123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212 |
- from sympy.core.function import expand
- from sympy.core.symbol import symbols
- from sympy.functions.elementary.trigonometric import (cos, sin)
- from sympy.matrices.dense import Matrix
- from sympy.simplify.trigsimp import trigsimp
- from sympy.physics.mechanics import (PinJoint, JointsMethod, Body, KanesMethod,
- PrismaticJoint, LagrangesMethod, inertia)
- from sympy.physics.vector import dynamicsymbols, ReferenceFrame
- from sympy.testing.pytest import raises
- from sympy.core.backend import zeros
- from sympy.utilities.lambdify import lambdify
- from sympy.solvers.solvers import solve
- t = dynamicsymbols._t # type: ignore
- def test_jointsmethod():
- P = Body('P')
- C = Body('C')
- Pin = PinJoint('P1', P, C)
- C_ixx, g = symbols('C_ixx g')
- q, u = dynamicsymbols('q_P1, u_P1')
- P.apply_force(g*P.y)
- method = JointsMethod(P, Pin)
- assert method.frame == P.frame
- assert method.bodies == [C, P]
- assert method.loads == [(P.masscenter, g*P.frame.y)]
- assert method.q == Matrix([q])
- assert method.u == Matrix([u])
- assert method.kdes == Matrix([u - q.diff()])
- soln = method.form_eoms()
- assert soln == Matrix([[-C_ixx*u.diff()]])
- assert method.forcing_full == Matrix([[u], [0]])
- assert method.mass_matrix_full == Matrix([[1, 0], [0, C_ixx]])
- assert isinstance(method.method, KanesMethod)
- def test_jointmethod_duplicate_coordinates_speeds():
- P = Body('P')
- C = Body('C')
- T = Body('T')
- q, u = dynamicsymbols('q u')
- P1 = PinJoint('P1', P, C, q)
- P2 = PrismaticJoint('P2', C, T, q)
- raises(ValueError, lambda: JointsMethod(P, P1, P2))
- P1 = PinJoint('P1', P, C, speeds=u)
- P2 = PrismaticJoint('P2', C, T, speeds=u)
- raises(ValueError, lambda: JointsMethod(P, P1, P2))
- P1 = PinJoint('P1', P, C, q, u)
- P2 = PrismaticJoint('P2', C, T, q, u)
- raises(ValueError, lambda: JointsMethod(P, P1, P2))
- def test_complete_simple_double_pendulum():
- q1, q2 = dynamicsymbols('q1 q2')
- u1, u2 = dynamicsymbols('u1 u2')
- m, l, g = symbols('m l g')
- C = Body('C') # ceiling
- PartP = Body('P', mass=m)
- PartR = Body('R', mass=m)
- J1 = PinJoint('J1', C, PartP, speeds=u1, coordinates=q1,
- child_point=-l*PartP.x, joint_axis=C.z)
- J2 = PinJoint('J2', PartP, PartR, speeds=u2, coordinates=q2,
- child_point=-l*PartR.x, joint_axis=PartP.z)
- PartP.apply_force(m*g*C.x)
- PartR.apply_force(m*g*C.x)
- method = JointsMethod(C, J1, J2)
- method.form_eoms()
- assert expand(method.mass_matrix_full) == Matrix([[1, 0, 0, 0],
- [0, 1, 0, 0],
- [0, 0, 2*l**2*m*cos(q2) + 3*l**2*m, l**2*m*cos(q2) + l**2*m],
- [0, 0, l**2*m*cos(q2) + l**2*m, l**2*m]])
- assert trigsimp(method.forcing_full) == trigsimp(Matrix([[u1], [u2], [-g*l*m*(sin(q1 + q2) + sin(q1)) -
- g*l*m*sin(q1) + l**2*m*(2*u1 + u2)*u2*sin(q2)],
- [-g*l*m*sin(q1 + q2) - l**2*m*u1**2*sin(q2)]]))
- def test_two_dof_joints():
- q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
- m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
- W = Body('W')
- B1 = Body('B1', mass=m)
- B2 = Body('B2', mass=m)
- J1 = PrismaticJoint('J1', W, B1, coordinates=q1, speeds=u1)
- J2 = PrismaticJoint('J2', B1, B2, coordinates=q2, speeds=u2)
- W.apply_force(k1*q1*W.x, reaction_body=B1)
- W.apply_force(c1*u1*W.x, reaction_body=B1)
- B1.apply_force(k2*q2*W.x, reaction_body=B2)
- B1.apply_force(c2*u2*W.x, reaction_body=B2)
- method = JointsMethod(W, J1, J2)
- method.form_eoms()
- MM = method.mass_matrix
- forcing = method.forcing
- rhs = MM.LUsolve(forcing)
- assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
- assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
- c2 * u2) / m)
- def test_simple_pedulum():
- l, m, g = symbols('l m g')
- C = Body('C')
- b = Body('b', mass=m)
- q = dynamicsymbols('q')
- P = PinJoint('P', C, b, speeds=q.diff(t), coordinates=q,
- child_point=-l * b.x, joint_axis=C.z)
- b.potential_energy = - m * g * l * cos(q)
- method = JointsMethod(C, P)
- method.form_eoms(LagrangesMethod)
- rhs = method.rhs()
- assert rhs[1] == -g*sin(q)/l
- def test_chaos_pendulum():
- #https://www.pydy.org/examples/chaos_pendulum.html
- mA, mB, lA, lB, IAxx, IBxx, IByy, IBzz, g = symbols('mA, mB, lA, lB, IAxx, IBxx, IByy, IBzz, g')
- theta, phi, omega, alpha = dynamicsymbols('theta phi omega alpha')
- A = ReferenceFrame('A')
- B = ReferenceFrame('B')
- rod = Body('rod', mass=mA, frame=A, central_inertia=inertia(A, IAxx, IAxx, 0))
- plate = Body('plate', mass=mB, frame=B, central_inertia=inertia(B, IBxx, IByy, IBzz))
- C = Body('C')
- J1 = PinJoint('J1', C, rod, coordinates=theta, speeds=omega,
- child_point=-lA * rod.z, joint_axis=C.y)
- J2 = PinJoint('J2', rod, plate, coordinates=phi, speeds=alpha,
- parent_point=(lB - lA) * rod.z, joint_axis=rod.z)
- rod.apply_force(mA*g*C.z)
- plate.apply_force(mB*g*C.z)
- method = JointsMethod(C, J1, J2)
- method.form_eoms()
- MM = method.mass_matrix
- forcing = method.forcing
- rhs = MM.LUsolve(forcing)
- xd = (-2 * IBxx * alpha * omega * sin(phi) * cos(phi) + 2 * IByy * alpha * omega * sin(phi) *
- cos(phi) - g * lA * mA * sin(theta) - g * lB * mB * sin(theta)) / (IAxx + IBxx *
- sin(phi)**2 + IByy * cos(phi)**2 + lA**2 * mA + lB**2 * mB)
- assert (rhs[0] - xd).simplify() == 0
- xd = (IBxx - IByy) * omega**2 * sin(phi) * cos(phi) / IBzz
- assert (rhs[1] - xd).simplify() == 0
- def test_four_bar_linkage_with_manual_constraints():
- q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1:4, u1:4')
- l1, l2, l3, l4, rho = symbols('l1:5, rho')
- N = ReferenceFrame('N')
- inertias = [inertia(N, 0, 0, rho * l ** 3 / 12) for l in (l1, l2, l3, l4)]
- link1 = Body('Link1', frame=N, mass=rho * l1, central_inertia=inertias[0])
- link2 = Body('Link2', mass=rho * l2, central_inertia=inertias[1])
- link3 = Body('Link3', mass=rho * l3, central_inertia=inertias[2])
- link4 = Body('Link4', mass=rho * l4, central_inertia=inertias[3])
- joint1 = PinJoint(
- 'J1', link1, link2, coordinates=q1, speeds=u1, joint_axis=link1.z,
- parent_point=l1 / 2 * link1.x, child_point=-l2 / 2 * link2.x)
- joint2 = PinJoint(
- 'J2', link2, link3, coordinates=q2, speeds=u2, joint_axis=link2.z,
- parent_point=l2 / 2 * link2.x, child_point=-l3 / 2 * link3.x)
- joint3 = PinJoint(
- 'J3', link3, link4, coordinates=q3, speeds=u3, joint_axis=link3.z,
- parent_point=l3 / 2 * link3.x, child_point=-l4 / 2 * link4.x)
- loop = link4.masscenter.pos_from(link1.masscenter) \
- + l1 / 2 * link1.x + l4 / 2 * link4.x
- fh = Matrix([loop.dot(link1.x), loop.dot(link1.y)])
- method = JointsMethod(link1, joint1, joint2, joint3)
- t = dynamicsymbols._t
- qdots = solve(method.kdes, [q1.diff(t), q2.diff(t), q3.diff(t)])
- fhd = fh.diff(t).subs(qdots)
- kane = KanesMethod(method.frame, q_ind=[q1], u_ind=[u1],
- q_dependent=[q2, q3], u_dependent=[u2, u3],
- kd_eqs=method.kdes, configuration_constraints=fh,
- velocity_constraints=fhd, forcelist=method.loads,
- bodies=method.bodies)
- fr, frs = kane.kanes_equations()
- assert fr == zeros(1)
- # Numerically check the mass- and forcing-matrix
- p = Matrix([l1, l2, l3, l4, rho])
- q = Matrix([q1, q2, q3])
- u = Matrix([u1, u2, u3])
- eval_m = lambdify((q, p), kane.mass_matrix)
- eval_f = lambdify((q, u, p), kane.forcing)
- eval_fhd = lambdify((q, u, p), fhd)
- p_vals = [0.13, 0.24, 0.21, 0.34, 997]
- q_vals = [2.1, 0.6655470375077588, 2.527408138024188] # Satisfies fh
- u_vals = [0.2, -0.17963733938852067, 0.1309060540601612] # Satisfies fhd
- mass_check = Matrix([[3.452709815256506e+01, 7.003948798374735e+00,
- -4.939690970641498e+00],
- [-2.203792703880936e-14, 2.071702479957077e-01,
- 2.842917573033711e-01],
- [-1.300000000000123e-01, -8.836934896046506e-03,
- 1.864891330060847e-01]])
- forcing_check = Matrix([[-0.031211821321648],
- [-0.00066022608181],
- [0.001813559741243]])
- eps = 1e-10
- assert all(abs(x) < eps for x in eval_fhd(q_vals, u_vals, p_vals))
- assert all(abs(x) < eps for x in
- (Matrix(eval_m(q_vals, p_vals)) - mass_check))
- assert all(abs(x) < eps for x in
- (Matrix(eval_f(q_vals, u_vals, p_vals)) - forcing_check))
|