test_derivatives.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477
  1. """
  2. Some examples have been taken from:
  3. http://www.math.uwaterloo.ca/~hwolkowi//matrixcookbook.pdf
  4. """
  5. from sympy import KroneckerProduct
  6. from sympy.combinatorics import Permutation
  7. from sympy.concrete.summations import Sum
  8. from sympy.core.numbers import Rational
  9. from sympy.core.singleton import S
  10. from sympy.core.symbol import symbols
  11. from sympy.functions.elementary.exponential import (exp, log)
  12. from sympy.functions.elementary.miscellaneous import sqrt
  13. from sympy.functions.elementary.trigonometric import (cos, sin, tan)
  14. from sympy.functions.special.tensor_functions import KroneckerDelta
  15. from sympy.matrices.expressions.determinant import Determinant
  16. from sympy.matrices.expressions.diagonal import DiagMatrix
  17. from sympy.matrices.expressions.hadamard import (HadamardPower, HadamardProduct, hadamard_product)
  18. from sympy.matrices.expressions.inverse import Inverse
  19. from sympy.matrices.expressions.matexpr import MatrixSymbol
  20. from sympy.matrices.expressions.special import OneMatrix
  21. from sympy.matrices.expressions.trace import Trace
  22. from sympy.matrices.expressions.matadd import MatAdd
  23. from sympy.matrices.expressions.matmul import MatMul
  24. from sympy.matrices.expressions.special import (Identity, ZeroMatrix)
  25. from sympy.tensor.array.array_derivatives import ArrayDerivative
  26. from sympy.matrices.expressions import hadamard_power
  27. from sympy.tensor.array.expressions.array_expressions import ArrayAdd, ArrayTensorProduct, PermuteDims
  28. i, j, k = symbols("i j k")
  29. m, n = symbols("m n")
  30. X = MatrixSymbol("X", k, k)
  31. x = MatrixSymbol("x", k, 1)
  32. y = MatrixSymbol("y", k, 1)
  33. A = MatrixSymbol("A", k, k)
  34. B = MatrixSymbol("B", k, k)
  35. C = MatrixSymbol("C", k, k)
  36. D = MatrixSymbol("D", k, k)
  37. a = MatrixSymbol("a", k, 1)
  38. b = MatrixSymbol("b", k, 1)
  39. c = MatrixSymbol("c", k, 1)
  40. d = MatrixSymbol("d", k, 1)
  41. KDelta = lambda i, j: KroneckerDelta(i, j, (0, k-1))
  42. def _check_derivative_with_explicit_matrix(expr, x, diffexpr, dim=2):
  43. # TODO: this is commented because it slows down the tests.
  44. return
  45. expr = expr.xreplace({k: dim})
  46. x = x.xreplace({k: dim})
  47. diffexpr = diffexpr.xreplace({k: dim})
  48. expr = expr.as_explicit()
  49. x = x.as_explicit()
  50. diffexpr = diffexpr.as_explicit()
  51. assert expr.diff(x).reshape(*diffexpr.shape).tomatrix() == diffexpr
  52. def test_matrix_derivative_by_scalar():
  53. assert A.diff(i) == ZeroMatrix(k, k)
  54. assert (A*(X + B)*c).diff(i) == ZeroMatrix(k, 1)
  55. assert x.diff(i) == ZeroMatrix(k, 1)
  56. assert (x.T*y).diff(i) == ZeroMatrix(1, 1)
  57. assert (x*x.T).diff(i) == ZeroMatrix(k, k)
  58. assert (x + y).diff(i) == ZeroMatrix(k, 1)
  59. assert hadamard_power(x, 2).diff(i) == ZeroMatrix(k, 1)
  60. assert hadamard_power(x, i).diff(i).dummy_eq(
  61. HadamardProduct(x.applyfunc(log), HadamardPower(x, i)))
  62. assert hadamard_product(x, y).diff(i) == ZeroMatrix(k, 1)
  63. assert hadamard_product(i*OneMatrix(k, 1), x, y).diff(i) == hadamard_product(x, y)
  64. assert (i*x).diff(i) == x
  65. assert (sin(i)*A*B*x).diff(i) == cos(i)*A*B*x
  66. assert x.applyfunc(sin).diff(i) == ZeroMatrix(k, 1)
  67. assert Trace(i**2*X).diff(i) == 2*i*Trace(X)
  68. mu = symbols("mu")
  69. expr = (2*mu*x)
  70. assert expr.diff(x) == 2*mu*Identity(k)
  71. def test_one_matrix():
  72. assert MatMul(x.T, OneMatrix(k, 1)).diff(x) == OneMatrix(k, 1)
  73. def test_matrix_derivative_non_matrix_result():
  74. # This is a 4-dimensional array:
  75. I = Identity(k)
  76. AdA = PermuteDims(ArrayTensorProduct(I, I), Permutation(3)(1, 2))
  77. assert A.diff(A) == AdA
  78. assert A.T.diff(A) == PermuteDims(ArrayTensorProduct(I, I), Permutation(3)(1, 2, 3))
  79. assert (2*A).diff(A) == PermuteDims(ArrayTensorProduct(2*I, I), Permutation(3)(1, 2))
  80. assert MatAdd(A, A).diff(A) == ArrayAdd(AdA, AdA)
  81. assert (A + B).diff(A) == AdA
  82. def test_matrix_derivative_trivial_cases():
  83. # Cookbook example 33:
  84. # TODO: find a way to represent a four-dimensional zero-array:
  85. assert X.diff(A) == ArrayDerivative(X, A)
  86. def test_matrix_derivative_with_inverse():
  87. # Cookbook example 61:
  88. expr = a.T*Inverse(X)*b
  89. assert expr.diff(X) == -Inverse(X).T*a*b.T*Inverse(X).T
  90. # Cookbook example 62:
  91. expr = Determinant(Inverse(X))
  92. # Not implemented yet:
  93. # assert expr.diff(X) == -Determinant(X.inv())*(X.inv()).T
  94. # Cookbook example 63:
  95. expr = Trace(A*Inverse(X)*B)
  96. assert expr.diff(X) == -(X**(-1)*B*A*X**(-1)).T
  97. # Cookbook example 64:
  98. expr = Trace(Inverse(X + A))
  99. assert expr.diff(X) == -(Inverse(X + A)).T**2
  100. def test_matrix_derivative_vectors_and_scalars():
  101. assert x.diff(x) == Identity(k)
  102. assert x[i, 0].diff(x[m, 0]).doit() == KDelta(m, i)
  103. assert x.T.diff(x) == Identity(k)
  104. # Cookbook example 69:
  105. expr = x.T*a
  106. assert expr.diff(x) == a
  107. assert expr[0, 0].diff(x[m, 0]).doit() == a[m, 0]
  108. expr = a.T*x
  109. assert expr.diff(x) == a
  110. # Cookbook example 70:
  111. expr = a.T*X*b
  112. assert expr.diff(X) == a*b.T
  113. # Cookbook example 71:
  114. expr = a.T*X.T*b
  115. assert expr.diff(X) == b*a.T
  116. # Cookbook example 72:
  117. expr = a.T*X*a
  118. assert expr.diff(X) == a*a.T
  119. expr = a.T*X.T*a
  120. assert expr.diff(X) == a*a.T
  121. # Cookbook example 77:
  122. expr = b.T*X.T*X*c
  123. assert expr.diff(X) == X*b*c.T + X*c*b.T
  124. # Cookbook example 78:
  125. expr = (B*x + b).T*C*(D*x + d)
  126. assert expr.diff(x) == B.T*C*(D*x + d) + D.T*C.T*(B*x + b)
  127. # Cookbook example 81:
  128. expr = x.T*B*x
  129. assert expr.diff(x) == B*x + B.T*x
  130. # Cookbook example 82:
  131. expr = b.T*X.T*D*X*c
  132. assert expr.diff(X) == D.T*X*b*c.T + D*X*c*b.T
  133. # Cookbook example 83:
  134. expr = (X*b + c).T*D*(X*b + c)
  135. assert expr.diff(X) == D*(X*b + c)*b.T + D.T*(X*b + c)*b.T
  136. assert str(expr[0, 0].diff(X[m, n]).doit()) == \
  137. 'b[n, 0]*Sum((c[_i_1, 0] + Sum(X[_i_1, _i_3]*b[_i_3, 0], (_i_3, 0, k - 1)))*D[_i_1, m], (_i_1, 0, k - 1)) + Sum((c[_i_2, 0] + Sum(X[_i_2, _i_4]*b[_i_4, 0], (_i_4, 0, k - 1)))*D[m, _i_2]*b[n, 0], (_i_2, 0, k - 1))'
  138. # See https://github.com/sympy/sympy/issues/16504#issuecomment-1018339957
  139. expr = x*x.T*x
  140. I = Identity(k)
  141. assert expr.diff(x) == KroneckerProduct(I, x.T*x) + 2*x*x.T
  142. def test_matrix_derivatives_of_traces():
  143. expr = Trace(A)*A
  144. I = Identity(k)
  145. assert expr.diff(A) == ArrayAdd(ArrayTensorProduct(I, A), PermuteDims(ArrayTensorProduct(Trace(A)*I, I), Permutation(3)(1, 2)))
  146. assert expr[i, j].diff(A[m, n]).doit() == (
  147. KDelta(i, m)*KDelta(j, n)*Trace(A) +
  148. KDelta(m, n)*A[i, j]
  149. )
  150. ## First order:
  151. # Cookbook example 99:
  152. expr = Trace(X)
  153. assert expr.diff(X) == Identity(k)
  154. assert expr.rewrite(Sum).diff(X[m, n]).doit() == KDelta(m, n)
  155. # Cookbook example 100:
  156. expr = Trace(X*A)
  157. assert expr.diff(X) == A.T
  158. assert expr.rewrite(Sum).diff(X[m, n]).doit() == A[n, m]
  159. # Cookbook example 101:
  160. expr = Trace(A*X*B)
  161. assert expr.diff(X) == A.T*B.T
  162. assert expr.rewrite(Sum).diff(X[m, n]).doit().dummy_eq((A.T*B.T)[m, n])
  163. # Cookbook example 102:
  164. expr = Trace(A*X.T*B)
  165. assert expr.diff(X) == B*A
  166. # Cookbook example 103:
  167. expr = Trace(X.T*A)
  168. assert expr.diff(X) == A
  169. # Cookbook example 104:
  170. expr = Trace(A*X.T)
  171. assert expr.diff(X) == A
  172. # Cookbook example 105:
  173. # TODO: TensorProduct is not supported
  174. #expr = Trace(TensorProduct(A, X))
  175. #assert expr.diff(X) == Trace(A)*Identity(k)
  176. ## Second order:
  177. # Cookbook example 106:
  178. expr = Trace(X**2)
  179. assert expr.diff(X) == 2*X.T
  180. # Cookbook example 107:
  181. expr = Trace(X**2*B)
  182. assert expr.diff(X) == (X*B + B*X).T
  183. expr = Trace(MatMul(X, X, B))
  184. assert expr.diff(X) == (X*B + B*X).T
  185. # Cookbook example 108:
  186. expr = Trace(X.T*B*X)
  187. assert expr.diff(X) == B*X + B.T*X
  188. # Cookbook example 109:
  189. expr = Trace(B*X*X.T)
  190. assert expr.diff(X) == B*X + B.T*X
  191. # Cookbook example 110:
  192. expr = Trace(X*X.T*B)
  193. assert expr.diff(X) == B*X + B.T*X
  194. # Cookbook example 111:
  195. expr = Trace(X*B*X.T)
  196. assert expr.diff(X) == X*B.T + X*B
  197. # Cookbook example 112:
  198. expr = Trace(B*X.T*X)
  199. assert expr.diff(X) == X*B.T + X*B
  200. # Cookbook example 113:
  201. expr = Trace(X.T*X*B)
  202. assert expr.diff(X) == X*B.T + X*B
  203. # Cookbook example 114:
  204. expr = Trace(A*X*B*X)
  205. assert expr.diff(X) == A.T*X.T*B.T + B.T*X.T*A.T
  206. # Cookbook example 115:
  207. expr = Trace(X.T*X)
  208. assert expr.diff(X) == 2*X
  209. expr = Trace(X*X.T)
  210. assert expr.diff(X) == 2*X
  211. # Cookbook example 116:
  212. expr = Trace(B.T*X.T*C*X*B)
  213. assert expr.diff(X) == C.T*X*B*B.T + C*X*B*B.T
  214. # Cookbook example 117:
  215. expr = Trace(X.T*B*X*C)
  216. assert expr.diff(X) == B*X*C + B.T*X*C.T
  217. # Cookbook example 118:
  218. expr = Trace(A*X*B*X.T*C)
  219. assert expr.diff(X) == A.T*C.T*X*B.T + C*A*X*B
  220. # Cookbook example 119:
  221. expr = Trace((A*X*B + C)*(A*X*B + C).T)
  222. assert expr.diff(X) == 2*A.T*(A*X*B + C)*B.T
  223. # Cookbook example 120:
  224. # TODO: no support for TensorProduct.
  225. # expr = Trace(TensorProduct(X, X))
  226. # expr = Trace(X)*Trace(X)
  227. # expr.diff(X) == 2*Trace(X)*Identity(k)
  228. # Higher Order
  229. # Cookbook example 121:
  230. expr = Trace(X**k)
  231. #assert expr.diff(X) == k*(X**(k-1)).T
  232. # Cookbook example 122:
  233. expr = Trace(A*X**k)
  234. #assert expr.diff(X) == # Needs indices
  235. # Cookbook example 123:
  236. expr = Trace(B.T*X.T*C*X*X.T*C*X*B)
  237. assert expr.diff(X) == C*X*X.T*C*X*B*B.T + C.T*X*B*B.T*X.T*C.T*X + C*X*B*B.T*X.T*C*X + C.T*X*X.T*C.T*X*B*B.T
  238. # Other
  239. # Cookbook example 124:
  240. expr = Trace(A*X**(-1)*B)
  241. assert expr.diff(X) == -Inverse(X).T*A.T*B.T*Inverse(X).T
  242. # Cookbook example 125:
  243. expr = Trace(Inverse(X.T*C*X)*A)
  244. # Warning: result in the cookbook is equivalent if B and C are symmetric:
  245. assert expr.diff(X) == - X.inv().T*A.T*X.inv()*C.inv().T*X.inv().T - X.inv().T*A*X.inv()*C.inv()*X.inv().T
  246. # Cookbook example 126:
  247. expr = Trace((X.T*C*X).inv()*(X.T*B*X))
  248. assert expr.diff(X) == -2*C*X*(X.T*C*X).inv()*X.T*B*X*(X.T*C*X).inv() + 2*B*X*(X.T*C*X).inv()
  249. # Cookbook example 127:
  250. expr = Trace((A + X.T*C*X).inv()*(X.T*B*X))
  251. # Warning: result in the cookbook is equivalent if B and C are symmetric:
  252. assert expr.diff(X) == B*X*Inverse(A + X.T*C*X) - C*X*Inverse(A + X.T*C*X)*X.T*B*X*Inverse(A + X.T*C*X) - C.T*X*Inverse(A.T + (C*X).T*X)*X.T*B.T*X*Inverse(A.T + (C*X).T*X) + B.T*X*Inverse(A.T + (C*X).T*X)
  253. def test_derivatives_of_complicated_matrix_expr():
  254. expr = a.T*(A*X*(X.T*B + X*A) + B.T*X.T*(a*b.T*(X*D*X.T + X*(X.T*B + A*X)*D*B - X.T*C.T*A)*B + B*(X*D.T + B*A*X*A.T - 3*X*D))*B + 42*X*B*X.T*A.T*(X + X.T))*b
  255. result = (B*(B*A*X*A.T - 3*X*D + X*D.T) + a*b.T*(X*(A*X + X.T*B)*D*B + X*D*X.T - X.T*C.T*A)*B)*B*b*a.T*B.T + B**2*b*a.T*B.T*X.T*a*b.T*X*D + 42*A*X*B.T*X.T*a*b.T + B*D*B**3*b*a.T*B.T*X.T*a*b.T*X + B*b*a.T*A*X + a*b.T*(42*X + 42*X.T)*A*X*B.T + b*a.T*X*B*a*b.T*B.T**2*X*D.T + b*a.T*X*B*a*b.T*B.T**3*D.T*(B.T*X + X.T*A.T) + 42*b*a.T*X*B*X.T*A.T + A.T*(42*X + 42*X.T)*b*a.T*X*B + A.T*B.T**2*X*B*a*b.T*B.T*A + A.T*a*b.T*(A.T*X.T + B.T*X) + A.T*X.T*b*a.T*X*B*a*b.T*B.T**3*D.T + B.T*X*B*a*b.T*B.T*D - 3*B.T*X*B*a*b.T*B.T*D.T - C.T*A*B**2*b*a.T*B.T*X.T*a*b.T + X.T*A.T*a*b.T*A.T
  256. assert expr.diff(X) == result
  257. def test_mixed_deriv_mixed_expressions():
  258. expr = 3*Trace(A)
  259. assert expr.diff(A) == 3*Identity(k)
  260. expr = k
  261. deriv = expr.diff(A)
  262. assert isinstance(deriv, ZeroMatrix)
  263. assert deriv == ZeroMatrix(k, k)
  264. expr = Trace(A)**2
  265. assert expr.diff(A) == (2*Trace(A))*Identity(k)
  266. expr = Trace(A)*A
  267. I = Identity(k)
  268. assert expr.diff(A) == ArrayAdd(ArrayTensorProduct(I, A), PermuteDims(ArrayTensorProduct(Trace(A)*I, I), Permutation(3)(1, 2)))
  269. expr = Trace(Trace(A)*A)
  270. assert expr.diff(A) == (2*Trace(A))*Identity(k)
  271. expr = Trace(Trace(Trace(A)*A)*A)
  272. assert expr.diff(A) == (3*Trace(A)**2)*Identity(k)
  273. def test_derivatives_matrix_norms():
  274. expr = x.T*y
  275. assert expr.diff(x) == y
  276. assert expr[0, 0].diff(x[m, 0]).doit() == y[m, 0]
  277. expr = (x.T*y)**S.Half
  278. assert expr.diff(x) == y/(2*sqrt(x.T*y))
  279. expr = (x.T*x)**S.Half
  280. assert expr.diff(x) == x*(x.T*x)**Rational(-1, 2)
  281. expr = (c.T*a*x.T*b)**S.Half
  282. assert expr.diff(x) == b*a.T*c/sqrt(c.T*a*x.T*b)/2
  283. expr = (c.T*a*x.T*b)**Rational(1, 3)
  284. assert expr.diff(x) == b*a.T*c*(c.T*a*x.T*b)**Rational(-2, 3)/3
  285. expr = (a.T*X*b)**S.Half
  286. assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T
  287. expr = d.T*x*(a.T*X*b)**S.Half*y.T*c
  288. assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*x.T*d*y.T*c*b.T
  289. def test_derivatives_elementwise_applyfunc():
  290. expr = x.applyfunc(tan)
  291. assert expr.diff(x).dummy_eq(
  292. DiagMatrix(x.applyfunc(lambda x: tan(x)**2 + 1)))
  293. assert expr[i, 0].diff(x[m, 0]).doit() == (tan(x[i, 0])**2 + 1)*KDelta(i, m)
  294. _check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
  295. expr = (i**2*x).applyfunc(sin)
  296. assert expr.diff(i).dummy_eq(
  297. HadamardProduct((2*i)*x, (i**2*x).applyfunc(cos)))
  298. assert expr[i, 0].diff(i).doit() == 2*i*x[i, 0]*cos(i**2*x[i, 0])
  299. _check_derivative_with_explicit_matrix(expr, i, expr.diff(i))
  300. expr = (log(i)*A*B).applyfunc(sin)
  301. assert expr.diff(i).dummy_eq(
  302. HadamardProduct(A*B/i, (log(i)*A*B).applyfunc(cos)))
  303. _check_derivative_with_explicit_matrix(expr, i, expr.diff(i))
  304. expr = A*x.applyfunc(exp)
  305. # TODO: restore this result (currently returning the transpose):
  306. # assert expr.diff(x).dummy_eq(DiagMatrix(x.applyfunc(exp))*A.T)
  307. _check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
  308. expr = x.T*A*x + k*y.applyfunc(sin).T*x
  309. assert expr.diff(x).dummy_eq(A.T*x + A*x + k*y.applyfunc(sin))
  310. _check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
  311. expr = x.applyfunc(sin).T*y
  312. # TODO: restore (currently returning the transpose):
  313. # assert expr.diff(x).dummy_eq(DiagMatrix(x.applyfunc(cos))*y)
  314. _check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
  315. expr = (a.T * X * b).applyfunc(sin)
  316. assert expr.diff(X).dummy_eq(a*(a.T*X*b).applyfunc(cos)*b.T)
  317. _check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
  318. expr = a.T * X.applyfunc(sin) * b
  319. assert expr.diff(X).dummy_eq(
  320. DiagMatrix(a)*X.applyfunc(cos)*DiagMatrix(b))
  321. _check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
  322. expr = a.T * (A*X*B).applyfunc(sin) * b
  323. assert expr.diff(X).dummy_eq(
  324. A.T*DiagMatrix(a)*(A*X*B).applyfunc(cos)*DiagMatrix(b)*B.T)
  325. _check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
  326. expr = a.T * (A*X*b).applyfunc(sin) * b.T
  327. # TODO: not implemented
  328. #assert expr.diff(X) == ...
  329. #_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
  330. expr = a.T*A*X.applyfunc(sin)*B*b
  331. assert expr.diff(X).dummy_eq(
  332. HadamardProduct(A.T * a * b.T * B.T, X.applyfunc(cos)))
  333. expr = a.T * (A*X.applyfunc(sin)*B).applyfunc(log) * b
  334. # TODO: wrong
  335. # assert expr.diff(X) == A.T*DiagMatrix(a)*(A*X.applyfunc(sin)*B).applyfunc(Lambda(k, 1/k))*DiagMatrix(b)*B.T
  336. expr = a.T * (X.applyfunc(sin)).applyfunc(log) * b
  337. # TODO: wrong
  338. # assert expr.diff(X) == DiagMatrix(a)*X.applyfunc(sin).applyfunc(Lambda(k, 1/k))*DiagMatrix(b)
  339. def test_derivatives_of_hadamard_expressions():
  340. # Hadamard Product
  341. expr = hadamard_product(a, x, b)
  342. assert expr.diff(x) == DiagMatrix(hadamard_product(b, a))
  343. expr = a.T*hadamard_product(A, X, B)*b
  344. assert expr.diff(X) == HadamardProduct(a*b.T, A, B)
  345. # Hadamard Power
  346. expr = hadamard_power(x, 2)
  347. assert expr.diff(x).doit() == 2*DiagMatrix(x)
  348. expr = hadamard_power(x.T, 2)
  349. assert expr.diff(x).doit() == 2*DiagMatrix(x)
  350. expr = hadamard_power(x, S.Half)
  351. assert expr.diff(x) == S.Half*DiagMatrix(hadamard_power(x, Rational(-1, 2)))
  352. expr = hadamard_power(a.T*X*b, 2)
  353. assert expr.diff(X) == 2*a*a.T*X*b*b.T
  354. expr = hadamard_power(a.T*X*b, S.Half)
  355. assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T