123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532 |
- from sympy import solve
- from sympy.core.backend import (cos, expand, Matrix, sin, symbols, tan, sqrt, S,
- zeros, eye)
- from sympy.simplify.simplify import simplify
- from sympy.physics.mechanics import (dynamicsymbols, ReferenceFrame, Point,
- RigidBody, KanesMethod, inertia, Particle,
- dot)
- from sympy.testing.pytest import raises
- from sympy.core.backend import USE_SYMENGINE
- def test_invalid_coordinates():
- # Simple pendulum, but use symbols instead of dynamicsymbols
- l, m, g = symbols('l m g')
- q, u = symbols('q u') # Generalized coordinate
- kd = [q.diff(dynamicsymbols._t) - u]
- N, O = ReferenceFrame('N'), Point('O')
- O.set_vel(N, 0)
- P = Particle('P', Point('P'), m)
- P.point.set_pos(O, l * (sin(q) * N.x - cos(q) * N.y))
- F = (P.point, -m * g * N.y)
- raises(ValueError, lambda: KanesMethod(N, [q], [u], kd, bodies=[P],
- forcelist=[F]))
- def test_one_dof():
- # This is for a 1 dof spring-mass-damper case.
- # It is described in more detail in the KanesMethod docstring.
- q, u = dynamicsymbols('q u')
- qd, ud = dynamicsymbols('q u', 1)
- m, c, k = symbols('m c k')
- N = ReferenceFrame('N')
- P = Point('P')
- P.set_vel(N, u * N.x)
- kd = [qd - u]
- FL = [(P, (-k * q - c * u) * N.x)]
- pa = Particle('pa', P, m)
- BL = [pa]
- KM = KanesMethod(N, [q], [u], kd)
- KM.kanes_equations(BL, FL)
- assert KM.bodies == BL
- assert KM.loads == FL
- MM = KM.mass_matrix
- forcing = KM.forcing
- rhs = MM.inv() * forcing
- assert expand(rhs[0]) == expand(-(q * k + u * c) / m)
- assert simplify(KM.rhs() -
- KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1)
- assert (KM.linearize(A_and_B=True, )[0] == Matrix([[0, 1], [-k/m, -c/m]]))
- def test_two_dof():
- # This is for a 2 d.o.f., 2 particle spring-mass-damper.
- # The first coordinate is the displacement of the first particle, and the
- # second is the relative displacement between the first and second
- # particles. Speeds are defined as the time derivatives of the particles.
- q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
- q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1)
- m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
- N = ReferenceFrame('N')
- P1 = Point('P1')
- P2 = Point('P2')
- P1.set_vel(N, u1 * N.x)
- P2.set_vel(N, (u1 + u2) * N.x)
- # Note we multiply the kinematic equation by an arbitrary factor
- # to test the implicit vs explicit kinematics attribute
- kd = [q1d/2 - u1/2, 2*q2d - 2*u2]
- # Now we create the list of forces, then assign properties to each
- # particle, then create a list of all particles.
- FL = [(P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 *
- q2 - c2 * u2) * N.x)]
- pa1 = Particle('pa1', P1, m)
- pa2 = Particle('pa2', P2, m)
- BL = [pa1, pa2]
- # Finally we create the KanesMethod object, specify the inertial frame,
- # pass relevant information, and form Fr & Fr*. Then we calculate the mass
- # matrix and forcing terms, and finally solve for the udots.
- KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)
- KM.kanes_equations(BL, FL)
- MM = KM.mass_matrix
- forcing = KM.forcing
- rhs = MM.inv() * forcing
- assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
- assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
- c2 * u2) / m)
- # Check that the explicit form is the default and kinematic mass matrix is identity
- assert KM.explicit_kinematics
- assert KM.mass_matrix_kin == eye(2)
- # Check that for the implicit form the mass matrix is not identity
- KM.explicit_kinematics = False
- assert KM.mass_matrix_kin == Matrix([[S(1)/2, 0], [0, 2]])
- # Check that whether using implicit or explicit kinematics the RHS
- # equations are consistent with the matrix form
- for explicit_kinematics in [False, True]:
- KM.explicit_kinematics = explicit_kinematics
- assert simplify(KM.rhs() -
- KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(4, 1)
- # Make sure an error is raised if nonlinear kinematic differential
- # equations are supplied.
- kd = [q1d - u1**2, sin(q2d) - cos(u2)]
- raises(ValueError, lambda: KanesMethod(N, q_ind=[q1, q2],
- u_ind=[u1, u2], kd_eqs=kd))
- def test_pend():
- q, u = dynamicsymbols('q u')
- qd, ud = dynamicsymbols('q u', 1)
- m, l, g = symbols('m l g')
- N = ReferenceFrame('N')
- P = Point('P')
- P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y)
- kd = [qd - u]
- FL = [(P, m * g * N.x)]
- pa = Particle('pa', P, m)
- BL = [pa]
- KM = KanesMethod(N, [q], [u], kd)
- KM.kanes_equations(BL, FL)
- MM = KM.mass_matrix
- forcing = KM.forcing
- rhs = MM.inv() * forcing
- rhs.simplify()
- assert expand(rhs[0]) == expand(-g / l * sin(q))
- assert simplify(KM.rhs() -
- KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1)
- def test_rolling_disc():
- # Rolling Disc Example
- # Here the rolling disc is formed from the contact point up, removing the
- # need to introduce generalized speeds. Only 3 configuration and three
- # speed variables are need to describe this system, along with the disc's
- # mass and radius, and the local gravity (note that mass will drop out).
- q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
- q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
- r, m, g = symbols('r m g')
- # The kinematics are formed by a series of simple rotations. Each simple
- # rotation creates a new frame, and the next rotation is defined by the new
- # frame's basis vectors. This example uses a 3-1-2 series of rotations, or
- # Z, X, Y series of rotations. Angular velocity for this is defined using
- # the second frame's basis (the lean frame).
- N = ReferenceFrame('N')
- Y = N.orientnew('Y', 'Axis', [q1, N.z])
- L = Y.orientnew('L', 'Axis', [q2, Y.x])
- R = L.orientnew('R', 'Axis', [q3, L.y])
- w_R_N_qd = R.ang_vel_in(N)
- R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
- # This is the translational kinematics. We create a point with no velocity
- # in N; this is the contact point between the disc and ground. Next we form
- # the position vector from the contact point to the disc's center of mass.
- # Finally we form the velocity and acceleration of the disc.
- C = Point('C')
- C.set_vel(N, 0)
- Dmc = C.locatenew('Dmc', r * L.z)
- Dmc.v2pt_theory(C, N, R)
- # This is a simple way to form the inertia dyadic.
- I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
- # Kinematic differential equations; how the generalized coordinate time
- # derivatives relate to generalized speeds.
- kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]
- # Creation of the force list; it is the gravitational force at the mass
- # center of the disc. Then we create the disc by assigning a Point to the
- # center of mass attribute, a ReferenceFrame to the frame attribute, and mass
- # and inertia. Then we form the body list.
- ForceList = [(Dmc, - m * g * Y.z)]
- BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
- BodyList = [BodyD]
- # Finally we form the equations of motion, using the same steps we did
- # before. Specify inertial frame, supply generalized speeds, supply
- # kinematic differential equation dictionary, compute Fr from the force
- # list and Fr* from the body list, compute the mass matrix and forcing
- # terms, then solve for the u dots (time derivatives of the generalized
- # speeds).
- KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd)
- KM.kanes_equations(BodyList, ForceList)
- MM = KM.mass_matrix
- forcing = KM.forcing
- rhs = MM.inv() * forcing
- kdd = KM.kindiffdict()
- rhs = rhs.subs(kdd)
- rhs.simplify()
- assert rhs.expand() == Matrix([(6*u2*u3*r - u3**2*r*tan(q2) +
- 4*g*sin(q2))/(5*r), -2*u1*u3/3, u1*(-2*u2 + u3*tan(q2))]).expand()
- assert simplify(KM.rhs() -
- KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(6, 1)
- # This code tests our output vs. benchmark values. When r=g=m=1, the
- # critical speed (where all eigenvalues of the linearized equations are 0)
- # is 1 / sqrt(3) for the upright case.
- A = KM.linearize(A_and_B=True)[0]
- A_upright = A.subs({r: 1, g: 1, m: 1}).subs({q1: 0, q2: 0, q3: 0, u1: 0, u3: 0})
- import sympy
- assert sympy.sympify(A_upright.subs({u2: 1 / sqrt(3)})).eigenvals() == {S.Zero: 6}
- def test_aux():
- # Same as above, except we have 2 auxiliary speeds for the ground contact
- # point, which is known to be zero. In one case, we go through then
- # substitute the aux. speeds in at the end (they are zero, as well as their
- # derivative), in the other case, we use the built-in auxiliary speed part
- # of KanesMethod. The equations from each should be the same.
- q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
- q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
- u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2')
- u4d, u5d = dynamicsymbols('u4, u5', 1)
- r, m, g = symbols('r m g')
- N = ReferenceFrame('N')
- Y = N.orientnew('Y', 'Axis', [q1, N.z])
- L = Y.orientnew('L', 'Axis', [q2, Y.x])
- R = L.orientnew('R', 'Axis', [q3, L.y])
- w_R_N_qd = R.ang_vel_in(N)
- R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
- C = Point('C')
- C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
- Dmc = C.locatenew('Dmc', r * L.z)
- Dmc.v2pt_theory(C, N, R)
- Dmc.a2pt_theory(C, N, R)
- I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
- kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]
- ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))]
- BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
- BodyList = [BodyD]
- KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3, u4, u5],
- kd_eqs=kd)
- (fr, frstar) = KM.kanes_equations(BodyList, ForceList)
- fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
- frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
- KM2 = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd,
- u_auxiliary=[u4, u5])
- (fr2, frstar2) = KM2.kanes_equations(BodyList, ForceList)
- fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
- frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
- frstar.simplify()
- frstar2.simplify()
- assert (fr - fr2).expand() == Matrix([0, 0, 0, 0, 0])
- assert (frstar - frstar2).expand() == Matrix([0, 0, 0, 0, 0])
- def test_parallel_axis():
- # This is for a 2 dof inverted pendulum on a cart.
- # This tests the parallel axis code in KanesMethod. The inertia of the
- # pendulum is defined about the hinge, not about the center of mass.
- # Defining the constants and knowns of the system
- gravity = symbols('g')
- k, ls = symbols('k ls')
- a, mA, mC = symbols('a mA mC')
- F = dynamicsymbols('F')
- Ix, Iy, Iz = symbols('Ix Iy Iz')
- # Declaring the Generalized coordinates and speeds
- q1, q2 = dynamicsymbols('q1 q2')
- q1d, q2d = dynamicsymbols('q1 q2', 1)
- u1, u2 = dynamicsymbols('u1 u2')
- u1d, u2d = dynamicsymbols('u1 u2', 1)
- # Creating reference frames
- N = ReferenceFrame('N')
- A = ReferenceFrame('A')
- A.orient(N, 'Axis', [-q2, N.z])
- A.set_ang_vel(N, -u2 * N.z)
- # Origin of Newtonian reference frame
- O = Point('O')
- # Creating and Locating the positions of the cart, C, and the
- # center of mass of the pendulum, A
- C = O.locatenew('C', q1 * N.x)
- Ao = C.locatenew('Ao', a * A.y)
- # Defining velocities of the points
- O.set_vel(N, 0)
- C.set_vel(N, u1 * N.x)
- Ao.v2pt_theory(C, N, A)
- Cart = Particle('Cart', C, mC)
- Pendulum = RigidBody('Pendulum', Ao, A, mA, (inertia(A, Ix, Iy, Iz), C))
- # kinematical differential equations
- kindiffs = [q1d - u1, q2d - u2]
- bodyList = [Cart, Pendulum]
- forceList = [(Ao, -N.y * gravity * mA),
- (C, -N.y * gravity * mC),
- (C, -N.x * k * (q1 - ls)),
- (C, N.x * F)]
- km = KanesMethod(N, [q1, q2], [u1, u2], kindiffs)
- (fr, frstar) = km.kanes_equations(bodyList, forceList)
- mm = km.mass_matrix_full
- assert mm[3, 3] == Iz
- def test_input_format():
- # 1 dof problem from test_one_dof
- q, u = dynamicsymbols('q u')
- qd, ud = dynamicsymbols('q u', 1)
- m, c, k = symbols('m c k')
- N = ReferenceFrame('N')
- P = Point('P')
- P.set_vel(N, u * N.x)
- kd = [qd - u]
- FL = [(P, (-k * q - c * u) * N.x)]
- pa = Particle('pa', P, m)
- BL = [pa]
- KM = KanesMethod(N, [q], [u], kd)
- # test for input format kane.kanes_equations((body1, body2, particle1))
- assert KM.kanes_equations(BL)[0] == Matrix([0])
- # test for input format kane.kanes_equations(bodies=(body1, body 2), loads=(load1,load2))
- assert KM.kanes_equations(bodies=BL, loads=None)[0] == Matrix([0])
- # test for input format kane.kanes_equations(bodies=(body1, body 2), loads=None)
- assert KM.kanes_equations(BL, loads=None)[0] == Matrix([0])
- # test for input format kane.kanes_equations(bodies=(body1, body 2))
- assert KM.kanes_equations(BL)[0] == Matrix([0])
- # test for input format kane.kanes_equations(bodies=(body1, body2), loads=[])
- assert KM.kanes_equations(BL, [])[0] == Matrix([0])
- # test for error raised when a wrong force list (in this case a string) is provided
- raises(ValueError, lambda: KM._form_fr('bad input'))
- # 1 dof problem from test_one_dof with FL & BL in instance
- KM = KanesMethod(N, [q], [u], kd, bodies=BL, forcelist=FL)
- assert KM.kanes_equations()[0] == Matrix([-c*u - k*q])
- # 2 dof problem from test_two_dof
- q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
- q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1)
- m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
- N = ReferenceFrame('N')
- P1 = Point('P1')
- P2 = Point('P2')
- P1.set_vel(N, u1 * N.x)
- P2.set_vel(N, (u1 + u2) * N.x)
- kd = [q1d - u1, q2d - u2]
- FL = ((P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 *
- q2 - c2 * u2) * N.x))
- pa1 = Particle('pa1', P1, m)
- pa2 = Particle('pa2', P2, m)
- BL = (pa1, pa2)
- KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)
- # test for input format
- # kane.kanes_equations((body1, body2), (load1, load2))
- KM.kanes_equations(BL, FL)
- MM = KM.mass_matrix
- forcing = KM.forcing
- rhs = MM.inv() * forcing
- assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
- assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
- c2 * u2) / m)
- def test_implicit_kinematics():
- # Test that implicit kinematics can handle complicated
- # equations that explicit form struggles with
- # See https://github.com/sympy/sympy/issues/22626
- # Inertial frame
- NED = ReferenceFrame('NED')
- NED_o = Point('NED_o')
- NED_o.set_vel(NED, 0)
- # body frame
- q_att = dynamicsymbols('lambda_0:4', real=True)
- B = NED.orientnew('B', 'Quaternion', q_att)
- # Generalized coordinates
- q_pos = dynamicsymbols('B_x:z')
- B_cm = NED_o.locatenew('B_cm', q_pos[0]*B.x + q_pos[1]*B.y + q_pos[2]*B.z)
- q_ind = q_att[1:] + q_pos
- q_dep = [q_att[0]]
- kinematic_eqs = []
- # Generalized velocities
- B_ang_vel = B.ang_vel_in(NED)
- P, Q, R = dynamicsymbols('P Q R')
- B.set_ang_vel(NED, P*B.x + Q*B.y + R*B.z)
- B_ang_vel_kd = (B.ang_vel_in(NED) - B_ang_vel).simplify()
- # Equating the two gives us the kinematic equation
- kinematic_eqs += [
- B_ang_vel_kd & B.x,
- B_ang_vel_kd & B.y,
- B_ang_vel_kd & B.z
- ]
- B_cm_vel = B_cm.vel(NED)
- U, V, W = dynamicsymbols('U V W')
- B_cm.set_vel(NED, U*B.x + V*B.y + W*B.z)
- # Compute the velocity of the point using the two methods
- B_ref_vel_kd = (B_cm.vel(NED) - B_cm_vel)
- # taking dot product with unit vectors to get kinematic equations
- # relating body coordinates and velocities
- # Note, there is a choice to dot with NED.xyz here. That makes
- # the implicit form have some bigger terms but is still fine, the
- # explicit form still struggles though
- kinematic_eqs += [
- B_ref_vel_kd & B.x,
- B_ref_vel_kd & B.y,
- B_ref_vel_kd & B.z,
- ]
- u_ind = [U, V, W, P, Q, R]
- # constraints
- q_att_vec = Matrix(q_att)
- config_cons = [(q_att_vec.T*q_att_vec)[0] - 1] #unit norm
- kinematic_eqs = kinematic_eqs + [(q_att_vec.T * q_att_vec.diff())[0]]
- try:
- KM = KanesMethod(NED, q_ind, u_ind,
- q_dependent= q_dep,
- kd_eqs = kinematic_eqs,
- configuration_constraints = config_cons,
- velocity_constraints= [],
- u_dependent= [], #no dependent speeds
- u_auxiliary = [], # No auxiliary speeds
- explicit_kinematics = False # implicit kinematics
- )
- except Exception as e:
- # symengine struggles with these kinematic equations
- if USE_SYMENGINE and 'Matrix is rank deficient' in str(e):
- return
- else:
- raise e
- # mass and inertia dyadic relative to CM
- M_B = symbols('M_B')
- J_B = inertia(B, *[S(f'J_B_{ax}')*(1 if ax[0] == ax[1] else -1)
- for ax in ['xx', 'yy', 'zz', 'xy', 'yz', 'xz']])
- J_B = J_B.subs({S('J_B_xy'): 0, S('J_B_yz'): 0})
- RB = RigidBody('RB', B_cm, B, M_B, (J_B, B_cm))
- rigid_bodies = [RB]
- # Forces
- force_list = [
- #gravity pointing down
- (RB.masscenter, RB.mass*S('g')*NED.z),
- #generic forces and torques in body frame(inputs)
- (RB.frame, dynamicsymbols('T_z')*B.z),
- (RB.masscenter, dynamicsymbols('F_z')*B.z)
- ]
- KM.kanes_equations(rigid_bodies, force_list)
- # Expecting implicit form to be less than 5% of the flops
- n_ops_implicit = sum(
- [x.count_ops() for x in KM.forcing_full] +
- [x.count_ops() for x in KM.mass_matrix_full]
- )
- # Save implicit kinematic matrices to use later
- mass_matrix_kin_implicit = KM.mass_matrix_kin
- forcing_kin_implicit = KM.forcing_kin
- KM.explicit_kinematics = True
- n_ops_explicit = sum(
- [x.count_ops() for x in KM.forcing_full] +
- [x.count_ops() for x in KM.mass_matrix_full]
- )
- forcing_kin_explicit = KM.forcing_kin
- assert n_ops_implicit / n_ops_explicit < .05
- # Ideally we would check that implicit and explicit equations give the same result as done in test_one_dof
- # But the whole raison-d'etre of the implicit equations is to deal with problems such
- # as this one where the explicit form is too complicated to handle, especially the angular part
- # (i.e. tests would be too slow)
- # Instead, we check that the kinematic equations are correct using more fundamental tests:
- #
- # (1) that we recover the kinematic equations we have provided
- assert (mass_matrix_kin_implicit * KM.q.diff() - forcing_kin_implicit) == Matrix(kinematic_eqs)
- # (2) that rate of quaternions matches what 'textbook' solutions give
- # Note that we just use the explicit kinematics for the linear velocities
- # as they are not as complicated as the angular ones
- qdot_candidate = forcing_kin_explicit
- quat_dot_textbook = Matrix([
- [0, -P, -Q, -R],
- [P, 0, R, -Q],
- [Q, -R, 0, P],
- [R, Q, -P, 0],
- ]) * q_att_vec / 2
- # Again, if we don't use this "textbook" solution
- # sympy will struggle to deal with the terms related to quaternion rates
- # due to the number of operations involved
- qdot_candidate[-1] = quat_dot_textbook[0] # lambda_0, note the [-1] as sympy's Kane puts the dependent coordinate last
- qdot_candidate[0] = quat_dot_textbook[1] # lambda_1
- qdot_candidate[1] = quat_dot_textbook[2] # lambda_2
- qdot_candidate[2] = quat_dot_textbook[3] # lambda_3
- # sub the config constraint in the candidate solution and compare to the implicit rhs
- lambda_0_sol = solve(config_cons[0], q_att_vec[0])[1]
- lhs_candidate = simplify(mass_matrix_kin_implicit * qdot_candidate).subs({q_att_vec[0]: lambda_0_sol})
- assert lhs_candidate == forcing_kin_implicit
|