123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159 |
- '''
- This implementation is a heavily modified fixed point implementation of
- BBP_formula for calculating the nth position of pi. The original hosted
- at: https://web.archive.org/web/20151116045029/http://en.literateprograms.org/Pi_with_the_BBP_formula_(Python)
- # Permission is hereby granted, free of charge, to any person obtaining
- # a copy of this software and associated documentation files (the
- # "Software"), to deal in the Software without restriction, including
- # without limitation the rights to use, copy, modify, merge, publish,
- # distribute, sub-license, and/or sell copies of the Software, and to
- # permit persons to whom the Software is furnished to do so, subject to
- # the following conditions:
- #
- # The above copyright notice and this permission notice shall be
- # included in all copies or substantial portions of the Software.
- #
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
- # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
- # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
- # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
- # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- Modifications:
- 1.Once the nth digit and desired number of digits is selected, the
- number of digits of working precision is calculated to ensure that
- the hexadecimal digits returned are accurate. This is calculated as
- int(math.log(start + prec)/math.log(16) + prec + 3)
- --------------------------------------- --------
- / /
- number of hex digits additional digits
- This was checked by the following code which completed without
- errors (and dig are the digits included in the test_bbp.py file):
- for i in range(0,1000):
- for j in range(1,1000):
- a, b = pi_hex_digits(i, j), dig[i:i+j]
- if a != b:
- print('%s\n%s'%(a,b))
- Deceasing the additional digits by 1 generated errors, so '3' is
- the smallest additional precision needed to calculate the above
- loop without errors. The following trailing 10 digits were also
- checked to be accurate (and the times were slightly faster with
- some of the constant modifications that were made):
- >> from time import time
- >> t=time();pi_hex_digits(10**2-10 + 1, 10), time()-t
- ('e90c6cc0ac', 0.0)
- >> t=time();pi_hex_digits(10**4-10 + 1, 10), time()-t
- ('26aab49ec6', 0.17100000381469727)
- >> t=time();pi_hex_digits(10**5-10 + 1, 10), time()-t
- ('a22673c1a5', 4.7109999656677246)
- >> t=time();pi_hex_digits(10**6-10 + 1, 10), time()-t
- ('9ffd342362', 59.985999822616577)
- >> t=time();pi_hex_digits(10**7-10 + 1, 10), time()-t
- ('c1a42e06a1', 689.51800012588501)
- 2. The while loop to evaluate whether the series has converged quits
- when the addition amount `dt` has dropped to zero.
- 3. the formatting string to convert the decimal to hexadecimal is
- calculated for the given precision.
- 4. pi_hex_digits(n) changed to have coefficient to the formula in an
- array (perhaps just a matter of preference).
- '''
- import math
- from sympy.utilities.misc import as_int
- def _series(j, n, prec=14):
- # Left sum from the bbp algorithm
- s = 0
- D = _dn(n, prec)
- D4 = 4 * D
- k = 0
- d = 8 * k + j
- for k in range(n + 1):
- s += (pow(16, n - k, d) << D4) // d
- d += 8
- # Right sum iterates to infinity for full precision, but we
- # stop at the point where one iteration is beyond the precision
- # specified.
- t = 0
- k = n + 1
- e = 4*(D + n - k)
- d = 8 * k + j
- while True:
- dt = (1 << e) // d
- if not dt:
- break
- t += dt
- # k += 1
- e -= 4
- d += 8
- total = s + t
- return total
- def pi_hex_digits(n, prec=14):
- """Returns a string containing ``prec`` (default 14) digits
- starting at the nth digit of pi in hex. Counting of digits
- starts at 0 and the decimal is not counted, so for n = 0 the
- returned value starts with 3; n = 1 corresponds to the first
- digit past the decimal point (which in hex is 2).
- Examples
- ========
- >>> from sympy.ntheory.bbp_pi import pi_hex_digits
- >>> pi_hex_digits(0)
- '3243f6a8885a30'
- >>> pi_hex_digits(0, 3)
- '324'
- References
- ==========
- .. [1] http://www.numberworld.org/digits/Pi/
- """
- n, prec = as_int(n), as_int(prec)
- if n < 0:
- raise ValueError('n cannot be negative')
- if prec == 0:
- return ''
- # main of implementation arrays holding formulae coefficients
- n -= 1
- a = [4, 2, 1, 1]
- j = [1, 4, 5, 6]
- #formulae
- D = _dn(n, prec)
- x = + (a[0]*_series(j[0], n, prec)
- - a[1]*_series(j[1], n, prec)
- - a[2]*_series(j[2], n, prec)
- - a[3]*_series(j[3], n, prec)) & (16**D - 1)
- s = ("%0" + "%ix" % prec) % (x // 16**(D - prec))
- return s
- def _dn(n, prec):
- # controller for n dependence on precision
- # n = starting digit index
- # prec = the number of total digits to compute
- n += 1 # because we subtract 1 for _series
- return int(math.log(n + prec)/math.log(16) + prec + 3)
|