- P = O.locatenew('P', l * A.x)
- R = P.locatenew('R', l * B.x)
- O.set_vel(N, 0)
- P.v2pt_theory(O, N, A)
- R.v2pt_theory(P, N, B)
- ParP = Particle('ParP', P, m)
- ParR = Particle('ParR', R, m)
- ParP.potential_energy = - m * g * l * cos(q1)
- ParR.potential_energy = - m * g * l * cos(q1) - m * g * l * cos(q2)
- L = Lagrangian(N, ParP, ParR)
- lm = LagrangesMethod(L, [q1, q2], bodies=[ParP, ParR])
- lm.form_lagranges_equations()
- assert simplify(l*m*(2*g*sin(q1) + l*sin(q1)*sin(q2)*q2dd
- + l*sin(q1)*cos(q2)*q2d**2 - l*sin(q2)*cos(q1)*q2d**2
- + l*cos(q1)*cos(q2)*q2dd + 2*l*q1dd) - lm.eom[0]) == 0
- assert simplify(l*m*(g*sin(q2) + l*sin(q1)*sin(q2)*q1dd
- - l*sin(q1)*cos(q2)*q1d**2 + l*sin(q2)*cos(q1)*q1d**2
- + l*cos(q1)*cos(q2)*q1dd + l*q2dd) - lm.eom[1]) == 0
- assert lm.bodies == [ParP, ParR]
- def test_rolling_disc():
- # Rolling Disc Example
- # Here the rolling disc is formed from the contact point up, removing the
- # need to introduce generalized speeds. Only 3 configuration and 3
- # speed variables are need to describe this system, along with the
- # disc's mass and radius, and the local gravity.
- q1, q2, q3 = dynamicsymbols('q1 q2 q3')
- q1d, q2d, q3d = dynamicsymbols('q1 q2 q3', 1)
- r, m, g = symbols('r m g')
- # The kinematics are formed by a series of simple rotations. Each simple
- # rotation creates a new frame, and the next rotation is defined by the new
- # frame's basis vectors. This example uses a 3-1-2 series of rotations, or
- # Z, X, Y series of rotations. Angular velocity for this is defined using
- # the second frame's basis (the lean frame).
- N = ReferenceFrame('N')
- Y = N.orientnew('Y', 'Axis', [q1, N.z])
- L = Y.orientnew('L', 'Axis', [q2, Y.x])
- R = L.orientnew('R', 'Axis', [q3, L.y])
- # This is the translational kinematics. We create a point with no velocity
- # in N; this is the contact point between the disc and ground. Next we form
- # the position vector from the contact point to the disc's center of mass.
- # Finally we form the velocity and acceleration of the disc.
- C = Point('C')
- C.set_vel(N, 0)
- Dmc = C.locatenew('Dmc', r * L.z)
- Dmc.v2pt_theory(C, N, R)
- # Forming the inertia dyadic.
- I = inertia(L, m/4 * r**2, m/2 * r**2, m/4 * r**2)
- BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
- # Finally we form the equations of motion, using the same steps we did
- # before. Supply the Lagrangian, the generalized speeds.
- BodyD.potential_energy = - m * g * r * cos(q2)
- Lag = Lagrangian(N, BodyD)
- q = [q1, q2, q3]
- q1 = Function('q1')
- q2 = Function('q2')
- q3 = Function('q3')
- l = LagrangesMethod(Lag, q)
- l.form_lagranges_equations()
- RHS = l.rhs()
- RHS.simplify()
- t = symbols('t')
- assert (l.mass_matrix[3:6] == [0, 5*m*r**2/4, 0])
- assert RHS[4].simplify() == (
- (-8*g*sin(q2(t)) + r*(5*sin(2*q2(t))*Derivative(q1(t), t) +
- 12*cos(q2(t))*Derivative(q3(t), t))*Derivative(q1(t), t))/(10*r))
- assert RHS[5] == (-5*cos(q2(t))*Derivative(q1(t), t) + 6*tan(q2(t)
- )*Derivative(q3(t), t) + 4*Derivative(q1(t), t)/cos(q2(t))
- )*Derivative(q2(t), t)
|