12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849 |
- from sympy.core.numbers import Rational
- from sympy.ntheory.egyptian_fraction import egyptian_fraction
- from sympy.core.add import Add
- from sympy.testing.pytest import raises
- from sympy.core.random import random_complex_number
- def test_egyptian_fraction():
- def test_equality(r, alg="Greedy"):
- return r == Add(*[Rational(1, i) for i in egyptian_fraction(r, alg)])
- r = random_complex_number(a=0, c=1, b=0, d=0, rational=True)
- assert test_equality(r)
- assert egyptian_fraction(Rational(4, 17)) == [5, 29, 1233, 3039345]
- assert egyptian_fraction(Rational(7, 13), "Greedy") == [2, 26]
- assert egyptian_fraction(Rational(23, 101), "Greedy") == \
- [5, 37, 1438, 2985448, 40108045937720]
- assert egyptian_fraction(Rational(18, 23), "Takenouchi") == \
- [2, 6, 12, 35, 276, 2415]
- assert egyptian_fraction(Rational(5, 6), "Graham Jewett") == \
- [6, 7, 8, 9, 10, 42, 43, 44, 45, 56, 57, 58, 72, 73, 90, 1806, 1807,
- 1808, 1892, 1893, 1980, 3192, 3193, 3306, 5256, 3263442, 3263443,
- 3267056, 3581556, 10192056, 10650056950806]
- assert egyptian_fraction(Rational(5, 6), "Golomb") == [2, 6, 12, 20, 30]
- assert egyptian_fraction(Rational(5, 121), "Golomb") == [25, 1225, 3577, 7081, 11737]
- raises(ValueError, lambda: egyptian_fraction(Rational(-4, 9)))
- assert egyptian_fraction(Rational(8, 3), "Golomb") == [1, 2, 3, 4, 5, 6, 7,
- 14, 574, 2788, 6460,
- 11590, 33062, 113820]
- assert egyptian_fraction(Rational(355, 113)) == [1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 27, 744, 893588,
- 1251493536607,
- 20361068938197002344405230]
- def test_input():
- r = (2,3), Rational(2, 3), (Rational(2), Rational(3))
- for m in ["Greedy", "Graham Jewett", "Takenouchi", "Golomb"]:
- for i in r:
- d = egyptian_fraction(i, m)
- assert all(i.is_Integer for i in d)
- if m == "Graham Jewett":
- assert d == [3, 4, 12]
- else:
- assert d == [2, 6]
- # check prefix
- d = egyptian_fraction(Rational(5, 3))
- assert d == [1, 2, 6] and all(i.is_Integer for i in d)
|