123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735 |
- """
- This module can be used to solve problems related
- to 2D Trusses.
- """
- from cmath import inf
- from sympy.core.add import Add
- from sympy.core.mul import Mul
- from sympy.core.symbol import Symbol
- from sympy.core.sympify import sympify
- from sympy import Matrix, pi
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.matrices.dense import zeros
- from sympy import sin, cos
- class Truss:
- """
- A Truss is an assembly of members such as beams,
- connected by nodes, that create a rigid structure.
- In engineering, a truss is a structure that
- consists of two-force members only.
- Trusses are extremely important in engineering applications
- and can be seen in numerous real-world applications like bridges.
- Examples
- ========
- There is a Truss consisting of four nodes and five
- members connecting the nodes. A force P acts
- downward on the node D and there also exist pinned
- and roller joints on the nodes A and B respectively.
- .. image:: truss_example.png
- >>> from sympy.physics.continuum_mechanics.truss import Truss
- >>> t = Truss()
- >>> t.add_node("node_1", 0, 0)
- >>> t.add_node("node_2", 6, 0)
- >>> t.add_node("node_3", 2, 2)
- >>> t.add_node("node_4", 2, 0)
- >>> t.add_member("member_1", "node_1", "node_4")
- >>> t.add_member("member_2", "node_2", "node_4")
- >>> t.add_member("member_3", "node_1", "node_3")
- >>> t.add_member("member_4", "node_2", "node_3")
- >>> t.add_member("member_5", "node_3", "node_4")
- >>> t.apply_load("node_4", magnitude=10, direction=270)
- >>> t.apply_support("node_1", type="fixed")
- >>> t.apply_support("node_2", type="roller")
- """
- def __init__(self):
- """
- Initializes the class
- """
- self._nodes = []
- self._members = {}
- self._loads = {}
- self._supports = {}
- self._node_labels = []
- self._node_positions = []
- self._node_position_x = []
- self._node_position_y = []
- self._nodes_occupied = {}
- self._reaction_loads = {}
- self._internal_forces = {}
- self._node_coordinates = {}
- @property
- def nodes(self):
- """
- Returns the nodes of the truss along with their positions.
- """
- return self._nodes
- @property
- def node_labels(self):
- """
- Returns the node labels of the truss.
- """
- return self._node_labels
- @property
- def node_positions(self):
- """
- Returns the positions of the nodes of the truss.
- """
- return self._node_positions
- @property
- def members(self):
- """
- Returns the members of the truss along with the start and end points.
- """
- return self._members
- @property
- def member_labels(self):
- """
- Returns the members of the truss along with the start and end points.
- """
- return self._member_labels
- @property
- def supports(self):
- """
- Returns the nodes with provided supports along with the kind of support provided i.e.
- pinned or roller.
- """
- return self._supports
- @property
- def loads(self):
- """
- Returns the loads acting on the truss.
- """
- return self._loads
- @property
- def reaction_loads(self):
- """
- Returns the reaction forces for all supports which are all initialized to 0.
- """
- return self._reaction_loads
- @property
- def internal_forces(self):
- """
- Returns the internal forces for all members which are all initialized to 0.
- """
- return self._internal_forces
- def add_node(self, label, x, y):
- """
- This method adds a node to the truss along with its name/label and its location.
- Parameters
- ==========
- label: String or a Symbol
- The label for a node. It is the only way to identify a particular node.
- x: Sympifyable
- The x-coordinate of the position of the node.
- y: Sympifyable
- The y-coordinate of the position of the node.
- Examples
- ========
- >>> from sympy.physics.continuum_mechanics.truss import Truss
- >>> t = Truss()
- >>> t.add_node('A', 0, 0)
- >>> t.nodes
- [('A', 0, 0)]
- >>> t.add_node('B', 3, 0)
- >>> t.nodes
- [('A', 0, 0), ('B', 3, 0)]
- """
- x = sympify(x)
- y = sympify(y)
- if label in self._node_labels:
- raise ValueError("Node needs to have a unique label")
- elif x in self._node_position_x and y in self._node_position_y and self._node_position_x.index(x)==self._node_position_y.index(y):
- raise ValueError("A node already exists at the given position")
- else :
- self._nodes.append((label, x, y))
- self._node_labels.append(label)
- self._node_positions.append((x, y))
- self._node_position_x.append(x)
- self._node_position_y.append(y)
- self._node_coordinates[label] = [x, y]
- def remove_node(self, label):
- """
- This method removes a node from the truss.
- Parameters
- ==========
- label: String or Symbol
- The label of the node to be removed.
- Examples
- ========
- >>> from sympy.physics.continuum_mechanics.truss import Truss
- >>> t = Truss()
- >>> t.add_node('A', 0, 0)
- >>> t.nodes
- [('A', 0, 0)]
- >>> t.add_node('B', 3, 0)
- >>> t.nodes
- [('A', 0, 0), ('B', 3, 0)]
- >>> t.remove_node('A')
- >>> t.nodes
- [('B', 3, 0)]
- """
- for i in range(len(self.nodes)):
- if self._node_labels[i] == label:
- x = self._node_position_x[i]
- y = self._node_position_y[i]
- if label not in self._node_labels:
- raise ValueError("No such node exists in the truss")
- else:
- members_duplicate = self._members.copy()
- for member in members_duplicate:
- if label == self._members[member][0] or label == self._members[member][1]:
- raise ValueError("The node given has members already attached to it")
- self._nodes.remove((label, x, y))
- self._node_labels.remove(label)
- self._node_positions.remove((x, y))
- self._node_position_x.remove(x)
- self._node_position_y.remove(y)
- if label in list(self._loads):
- self._loads.pop(label)
- if label in list(self._supports):
- self._supports.pop(label)
- self._node_coordinates.pop(label)
- def add_member(self, label, start, end):
- """
- This method adds a member between any two nodes in the given truss.
- Parameters
- ==========
- label: String or Symbol
- The label for a member. It is the only way to identify a particular member.
- start: String or Symbol
- The label of the starting point/node of the member.
- end: String or Symbol
- The label of the ending point/node of the member.
- Examples
- ========
- >>> from sympy.physics.continuum_mechanics.truss import Truss
- >>> t = Truss()
- >>> t.add_node('A', 0, 0)
- >>> t.add_node('B', 3, 0)
- >>> t.add_node('C', 2, 2)
- >>> t.add_member('AB', 'A', 'B')
- >>> t.members
- {'AB': ['A', 'B']}
- """
- if start not in self._node_labels or end not in self._node_labels or start==end:
- raise ValueError("The start and end points of the member must be unique nodes")
- elif label in list(self._members):
- raise ValueError("A member with the same label already exists for the truss")
- elif self._nodes_occupied.get((start, end)):
- raise ValueError("A member already exists between the two nodes")
- else:
- self._members[label] = [start, end]
- self._nodes_occupied[start, end] = True
- self._nodes_occupied[end, start] = True
- self._internal_forces[label] = 0
- def remove_member(self, label):
- """
- This method removes a member from the given truss.
- Parameters
- ==========
- label: String or Symbol
- The label for the member to be removed.
- Examples
- ========
- >>> from sympy.physics.continuum_mechanics.truss import Truss
- >>> t = Truss()
- >>> t.add_node('A', 0, 0)
- >>> t.add_node('B', 3, 0)
- >>> t.add_node('C', 2, 2)
- >>> t.add_member('AB', 'A', 'B')
- >>> t.add_member('AC', 'A', 'C')
- >>> t.add_member('BC', 'B', 'C')
- >>> t.members
- {'AB': ['A', 'B'], 'AC': ['A', 'C'], 'BC': ['B', 'C']}
- >>> t.remove_member('AC')
- >>> t.members
- {'AB': ['A', 'B'], 'BC': ['B', 'C']}
- """
- if label not in list(self._members):
- raise ValueError("No such member exists in the Truss")
- else:
- self._nodes_occupied.pop((self._members[label][0], self._members[label][1]))
- self._nodes_occupied.pop((self._members[label][1], self._members[label][0]))
- self._members.pop(label)
- self._internal_forces.pop(label)
- def change_node_label(self, label, new_label):
- """
- This method changes the label of a node.
- Parameters
- ==========
- label: String or Symbol
- The label of the node for which the label has
- to be changed.
- new_label: String or Symbol
- The new label of the node.
- Examples
- ========
- >>> from sympy.physics.continuum_mechanics.truss import Truss
- >>> t = Truss()
- >>> t.add_node('A', 0, 0)
- >>> t.add_node('B', 3, 0)
- >>> t.nodes
- [('A', 0, 0), ('B', 3, 0)]
- >>> t.change_node_label('A', 'C')
- >>> t.nodes
- [('C', 0, 0), ('B', 3, 0)]
- """
- if label not in self._node_labels:
- raise ValueError("No such node exists for the Truss")
- elif new_label in self._node_labels:
- raise ValueError("A node with the given label already exists")
- else:
- for node in self._nodes:
- if node[0] == label:
- self._nodes[self._nodes.index((label, node[1], node[2]))] = (new_label, node[1], node[2])
- self._node_labels[self._node_labels.index(node[0])] = new_label
- self._node_coordinates[new_label] = self._node_coordinates[label]
- self._node_coordinates.pop(label)
- if node[0] in list(self._supports):
- self._supports[new_label] = self._supports[node[0]]
- self._supports.pop(node[0])
- if new_label in list(self._supports):
- if self._supports[new_label] == 'pinned':
- if 'R_'+str(label)+'_x' in list(self._reaction_loads) and 'R_'+str(label)+'_y' in list(self._reaction_loads):
- self._reaction_loads['R_'+str(new_label)+'_x'] = self._reaction_loads['R_'+str(label)+'_x']
- self._reaction_loads['R_'+str(new_label)+'_y'] = self._reaction_loads['R_'+str(label)+'_y']
- self._reaction_loads.pop('R_'+str(label)+'_x')
- self._reaction_loads.pop('R_'+str(label)+'_y')
- self._loads[new_label] = self._loads[label]
- for load in self._loads[new_label]:
- if load[1] == 90:
- load[0] -= Symbol('R_'+str(label)+'_y')
- if load[0] == 0:
- self._loads[label].remove(load)
- break
- for load in self._loads[new_label]:
- if load[1] == 0:
- load[0] -= Symbol('R_'+str(label)+'_x')
- if load[0] == 0:
- self._loads[label].remove(load)
- break
- self.apply_load(new_label, Symbol('R_'+str(new_label)+'_x'), 0)
- self.apply_load(new_label, Symbol('R_'+str(new_label)+'_y'), 90)
- self._loads.pop(label)
- elif self._supports[new_label] == 'roller':
- self._loads[new_label] = self._loads[label]
- for load in self._loads[label]:
- if load[1] == 90:
- load[0] -= Symbol('R_'+str(label)+'_y')
- if load[0] == 0:
- self._loads[label].remove(load)
- break
- self.apply_load(new_label, Symbol('R_'+str(new_label)+'_y'), 90)
- self._loads.pop(label)
- else:
- if label in list(self._loads):
- self._loads[new_label] = self._loads[label]
- self._loads.pop(label)
- for member in list(self._members):
- if self._members[member][0] == node[0]:
- self._members[member][0] = new_label
- self._nodes_occupied[(new_label, self._members[member][1])] = True
- self._nodes_occupied[(self._members[member][1], new_label)] = True
- self._nodes_occupied.pop((label, self._members[member][1]))
- self._nodes_occupied.pop((self._members[member][1], label))
- elif self._members[member][1] == node[0]:
- self._members[member][1] = new_label
- self._nodes_occupied[(self._members[member][0], new_label)] = True
- self._nodes_occupied[(new_label, self._members[member][0])] = True
- self._nodes_occupied.pop((self._members[member][0], label))
- self._nodes_occupied.pop((label, self._members[member][0]))
- def change_member_label(self, label, new_label):
- """
- This method changes the label of a member.
- Parameters
- ==========
- label: String or Symbol
- The label of the member for which the label has
- to be changed.
- new_label: String or Symbol
- The new label of the member.
- Examples
- ========
- >>> from sympy.physics.continuum_mechanics.truss import Truss
- >>> t = Truss()
- >>> t.add_node('A', 0, 0)
- >>> t.add_node('B', 3, 0)
- >>> t.nodes
- [('A', 0, 0), ('B', 3, 0)]
- >>> t.change_node_label('A', 'C')
- >>> t.nodes
- [('C', 0, 0), ('B', 3, 0)]
- >>> t.add_member('BC', 'B', 'C')
- >>> t.members
- {'BC': ['B', 'C']}
- >>> t.change_member_label('BC', 'BC_new')
- >>> t.members
- {'BC_new': ['B', 'C']}
- """
- if label not in list(self._members):
- raise ValueError("No such member exists for the Truss")
- else:
- members_duplicate = list(self._members).copy()
- for member in members_duplicate:
- if member == label:
- self._members[new_label] = [self._members[member][0], self._members[member][1]]
- self._members.pop(label)
- self._internal_forces[new_label] = self._internal_forces[label]
- self._internal_forces.pop(label)
- def apply_load(self, location, magnitude, direction):
- """
- This method applies an external load at a particular node
- Parameters
- ==========
- location: String or Symbol
- Label of the Node at which load is applied.
- magnitude: Sympifyable
- Magnitude of the load applied. It must always be positive and any changes in
- the direction of the load are not reflected here.
- direction: Sympifyable
- The angle, in degrees, that the load vector makes with the horizontal
- in the counter-clockwise direction. It takes the values 0 to 360,
- inclusive.
- Examples
- ========
- >>> from sympy.physics.continuum_mechanics.truss import Truss
- >>> from sympy import symbols
- >>> t = Truss()
- >>> t.add_node('A', 0, 0)
- >>> t.add_node('B', 3, 0)
- >>> P = symbols('P')
- >>> t.apply_load('A', P, 90)
- >>> t.apply_load('A', P/2, 45)
- >>> t.apply_load('A', P/4, 90)
- >>> t.loads
- {'A': [[P, 90], [P/2, 45], [P/4, 90]]}
- """
- magnitude = sympify(magnitude)
- direction = sympify(direction)
- if location not in self.node_labels:
- raise ValueError("Load must be applied at a known node")
- else:
- if location in list(self._loads):
- self._loads[location].append([magnitude, direction])
- else:
- self._loads[location] = [[magnitude, direction]]
- def remove_load(self, location, magnitude, direction):
- """
- This method removes an already
- present external load at a particular node
- Parameters
- ==========
- location: String or Symbol
- Label of the Node at which load is applied and is to be removed.
- magnitude: Sympifyable
- Magnitude of the load applied.
- direction: Sympifyable
- The angle, in degrees, that the load vector makes with the horizontal
- in the counter-clockwise direction. It takes the values 0 to 360,
- inclusive.
- Examples
- ========
- >>> from sympy.physics.continuum_mechanics.truss import Truss
- >>> from sympy import symbols
- >>> t = Truss()
- >>> t.add_node('A', 0, 0)
- >>> t.add_node('B', 3, 0)
- >>> P = symbols('P')
- >>> t.apply_load('A', P, 90)
- >>> t.apply_load('A', P/2, 45)
- >>> t.apply_load('A', P/4, 90)
- >>> t.loads
- {'A': [[P, 90], [P/2, 45], [P/4, 90]]}
- >>> t.remove_load('A', P/4, 90)
- >>> t.loads
- {'A': [[P, 90], [P/2, 45]]}
- """
- magnitude = sympify(magnitude)
- direction = sympify(direction)
- if location not in self.node_labels:
- raise ValueError("Load must be removed from a known node")
- else:
- if [magnitude, direction] not in self._loads[location]:
- raise ValueError("No load of this magnitude and direction has been applied at this node")
- else:
- self._loads[location].remove([magnitude, direction])
- if self._loads[location] == []:
- self._loads.pop(location)
- def apply_support(self, location, type):
- """
- This method adds a pinned or roller support at a particular node
- Parameters
- ==========
- location: String or Symbol
- Label of the Node at which support is added.
- type: String
- Type of the support being provided at the node.
- Examples
- ========
- >>> from sympy.physics.continuum_mechanics.truss import Truss
- >>> t = Truss()
- >>> t.add_node('A', 0, 0)
- >>> t.add_node('B', 3, 0)
- >>> t.apply_support('A', 'pinned')
- >>> t.supports
- {'A': 'pinned'}
- """
- if location not in self._node_labels:
- raise ValueError("Support must be added on a known node")
- else:
- if location not in list(self._supports):
- if type == 'pinned':
- self.apply_load(location, Symbol('R_'+str(location)+'_x'), 0)
- self.apply_load(location, Symbol('R_'+str(location)+'_y'), 90)
- elif type == 'roller':
- self.apply_load(location, Symbol('R_'+str(location)+'_y'), 90)
- elif self._supports[location] == 'pinned':
- if type == 'roller':
- self.remove_load(location, Symbol('R_'+str(location)+'_x'), 0)
- elif self._supports[location] == 'roller':
- if type == 'pinned':
- self.apply_load(location, Symbol('R_'+str(location)+'_x'), 0)
- self._supports[location] = type
- def remove_support(self, location):
- """
- This method removes support from a particular node
- Parameters
- ==========
- location: String or Symbol
- Label of the Node at which support is to be removed.
- Examples
- ========
- >>> from sympy.physics.continuum_mechanics.truss import Truss
- >>> t = Truss()
- >>> t.add_node('A', 0, 0)
- >>> t.add_node('B', 3, 0)
- >>> t.apply_support('A', 'pinned')
- >>> t.supports
- {'A': 'pinned'}
- >>> t.remove_support('A')
- >>> t.supports
- {}
- """
- if location not in self._node_labels:
- raise ValueError("No such node exists in the Truss")
- elif location not in list(self._supports):
- raise ValueError("No support has been added to the given node")
- else:
- if self._supports[location] == 'pinned':
- self.remove_load(location, Symbol('R_'+str(location)+'_x'), 0)
- self.remove_load(location, Symbol('R_'+str(location)+'_y'), 90)
- elif self._supports[location] == 'roller':
- self.remove_load(location, Symbol('R_'+str(location)+'_y'), 90)
- self._supports.pop(location)
- def solve(self):
- """
- This method solves for all reaction forces of all supports and all internal forces
- of all the members in the truss, provided the Truss is solvable.
- A Truss is solvable if the following condition is met,
- 2n >= r + m
- Where n is the number of nodes, r is the number of reaction forces, where each pinned
- support has 2 reaction forces and each roller has 1, and m is the number of members.
- The given condition is derived from the fact that a system of equations is solvable
- only when the number of variables is lesser than or equal to the number of equations.
- Equilibrium Equations in x and y directions give two equations per node giving 2n number
- equations. However, the truss needs to be stable as well and may be unstable if 2n > r + m.
- The number of variables is simply the sum of the number of reaction forces and member
- forces.
- .. note::
- The sign convention for the internal forces present in a member revolves around whether each
- force is compressive or tensile. While forming equations for each node, internal force due
- to a member on the node is assumed to be away from the node i.e. each force is assumed to
- be compressive by default. Hence, a positive value for an internal force implies the
- presence of compressive force in the member and a negative value implies a tensile force.
- Examples
- ========
- >>> from sympy.physics.continuum_mechanics.truss import Truss
- >>> t = Truss()
- >>> t.add_node("node_1", 0, 0)
- >>> t.add_node("node_2", 6, 0)
- >>> t.add_node("node_3", 2, 2)
- >>> t.add_node("node_4", 2, 0)
- >>> t.add_member("member_1", "node_1", "node_4")
- >>> t.add_member("member_2", "node_2", "node_4")
- >>> t.add_member("member_3", "node_1", "node_3")
- >>> t.add_member("member_4", "node_2", "node_3")
- >>> t.add_member("member_5", "node_3", "node_4")
- >>> t.apply_load("node_4", magnitude=10, direction=270)
- >>> t.apply_support("node_1", type="pinned")
- >>> t.apply_support("node_2", type="roller")
- >>> t.solve()
- >>> t.reaction_loads
- {'R_node_1_x': 0, 'R_node_1_y': 20/3, 'R_node_2_y': 10/3}
- >>> t.internal_forces
- {'member_1': 20/3, 'member_2': 20/3, 'member_3': -20*sqrt(2)/3, 'member_4': -10*sqrt(5)/3, 'member_5': 10}
- """
- count_reaction_loads = 0
- for node in self._nodes:
- if node[0] in list(self._supports):
- if self._supports[node[0]]=='pinned':
- count_reaction_loads += 2
- elif self._supports[node[0]]=='roller':
- count_reaction_loads += 1
- if 2*len(self._nodes) != len(self._members) + count_reaction_loads:
- raise ValueError("The given truss cannot be solved")
- coefficients_matrix = [[0 for i in range(2*len(self._nodes))] for j in range(2*len(self._nodes))]
- load_matrix = zeros(2*len(self.nodes), 1)
- load_matrix_row = 0
- for node in self._nodes:
- if node[0] in list(self._loads):
- for load in self._loads[node[0]]:
- if load[0]!=Symbol('R_'+str(node[0])+'_x') and load[0]!=Symbol('R_'+str(node[0])+'_y'):
- load_matrix[load_matrix_row] -= load[0]*cos(pi*load[1]/180)
- load_matrix[load_matrix_row + 1] -= load[0]*sin(pi*load[1]/180)
- load_matrix_row += 2
- cols = 0
- row = 0
- for node in self._nodes:
- if node[0] in list(self._supports):
- if self._supports[node[0]]=='pinned':
- coefficients_matrix[row][cols] += 1
- coefficients_matrix[row+1][cols+1] += 1
- cols += 2
- elif self._supports[node[0]]=='roller':
- coefficients_matrix[row+1][cols] += 1
- cols += 1
- row += 2
- for member in list(self._members):
- start = self._members[member][0]
- end = self._members[member][1]
- length = sqrt((self._node_coordinates[start][0]-self._node_coordinates[end][0])**2 + (self._node_coordinates[start][1]-self._node_coordinates[end][1])**2)
- start_index = self._node_labels.index(start)
- end_index = self._node_labels.index(end)
- horizontal_component_start = (self._node_coordinates[end][0]-self._node_coordinates[start][0])/length
- vertical_component_start = (self._node_coordinates[end][1]-self._node_coordinates[start][1])/length
- horizontal_component_end = (self._node_coordinates[start][0]-self._node_coordinates[end][0])/length
- vertical_component_end = (self._node_coordinates[start][1]-self._node_coordinates[end][1])/length
- coefficients_matrix[start_index*2][cols] += horizontal_component_start
- coefficients_matrix[start_index*2+1][cols] += vertical_component_start
- coefficients_matrix[end_index*2][cols] += horizontal_component_end
- coefficients_matrix[end_index*2+1][cols] += vertical_component_end
- cols += 1
- forces_matrix = (Matrix(coefficients_matrix)**-1)*load_matrix
- self._reaction_loads = {}
- i = 0
- min_load = inf
- for node in self._nodes:
- if node[0] in list(self._loads):
- for load in self._loads[node[0]]:
- if type(load[0]) not in [Symbol, Mul, Add]:
- min_load = min(min_load, load[0])
- for j in range(len(forces_matrix)):
- if type(forces_matrix[j]) not in [Symbol, Mul, Add]:
- if abs(forces_matrix[j]/min_load) <1E-10:
- forces_matrix[j] = 0
- for node in self._nodes:
- if node[0] in list(self._supports):
- if self._supports[node[0]]=='pinned':
- self._reaction_loads['R_'+str(node[0])+'_x'] = forces_matrix[i]
- self._reaction_loads['R_'+str(node[0])+'_y'] = forces_matrix[i+1]
- i += 2
- elif self._supports[node[0]]=='roller':
- self._reaction_loads['R_'+str(node[0])+'_y'] = forces_matrix[i]
- i += 1
- for member in list(self._members):
- self._internal_forces[member] = forces_matrix[i]
- i += 1
- return
|