123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- from sympy.core.backend import (cos, sin, Matrix, symbols)
- from sympy.physics.mechanics import (dynamicsymbols, ReferenceFrame, Point,
- KanesMethod, Particle)
- def test_replace_qdots_in_force():
- # Test PR 16700 "Replaces qdots with us in force-list in kanes.py"
- # The new functionality allows one to specify forces in qdots which will
- # automatically be replaced with u:s which are defined by the kde supplied
- # to KanesMethod. The test case is the double pendulum with interacting
- # forces in the example of chapter 4.7 "CONTRIBUTING INTERACTION FORCES"
- # in Ref. [1]. Reference list at end test function.
- q1, q2 = dynamicsymbols('q1, q2')
- qd1, qd2 = dynamicsymbols('q1, q2', level=1)
- u1, u2 = dynamicsymbols('u1, u2')
- l, m = symbols('l, m')
- N = ReferenceFrame('N') # Inertial frame
- A = N.orientnew('A', 'Axis', (q1, N.z)) # Rod A frame
- B = A.orientnew('B', 'Axis', (q2, N.z)) # Rod B frame
- O = Point('O') # Origo
- O.set_vel(N, 0)
- P = O.locatenew('P', ( l * A.x )) # Point @ end of rod A
- P.v2pt_theory(O, N, A)
- Q = P.locatenew('Q', ( l * B.x )) # Point @ end of rod B
- Q.v2pt_theory(P, N, B)
- Ap = Particle('Ap', P, m)
- Bp = Particle('Bp', Q, m)
- # The forces are specified below. sigma is the torsional spring stiffness
- # and delta is the viscous damping coefficient acting between the two
- # bodies. Here, we specify the viscous damper as function of qdots prior
- # forming the kde. In more complex systems it not might be obvious which
- # kde is most efficient, why it is convenient to specify viscous forces in
- # qdots independently of the kde.
- sig, delta = symbols('sigma, delta')
- Ta = (sig * q2 + delta * qd2) * N.z
- forces = [(A, Ta), (B, -Ta)]
- # Try different kdes.
- kde1 = [u1 - qd1, u2 - qd2]
- kde2 = [u1 - qd1, u2 - (qd1 + qd2)]
- KM1 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde1)
- fr1, fstar1 = KM1.kanes_equations([Ap, Bp], forces)
- KM2 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde2)
- fr2, fstar2 = KM2.kanes_equations([Ap, Bp], forces)
- # Check EOM for KM2:
- # Mass and force matrix from p.6 in Ref. [2] with added forces from
- # example of chapter 4.7 in [1] and without gravity.
- forcing_matrix_expected = Matrix( [ [ m * l**2 * sin(q2) * u2**2 + sig * q2
- + delta * (u2 - u1)],
- [ m * l**2 * sin(q2) * -u1**2 - sig * q2
- - delta * (u2 - u1)] ] )
- mass_matrix_expected = Matrix( [ [ 2 * m * l**2, m * l**2 * cos(q2) ],
- [ m * l**2 * cos(q2), m * l**2 ] ] )
- assert (KM2.mass_matrix.expand() == mass_matrix_expected.expand())
- assert (KM2.forcing.expand() == forcing_matrix_expected.expand())
- # Check fr1 with reference fr_expected from [1] with u:s instead of qdots.
- fr1_expected = Matrix([ 0, -(sig*q2 + delta * u2) ])
- assert fr1.expand() == fr1_expected.expand()
- # Check fr2
- fr2_expected = Matrix([sig * q2 + delta * (u2 - u1),
- - sig * q2 - delta * (u2 - u1)])
- assert fr2.expand() == fr2_expected.expand()
- # Specifying forces in u:s should stay the same:
- Ta = (sig * q2 + delta * u2) * N.z
- forces = [(A, Ta), (B, -Ta)]
- KM1 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde1)
- fr1, fstar1 = KM1.kanes_equations([Ap, Bp], forces)
- assert fr1.expand() == fr1_expected.expand()
- Ta = (sig * q2 + delta * (u2-u1)) * N.z
- forces = [(A, Ta), (B, -Ta)]
- KM2 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde2)
- fr2, fstar2 = KM2.kanes_equations([Ap, Bp], forces)
- assert fr2.expand() == fr2_expected.expand()
- # Test if we have a qubic qdot force:
- Ta = (sig * q2 + delta * qd2**3) * N.z
- forces = [(A, Ta), (B, -Ta)]
- KM1 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde1)
- fr1, fstar1 = KM1.kanes_equations([Ap, Bp], forces)
- fr1_cubic_expected = Matrix([ 0, -(sig*q2 + delta * u2**3) ])
- assert fr1.expand() == fr1_cubic_expected.expand()
- KM2 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde2)
- fr2, fstar2 = KM2.kanes_equations([Ap, Bp], forces)
- fr2_cubic_expected = Matrix([sig * q2 + delta * (u2 - u1)**3,
- - sig * q2 - delta * (u2 - u1)**3])
- assert fr2.expand() == fr2_cubic_expected.expand()
- # References:
- # [1] T.R. Kane, D. a Levinson, Dynamics Theory and Applications, 2005.
- # [2] Arun K Banerjee, Flexible Multibody Dynamics:Efficient Formulations
- # and Applications, John Wiley and Sons, Ltd, 2016.
- # doi:http://dx.doi.org/10.1002/9781119015635.
|