123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 |
- from mpmath.libmp import (fzero, from_int, from_rational,
- fone, fhalf, bitcount, to_int, to_str, mpf_mul, mpf_div, mpf_sub,
- mpf_add, mpf_sqrt, mpf_pi, mpf_cosh_sinh, mpf_cos, mpf_sin)
- from sympy.core.numbers import igcd
- from .residue_ntheory import (_sqrt_mod_prime_power,
- legendre_symbol, jacobi_symbol, is_quad_residue)
- import math
- def _pre():
- maxn = 10**5
- global _factor
- global _totient
- _factor = [0]*maxn
- _totient = [1]*maxn
- lim = int(maxn**0.5) + 5
- for i in range(2, lim):
- if _factor[i] == 0:
- for j in range(i*i, maxn, i):
- if _factor[j] == 0:
- _factor[j] = i
- for i in range(2, maxn):
- if _factor[i] == 0:
- _factor[i] = i
- _totient[i] = i-1
- continue
- x = _factor[i]
- y = i//x
- if y % x == 0:
- _totient[i] = _totient[y]*x
- else:
- _totient[i] = _totient[y]*(x - 1)
- def _a(n, k, prec):
- """ Compute the inner sum in HRR formula [1]_
- References
- ==========
- .. [1] https://msp.org/pjm/1956/6-1/pjm-v6-n1-p18-p.pdf
- """
- if k == 1:
- return fone
- k1 = k
- e = 0
- p = _factor[k]
- while k1 % p == 0:
- k1 //= p
- e += 1
- k2 = k//k1 # k2 = p^e
- v = 1 - 24*n
- pi = mpf_pi(prec)
- if k1 == 1:
- # k = p^e
- if p == 2:
- mod = 8*k
- v = mod + v % mod
- v = (v*pow(9, k - 1, mod)) % mod
- m = _sqrt_mod_prime_power(v, 2, e + 3)[0]
- arg = mpf_div(mpf_mul(
- from_int(4*m), pi, prec), from_int(mod), prec)
- return mpf_mul(mpf_mul(
- from_int((-1)**e*jacobi_symbol(m - 1, m)),
- mpf_sqrt(from_int(k), prec), prec),
- mpf_sin(arg, prec), prec)
- if p == 3:
- mod = 3*k
- v = mod + v % mod
- if e > 1:
- v = (v*pow(64, k//3 - 1, mod)) % mod
- m = _sqrt_mod_prime_power(v, 3, e + 1)[0]
- arg = mpf_div(mpf_mul(from_int(4*m), pi, prec),
- from_int(mod), prec)
- return mpf_mul(mpf_mul(
- from_int(2*(-1)**(e + 1)*legendre_symbol(m, 3)),
- mpf_sqrt(from_int(k//3), prec), prec),
- mpf_sin(arg, prec), prec)
- v = k + v % k
- if v % p == 0:
- if e == 1:
- return mpf_mul(
- from_int(jacobi_symbol(3, k)),
- mpf_sqrt(from_int(k), prec), prec)
- return fzero
- if not is_quad_residue(v, p):
- return fzero
- _phi = p**(e - 1)*(p - 1)
- v = (v*pow(576, _phi - 1, k))
- m = _sqrt_mod_prime_power(v, p, e)[0]
- arg = mpf_div(
- mpf_mul(from_int(4*m), pi, prec),
- from_int(k), prec)
- return mpf_mul(mpf_mul(
- from_int(2*jacobi_symbol(3, k)),
- mpf_sqrt(from_int(k), prec), prec),
- mpf_cos(arg, prec), prec)
- if p != 2 or e >= 3:
- d1, d2 = igcd(k1, 24), igcd(k2, 24)
- e = 24//(d1*d2)
- n1 = ((d2*e*n + (k2**2 - 1)//d1)*
- pow(e*k2*k2*d2, _totient[k1] - 1, k1)) % k1
- n2 = ((d1*e*n + (k1**2 - 1)//d2)*
- pow(e*k1*k1*d1, _totient[k2] - 1, k2)) % k2
- return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)
- if e == 2:
- n1 = ((8*n + 5)*pow(128, _totient[k1] - 1, k1)) % k1
- n2 = (4 + ((n - 2 - (k1**2 - 1)//8)*(k1**2)) % 4) % 4
- return mpf_mul(mpf_mul(
- from_int(-1),
- _a(n1, k1, prec), prec),
- _a(n2, k2, prec))
- n1 = ((8*n + 1)*pow(32, _totient[k1] - 1, k1)) % k1
- n2 = (2 + (n - (k1**2 - 1)//8) % 2) % 2
- return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)
- def _d(n, j, prec, sq23pi, sqrt8):
- """
- Compute the sinh term in the outer sum of the HRR formula.
- The constants sqrt(2/3*pi) and sqrt(8) must be precomputed.
- """
- j = from_int(j)
- pi = mpf_pi(prec)
- a = mpf_div(sq23pi, j, prec)
- b = mpf_sub(from_int(n), from_rational(1, 24, prec), prec)
- c = mpf_sqrt(b, prec)
- ch, sh = mpf_cosh_sinh(mpf_mul(a, c), prec)
- D = mpf_div(
- mpf_sqrt(j, prec),
- mpf_mul(mpf_mul(sqrt8, b), pi), prec)
- E = mpf_sub(mpf_mul(a, ch), mpf_div(sh, c, prec), prec)
- return mpf_mul(D, E)
- def npartitions(n, verbose=False):
- """
- Calculate the partition function P(n), i.e. the number of ways that
- n can be written as a sum of positive integers.
- P(n) is computed using the Hardy-Ramanujan-Rademacher formula [1]_.
- The correctness of this implementation has been tested through $10^{10}$.
- Examples
- ========
- >>> from sympy.ntheory import npartitions
- >>> npartitions(25)
- 1958
- References
- ==========
- .. [1] https://mathworld.wolfram.com/PartitionFunctionP.html
- """
- n = int(n)
- if n < 0:
- return 0
- if n <= 5:
- return [1, 1, 2, 3, 5, 7][n]
- if '_factor' not in globals():
- _pre()
- # Estimate number of bits in p(n). This formula could be tidied
- pbits = int((
- math.pi*(2*n/3.)**0.5 -
- math.log(4*n))/math.log(10) + 1) * \
- math.log(10, 2)
- prec = p = int(pbits*1.1 + 100)
- s = fzero
- M = max(6, int(0.24*n**0.5 + 4))
- if M > 10**5:
- raise ValueError("Input too big") # Corresponds to n > 1.7e11
- sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p)
- sqrt8 = mpf_sqrt(from_int(8), p)
- for q in range(1, M):
- a = _a(n, q, p)
- d = _d(n, q, p, sq23pi, sqrt8)
- s = mpf_add(s, mpf_mul(a, d), prec)
- if verbose:
- print("step", q, "of", M, to_str(a, 10), to_str(d, 10))
- # On average, the terms decrease rapidly in magnitude.
- # Dynamically reducing the precision greatly improves
- # performance.
- p = bitcount(abs(to_int(d))) + 50
- return int(to_int(mpf_add(s, fhalf, prec)))
- __all__ = ['npartitions']
|