123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477 |
- """
- Some examples have been taken from:
- http://www.math.uwaterloo.ca/~hwolkowi//matrixcookbook.pdf
- """
- from sympy import KroneckerProduct
- from sympy.combinatorics import Permutation
- from sympy.concrete.summations import Sum
- from sympy.core.numbers import Rational
- from sympy.core.singleton import S
- from sympy.core.symbol import symbols
- from sympy.functions.elementary.exponential import (exp, log)
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.functions.elementary.trigonometric import (cos, sin, tan)
- from sympy.functions.special.tensor_functions import KroneckerDelta
- from sympy.matrices.expressions.determinant import Determinant
- from sympy.matrices.expressions.diagonal import DiagMatrix
- from sympy.matrices.expressions.hadamard import (HadamardPower, HadamardProduct, hadamard_product)
- from sympy.matrices.expressions.inverse import Inverse
- from sympy.matrices.expressions.matexpr import MatrixSymbol
- from sympy.matrices.expressions.special import OneMatrix
- from sympy.matrices.expressions.trace import Trace
- from sympy.matrices.expressions.matadd import MatAdd
- from sympy.matrices.expressions.matmul import MatMul
- from sympy.matrices.expressions.special import (Identity, ZeroMatrix)
- from sympy.tensor.array.array_derivatives import ArrayDerivative
- from sympy.matrices.expressions import hadamard_power
- from sympy.tensor.array.expressions.array_expressions import ArrayAdd, ArrayTensorProduct, PermuteDims
- i, j, k = symbols("i j k")
- m, n = symbols("m n")
- X = MatrixSymbol("X", k, k)
- x = MatrixSymbol("x", k, 1)
- y = MatrixSymbol("y", k, 1)
- A = MatrixSymbol("A", k, k)
- B = MatrixSymbol("B", k, k)
- C = MatrixSymbol("C", k, k)
- D = MatrixSymbol("D", k, k)
- a = MatrixSymbol("a", k, 1)
- b = MatrixSymbol("b", k, 1)
- c = MatrixSymbol("c", k, 1)
- d = MatrixSymbol("d", k, 1)
- KDelta = lambda i, j: KroneckerDelta(i, j, (0, k-1))
- def _check_derivative_with_explicit_matrix(expr, x, diffexpr, dim=2):
- # TODO: this is commented because it slows down the tests.
- return
- expr = expr.xreplace({k: dim})
- x = x.xreplace({k: dim})
- diffexpr = diffexpr.xreplace({k: dim})
- expr = expr.as_explicit()
- x = x.as_explicit()
- diffexpr = diffexpr.as_explicit()
- assert expr.diff(x).reshape(*diffexpr.shape).tomatrix() == diffexpr
- def test_matrix_derivative_by_scalar():
- assert A.diff(i) == ZeroMatrix(k, k)
- assert (A*(X + B)*c).diff(i) == ZeroMatrix(k, 1)
- assert x.diff(i) == ZeroMatrix(k, 1)
- assert (x.T*y).diff(i) == ZeroMatrix(1, 1)
- assert (x*x.T).diff(i) == ZeroMatrix(k, k)
- assert (x + y).diff(i) == ZeroMatrix(k, 1)
- assert hadamard_power(x, 2).diff(i) == ZeroMatrix(k, 1)
- assert hadamard_power(x, i).diff(i).dummy_eq(
- HadamardProduct(x.applyfunc(log), HadamardPower(x, i)))
- assert hadamard_product(x, y).diff(i) == ZeroMatrix(k, 1)
- assert hadamard_product(i*OneMatrix(k, 1), x, y).diff(i) == hadamard_product(x, y)
- assert (i*x).diff(i) == x
- assert (sin(i)*A*B*x).diff(i) == cos(i)*A*B*x
- assert x.applyfunc(sin).diff(i) == ZeroMatrix(k, 1)
- assert Trace(i**2*X).diff(i) == 2*i*Trace(X)
- mu = symbols("mu")
- expr = (2*mu*x)
- assert expr.diff(x) == 2*mu*Identity(k)
- def test_one_matrix():
- assert MatMul(x.T, OneMatrix(k, 1)).diff(x) == OneMatrix(k, 1)
- def test_matrix_derivative_non_matrix_result():
- # This is a 4-dimensional array:
- I = Identity(k)
- AdA = PermuteDims(ArrayTensorProduct(I, I), Permutation(3)(1, 2))
- assert A.diff(A) == AdA
- assert A.T.diff(A) == PermuteDims(ArrayTensorProduct(I, I), Permutation(3)(1, 2, 3))
- assert (2*A).diff(A) == PermuteDims(ArrayTensorProduct(2*I, I), Permutation(3)(1, 2))
- assert MatAdd(A, A).diff(A) == ArrayAdd(AdA, AdA)
- assert (A + B).diff(A) == AdA
- def test_matrix_derivative_trivial_cases():
- # Cookbook example 33:
- # TODO: find a way to represent a four-dimensional zero-array:
- assert X.diff(A) == ArrayDerivative(X, A)
- def test_matrix_derivative_with_inverse():
- # Cookbook example 61:
- expr = a.T*Inverse(X)*b
- assert expr.diff(X) == -Inverse(X).T*a*b.T*Inverse(X).T
- # Cookbook example 62:
- expr = Determinant(Inverse(X))
- # Not implemented yet:
- # assert expr.diff(X) == -Determinant(X.inv())*(X.inv()).T
- # Cookbook example 63:
- expr = Trace(A*Inverse(X)*B)
- assert expr.diff(X) == -(X**(-1)*B*A*X**(-1)).T
- # Cookbook example 64:
- expr = Trace(Inverse(X + A))
- assert expr.diff(X) == -(Inverse(X + A)).T**2
- def test_matrix_derivative_vectors_and_scalars():
- assert x.diff(x) == Identity(k)
- assert x[i, 0].diff(x[m, 0]).doit() == KDelta(m, i)
- assert x.T.diff(x) == Identity(k)
- # Cookbook example 69:
- expr = x.T*a
- assert expr.diff(x) == a
- assert expr[0, 0].diff(x[m, 0]).doit() == a[m, 0]
- expr = a.T*x
- assert expr.diff(x) == a
- # Cookbook example 70:
- expr = a.T*X*b
- assert expr.diff(X) == a*b.T
- # Cookbook example 71:
- expr = a.T*X.T*b
- assert expr.diff(X) == b*a.T
- # Cookbook example 72:
- expr = a.T*X*a
- assert expr.diff(X) == a*a.T
- expr = a.T*X.T*a
- assert expr.diff(X) == a*a.T
- # Cookbook example 77:
- expr = b.T*X.T*X*c
- assert expr.diff(X) == X*b*c.T + X*c*b.T
- # Cookbook example 78:
- expr = (B*x + b).T*C*(D*x + d)
- assert expr.diff(x) == B.T*C*(D*x + d) + D.T*C.T*(B*x + b)
- # Cookbook example 81:
- expr = x.T*B*x
- assert expr.diff(x) == B*x + B.T*x
- # Cookbook example 82:
- expr = b.T*X.T*D*X*c
- assert expr.diff(X) == D.T*X*b*c.T + D*X*c*b.T
- # Cookbook example 83:
- expr = (X*b + c).T*D*(X*b + c)
- assert expr.diff(X) == D*(X*b + c)*b.T + D.T*(X*b + c)*b.T
- assert str(expr[0, 0].diff(X[m, n]).doit()) == \
- 'b[n, 0]*Sum((c[_i_1, 0] + Sum(X[_i_1, _i_3]*b[_i_3, 0], (_i_3, 0, k - 1)))*D[_i_1, m], (_i_1, 0, k - 1)) + Sum((c[_i_2, 0] + Sum(X[_i_2, _i_4]*b[_i_4, 0], (_i_4, 0, k - 1)))*D[m, _i_2]*b[n, 0], (_i_2, 0, k - 1))'
- # See https://github.com/sympy/sympy/issues/16504#issuecomment-1018339957
- expr = x*x.T*x
- I = Identity(k)
- assert expr.diff(x) == KroneckerProduct(I, x.T*x) + 2*x*x.T
- def test_matrix_derivatives_of_traces():
- expr = Trace(A)*A
- I = Identity(k)
- assert expr.diff(A) == ArrayAdd(ArrayTensorProduct(I, A), PermuteDims(ArrayTensorProduct(Trace(A)*I, I), Permutation(3)(1, 2)))
- assert expr[i, j].diff(A[m, n]).doit() == (
- KDelta(i, m)*KDelta(j, n)*Trace(A) +
- KDelta(m, n)*A[i, j]
- )
- ## First order:
- # Cookbook example 99:
- expr = Trace(X)
- assert expr.diff(X) == Identity(k)
- assert expr.rewrite(Sum).diff(X[m, n]).doit() == KDelta(m, n)
- # Cookbook example 100:
- expr = Trace(X*A)
- assert expr.diff(X) == A.T
- assert expr.rewrite(Sum).diff(X[m, n]).doit() == A[n, m]
- # Cookbook example 101:
- expr = Trace(A*X*B)
- assert expr.diff(X) == A.T*B.T
- assert expr.rewrite(Sum).diff(X[m, n]).doit().dummy_eq((A.T*B.T)[m, n])
- # Cookbook example 102:
- expr = Trace(A*X.T*B)
- assert expr.diff(X) == B*A
- # Cookbook example 103:
- expr = Trace(X.T*A)
- assert expr.diff(X) == A
- # Cookbook example 104:
- expr = Trace(A*X.T)
- assert expr.diff(X) == A
- # Cookbook example 105:
- # TODO: TensorProduct is not supported
- #expr = Trace(TensorProduct(A, X))
- #assert expr.diff(X) == Trace(A)*Identity(k)
- ## Second order:
- # Cookbook example 106:
- expr = Trace(X**2)
- assert expr.diff(X) == 2*X.T
- # Cookbook example 107:
- expr = Trace(X**2*B)
- assert expr.diff(X) == (X*B + B*X).T
- expr = Trace(MatMul(X, X, B))
- assert expr.diff(X) == (X*B + B*X).T
- # Cookbook example 108:
- expr = Trace(X.T*B*X)
- assert expr.diff(X) == B*X + B.T*X
- # Cookbook example 109:
- expr = Trace(B*X*X.T)
- assert expr.diff(X) == B*X + B.T*X
- # Cookbook example 110:
- expr = Trace(X*X.T*B)
- assert expr.diff(X) == B*X + B.T*X
- # Cookbook example 111:
- expr = Trace(X*B*X.T)
- assert expr.diff(X) == X*B.T + X*B
- # Cookbook example 112:
- expr = Trace(B*X.T*X)
- assert expr.diff(X) == X*B.T + X*B
- # Cookbook example 113:
- expr = Trace(X.T*X*B)
- assert expr.diff(X) == X*B.T + X*B
- # Cookbook example 114:
- expr = Trace(A*X*B*X)
- assert expr.diff(X) == A.T*X.T*B.T + B.T*X.T*A.T
- # Cookbook example 115:
- expr = Trace(X.T*X)
- assert expr.diff(X) == 2*X
- expr = Trace(X*X.T)
- assert expr.diff(X) == 2*X
- # Cookbook example 116:
- expr = Trace(B.T*X.T*C*X*B)
- assert expr.diff(X) == C.T*X*B*B.T + C*X*B*B.T
- # Cookbook example 117:
- expr = Trace(X.T*B*X*C)
- assert expr.diff(X) == B*X*C + B.T*X*C.T
- # Cookbook example 118:
- expr = Trace(A*X*B*X.T*C)
- assert expr.diff(X) == A.T*C.T*X*B.T + C*A*X*B
- # Cookbook example 119:
- expr = Trace((A*X*B + C)*(A*X*B + C).T)
- assert expr.diff(X) == 2*A.T*(A*X*B + C)*B.T
- # Cookbook example 120:
- # TODO: no support for TensorProduct.
- # expr = Trace(TensorProduct(X, X))
- # expr = Trace(X)*Trace(X)
- # expr.diff(X) == 2*Trace(X)*Identity(k)
- # Higher Order
- # Cookbook example 121:
- expr = Trace(X**k)
- #assert expr.diff(X) == k*(X**(k-1)).T
- # Cookbook example 122:
- expr = Trace(A*X**k)
- #assert expr.diff(X) == # Needs indices
- # Cookbook example 123:
- expr = Trace(B.T*X.T*C*X*X.T*C*X*B)
- assert expr.diff(X) == C*X*X.T*C*X*B*B.T + C.T*X*B*B.T*X.T*C.T*X + C*X*B*B.T*X.T*C*X + C.T*X*X.T*C.T*X*B*B.T
- # Other
- # Cookbook example 124:
- expr = Trace(A*X**(-1)*B)
- assert expr.diff(X) == -Inverse(X).T*A.T*B.T*Inverse(X).T
- # Cookbook example 125:
- expr = Trace(Inverse(X.T*C*X)*A)
- # Warning: result in the cookbook is equivalent if B and C are symmetric:
- assert expr.diff(X) == - X.inv().T*A.T*X.inv()*C.inv().T*X.inv().T - X.inv().T*A*X.inv()*C.inv()*X.inv().T
- # Cookbook example 126:
- expr = Trace((X.T*C*X).inv()*(X.T*B*X))
- assert expr.diff(X) == -2*C*X*(X.T*C*X).inv()*X.T*B*X*(X.T*C*X).inv() + 2*B*X*(X.T*C*X).inv()
- # Cookbook example 127:
- expr = Trace((A + X.T*C*X).inv()*(X.T*B*X))
- # Warning: result in the cookbook is equivalent if B and C are symmetric:
- assert expr.diff(X) == B*X*Inverse(A + X.T*C*X) - C*X*Inverse(A + X.T*C*X)*X.T*B*X*Inverse(A + X.T*C*X) - C.T*X*Inverse(A.T + (C*X).T*X)*X.T*B.T*X*Inverse(A.T + (C*X).T*X) + B.T*X*Inverse(A.T + (C*X).T*X)
- def test_derivatives_of_complicated_matrix_expr():
- expr = a.T*(A*X*(X.T*B + X*A) + B.T*X.T*(a*b.T*(X*D*X.T + X*(X.T*B + A*X)*D*B - X.T*C.T*A)*B + B*(X*D.T + B*A*X*A.T - 3*X*D))*B + 42*X*B*X.T*A.T*(X + X.T))*b
- result = (B*(B*A*X*A.T - 3*X*D + X*D.T) + a*b.T*(X*(A*X + X.T*B)*D*B + X*D*X.T - X.T*C.T*A)*B)*B*b*a.T*B.T + B**2*b*a.T*B.T*X.T*a*b.T*X*D + 42*A*X*B.T*X.T*a*b.T + B*D*B**3*b*a.T*B.T*X.T*a*b.T*X + B*b*a.T*A*X + a*b.T*(42*X + 42*X.T)*A*X*B.T + b*a.T*X*B*a*b.T*B.T**2*X*D.T + b*a.T*X*B*a*b.T*B.T**3*D.T*(B.T*X + X.T*A.T) + 42*b*a.T*X*B*X.T*A.T + A.T*(42*X + 42*X.T)*b*a.T*X*B + A.T*B.T**2*X*B*a*b.T*B.T*A + A.T*a*b.T*(A.T*X.T + B.T*X) + A.T*X.T*b*a.T*X*B*a*b.T*B.T**3*D.T + B.T*X*B*a*b.T*B.T*D - 3*B.T*X*B*a*b.T*B.T*D.T - C.T*A*B**2*b*a.T*B.T*X.T*a*b.T + X.T*A.T*a*b.T*A.T
- assert expr.diff(X) == result
- def test_mixed_deriv_mixed_expressions():
- expr = 3*Trace(A)
- assert expr.diff(A) == 3*Identity(k)
- expr = k
- deriv = expr.diff(A)
- assert isinstance(deriv, ZeroMatrix)
- assert deriv == ZeroMatrix(k, k)
- expr = Trace(A)**2
- assert expr.diff(A) == (2*Trace(A))*Identity(k)
- expr = Trace(A)*A
- I = Identity(k)
- assert expr.diff(A) == ArrayAdd(ArrayTensorProduct(I, A), PermuteDims(ArrayTensorProduct(Trace(A)*I, I), Permutation(3)(1, 2)))
- expr = Trace(Trace(A)*A)
- assert expr.diff(A) == (2*Trace(A))*Identity(k)
- expr = Trace(Trace(Trace(A)*A)*A)
- assert expr.diff(A) == (3*Trace(A)**2)*Identity(k)
- def test_derivatives_matrix_norms():
- expr = x.T*y
- assert expr.diff(x) == y
- assert expr[0, 0].diff(x[m, 0]).doit() == y[m, 0]
- expr = (x.T*y)**S.Half
- assert expr.diff(x) == y/(2*sqrt(x.T*y))
- expr = (x.T*x)**S.Half
- assert expr.diff(x) == x*(x.T*x)**Rational(-1, 2)
- expr = (c.T*a*x.T*b)**S.Half
- assert expr.diff(x) == b*a.T*c/sqrt(c.T*a*x.T*b)/2
- expr = (c.T*a*x.T*b)**Rational(1, 3)
- assert expr.diff(x) == b*a.T*c*(c.T*a*x.T*b)**Rational(-2, 3)/3
- expr = (a.T*X*b)**S.Half
- assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T
- expr = d.T*x*(a.T*X*b)**S.Half*y.T*c
- assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*x.T*d*y.T*c*b.T
- def test_derivatives_elementwise_applyfunc():
- expr = x.applyfunc(tan)
- assert expr.diff(x).dummy_eq(
- DiagMatrix(x.applyfunc(lambda x: tan(x)**2 + 1)))
- assert expr[i, 0].diff(x[m, 0]).doit() == (tan(x[i, 0])**2 + 1)*KDelta(i, m)
- _check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
- expr = (i**2*x).applyfunc(sin)
- assert expr.diff(i).dummy_eq(
- HadamardProduct((2*i)*x, (i**2*x).applyfunc(cos)))
- assert expr[i, 0].diff(i).doit() == 2*i*x[i, 0]*cos(i**2*x[i, 0])
- _check_derivative_with_explicit_matrix(expr, i, expr.diff(i))
- expr = (log(i)*A*B).applyfunc(sin)
- assert expr.diff(i).dummy_eq(
- HadamardProduct(A*B/i, (log(i)*A*B).applyfunc(cos)))
- _check_derivative_with_explicit_matrix(expr, i, expr.diff(i))
- expr = A*x.applyfunc(exp)
- # TODO: restore this result (currently returning the transpose):
- # assert expr.diff(x).dummy_eq(DiagMatrix(x.applyfunc(exp))*A.T)
- _check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
- expr = x.T*A*x + k*y.applyfunc(sin).T*x
- assert expr.diff(x).dummy_eq(A.T*x + A*x + k*y.applyfunc(sin))
- _check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
- expr = x.applyfunc(sin).T*y
- # TODO: restore (currently returning the transpose):
- # assert expr.diff(x).dummy_eq(DiagMatrix(x.applyfunc(cos))*y)
- _check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
- expr = (a.T * X * b).applyfunc(sin)
- assert expr.diff(X).dummy_eq(a*(a.T*X*b).applyfunc(cos)*b.T)
- _check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
- expr = a.T * X.applyfunc(sin) * b
- assert expr.diff(X).dummy_eq(
- DiagMatrix(a)*X.applyfunc(cos)*DiagMatrix(b))
- _check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
- expr = a.T * (A*X*B).applyfunc(sin) * b
- assert expr.diff(X).dummy_eq(
- A.T*DiagMatrix(a)*(A*X*B).applyfunc(cos)*DiagMatrix(b)*B.T)
- _check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
- expr = a.T * (A*X*b).applyfunc(sin) * b.T
- # TODO: not implemented
- #assert expr.diff(X) == ...
- #_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
- expr = a.T*A*X.applyfunc(sin)*B*b
- assert expr.diff(X).dummy_eq(
- HadamardProduct(A.T * a * b.T * B.T, X.applyfunc(cos)))
- expr = a.T * (A*X.applyfunc(sin)*B).applyfunc(log) * b
- # TODO: wrong
- # assert expr.diff(X) == A.T*DiagMatrix(a)*(A*X.applyfunc(sin)*B).applyfunc(Lambda(k, 1/k))*DiagMatrix(b)*B.T
- expr = a.T * (X.applyfunc(sin)).applyfunc(log) * b
- # TODO: wrong
- # assert expr.diff(X) == DiagMatrix(a)*X.applyfunc(sin).applyfunc(Lambda(k, 1/k))*DiagMatrix(b)
- def test_derivatives_of_hadamard_expressions():
- # Hadamard Product
- expr = hadamard_product(a, x, b)
- assert expr.diff(x) == DiagMatrix(hadamard_product(b, a))
- expr = a.T*hadamard_product(A, X, B)*b
- assert expr.diff(X) == HadamardProduct(a*b.T, A, B)
- # Hadamard Power
- expr = hadamard_power(x, 2)
- assert expr.diff(x).doit() == 2*DiagMatrix(x)
- expr = hadamard_power(x.T, 2)
- assert expr.diff(x).doit() == 2*DiagMatrix(x)
- expr = hadamard_power(x, S.Half)
- assert expr.diff(x) == S.Half*DiagMatrix(hadamard_power(x, Rational(-1, 2)))
- expr = hadamard_power(a.T*X*b, 2)
- assert expr.diff(X) == 2*a*a.T*X*b*b.T
- expr = hadamard_power(a.T*X*b, S.Half)
- assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T
|