123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445 |
- from sympy.matrices.expressions.trace import Trace
- from sympy.testing.pytest import raises, slow
- from sympy.matrices.expressions.blockmatrix import (
- block_collapse, bc_matmul, bc_block_plus_ident, BlockDiagMatrix,
- BlockMatrix, bc_dist, bc_matadd, bc_transpose, bc_inverse,
- blockcut, reblock_2x2, deblock)
- from sympy.matrices.expressions import (MatrixSymbol, Identity,
- Inverse, trace, Transpose, det, ZeroMatrix, OneMatrix)
- from sympy.matrices.common import NonInvertibleMatrixError
- from sympy.matrices import (
- Matrix, ImmutableMatrix, ImmutableSparseMatrix)
- from sympy.core import Tuple, symbols, Expr, S
- from sympy.functions import transpose, im, re
- i, j, k, l, m, n, p = symbols('i:n, p', integer=True)
- A = MatrixSymbol('A', n, n)
- B = MatrixSymbol('B', n, n)
- C = MatrixSymbol('C', n, n)
- D = MatrixSymbol('D', n, n)
- G = MatrixSymbol('G', n, n)
- H = MatrixSymbol('H', n, n)
- b1 = BlockMatrix([[G, H]])
- b2 = BlockMatrix([[G], [H]])
- def test_bc_matmul():
- assert bc_matmul(H*b1*b2*G) == BlockMatrix([[(H*G*G + H*H*H)*G]])
- def test_bc_matadd():
- assert bc_matadd(BlockMatrix([[G, H]]) + BlockMatrix([[H, H]])) == \
- BlockMatrix([[G+H, H+H]])
- def test_bc_transpose():
- assert bc_transpose(Transpose(BlockMatrix([[A, B], [C, D]]))) == \
- BlockMatrix([[A.T, C.T], [B.T, D.T]])
- def test_bc_dist_diag():
- A = MatrixSymbol('A', n, n)
- B = MatrixSymbol('B', m, m)
- C = MatrixSymbol('C', l, l)
- X = BlockDiagMatrix(A, B, C)
- assert bc_dist(X+X).equals(BlockDiagMatrix(2*A, 2*B, 2*C))
- def test_block_plus_ident():
- A = MatrixSymbol('A', n, n)
- B = MatrixSymbol('B', n, m)
- C = MatrixSymbol('C', m, n)
- D = MatrixSymbol('D', m, m)
- X = BlockMatrix([[A, B], [C, D]])
- Z = MatrixSymbol('Z', n + m, n + m)
- assert bc_block_plus_ident(X + Identity(m + n) + Z) == \
- BlockDiagMatrix(Identity(n), Identity(m)) + X + Z
- def test_BlockMatrix():
- A = MatrixSymbol('A', n, m)
- B = MatrixSymbol('B', n, k)
- C = MatrixSymbol('C', l, m)
- D = MatrixSymbol('D', l, k)
- M = MatrixSymbol('M', m + k, p)
- N = MatrixSymbol('N', l + n, k + m)
- X = BlockMatrix(Matrix([[A, B], [C, D]]))
- assert X.__class__(*X.args) == X
- # block_collapse does nothing on normal inputs
- E = MatrixSymbol('E', n, m)
- assert block_collapse(A + 2*E) == A + 2*E
- F = MatrixSymbol('F', m, m)
- assert block_collapse(E.T*A*F) == E.T*A*F
- assert X.shape == (l + n, k + m)
- assert X.blockshape == (2, 2)
- assert transpose(X) == BlockMatrix(Matrix([[A.T, C.T], [B.T, D.T]]))
- assert transpose(X).shape == X.shape[::-1]
- # Test that BlockMatrices and MatrixSymbols can still mix
- assert (X*M).is_MatMul
- assert X._blockmul(M).is_MatMul
- assert (X*M).shape == (n + l, p)
- assert (X + N).is_MatAdd
- assert X._blockadd(N).is_MatAdd
- assert (X + N).shape == X.shape
- E = MatrixSymbol('E', m, 1)
- F = MatrixSymbol('F', k, 1)
- Y = BlockMatrix(Matrix([[E], [F]]))
- assert (X*Y).shape == (l + n, 1)
- assert block_collapse(X*Y).blocks[0, 0] == A*E + B*F
- assert block_collapse(X*Y).blocks[1, 0] == C*E + D*F
- # block_collapse passes down into container objects, transposes, and inverse
- assert block_collapse(transpose(X*Y)) == transpose(block_collapse(X*Y))
- assert block_collapse(Tuple(X*Y, 2*X)) == (
- block_collapse(X*Y), block_collapse(2*X))
- # Make sure that MatrixSymbols will enter 1x1 BlockMatrix if it simplifies
- Ab = BlockMatrix([[A]])
- Z = MatrixSymbol('Z', *A.shape)
- assert block_collapse(Ab + Z) == A + Z
- def test_block_collapse_explicit_matrices():
- A = Matrix([[1, 2], [3, 4]])
- assert block_collapse(BlockMatrix([[A]])) == A
- A = ImmutableSparseMatrix([[1, 2], [3, 4]])
- assert block_collapse(BlockMatrix([[A]])) == A
- def test_issue_17624():
- a = MatrixSymbol("a", 2, 2)
- z = ZeroMatrix(2, 2)
- b = BlockMatrix([[a, z], [z, z]])
- assert block_collapse(b * b) == BlockMatrix([[a**2, z], [z, z]])
- assert block_collapse(b * b * b) == BlockMatrix([[a**3, z], [z, z]])
- def test_issue_18618():
- A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
- assert A == Matrix(BlockDiagMatrix(A))
- def test_BlockMatrix_trace():
- A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD']
- X = BlockMatrix([[A, B], [C, D]])
- assert trace(X) == trace(A) + trace(D)
- assert trace(BlockMatrix([ZeroMatrix(n, n)])) == 0
- def test_BlockMatrix_Determinant():
- A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD']
- X = BlockMatrix([[A, B], [C, D]])
- from sympy.assumptions.ask import Q
- from sympy.assumptions.assume import assuming
- with assuming(Q.invertible(A)):
- assert det(X) == det(A) * det(X.schur('A'))
- assert isinstance(det(X), Expr)
- assert det(BlockMatrix([A])) == det(A)
- assert det(BlockMatrix([ZeroMatrix(n, n)])) == 0
- def test_squareBlockMatrix():
- A = MatrixSymbol('A', n, n)
- B = MatrixSymbol('B', n, m)
- C = MatrixSymbol('C', m, n)
- D = MatrixSymbol('D', m, m)
- X = BlockMatrix([[A, B], [C, D]])
- Y = BlockMatrix([[A]])
- assert X.is_square
- Q = X + Identity(m + n)
- assert (block_collapse(Q) ==
- BlockMatrix([[A + Identity(n), B], [C, D + Identity(m)]]))
- assert (X + MatrixSymbol('Q', n + m, n + m)).is_MatAdd
- assert (X * MatrixSymbol('Q', n + m, n + m)).is_MatMul
- assert block_collapse(Y.I) == A.I
- assert isinstance(X.inverse(), Inverse)
- assert not X.is_Identity
- Z = BlockMatrix([[Identity(n), B], [C, D]])
- assert not Z.is_Identity
- def test_BlockMatrix_2x2_inverse_symbolic():
- A = MatrixSymbol('A', n, m)
- B = MatrixSymbol('B', n, k - m)
- C = MatrixSymbol('C', k - n, m)
- D = MatrixSymbol('D', k - n, k - m)
- X = BlockMatrix([[A, B], [C, D]])
- assert X.is_square and X.shape == (k, k)
- assert isinstance(block_collapse(X.I), Inverse) # Can't invert when none of the blocks is square
- # test code path where only A is invertible
- A = MatrixSymbol('A', n, n)
- B = MatrixSymbol('B', n, m)
- C = MatrixSymbol('C', m, n)
- D = ZeroMatrix(m, m)
- X = BlockMatrix([[A, B], [C, D]])
- assert block_collapse(X.inverse()) == BlockMatrix([
- [A.I + A.I * B * X.schur('A').I * C * A.I, -A.I * B * X.schur('A').I],
- [-X.schur('A').I * C * A.I, X.schur('A').I],
- ])
- # test code path where only B is invertible
- A = MatrixSymbol('A', n, m)
- B = MatrixSymbol('B', n, n)
- C = ZeroMatrix(m, m)
- D = MatrixSymbol('D', m, n)
- X = BlockMatrix([[A, B], [C, D]])
- assert block_collapse(X.inverse()) == BlockMatrix([
- [-X.schur('B').I * D * B.I, X.schur('B').I],
- [B.I + B.I * A * X.schur('B').I * D * B.I, -B.I * A * X.schur('B').I],
- ])
- # test code path where only C is invertible
- A = MatrixSymbol('A', n, m)
- B = ZeroMatrix(n, n)
- C = MatrixSymbol('C', m, m)
- D = MatrixSymbol('D', m, n)
- X = BlockMatrix([[A, B], [C, D]])
- assert block_collapse(X.inverse()) == BlockMatrix([
- [-C.I * D * X.schur('C').I, C.I + C.I * D * X.schur('C').I * A * C.I],
- [X.schur('C').I, -X.schur('C').I * A * C.I],
- ])
- # test code path where only D is invertible
- A = ZeroMatrix(n, n)
- B = MatrixSymbol('B', n, m)
- C = MatrixSymbol('C', m, n)
- D = MatrixSymbol('D', m, m)
- X = BlockMatrix([[A, B], [C, D]])
- assert block_collapse(X.inverse()) == BlockMatrix([
- [X.schur('D').I, -X.schur('D').I * B * D.I],
- [-D.I * C * X.schur('D').I, D.I + D.I * C * X.schur('D').I * B * D.I],
- ])
- def test_BlockMatrix_2x2_inverse_numeric():
- """Test 2x2 block matrix inversion numerically for all 4 formulas"""
- M = Matrix([[1, 2], [3, 4]])
- # rank deficient matrices that have full rank when two of them combined
- D1 = Matrix([[1, 2], [2, 4]])
- D2 = Matrix([[1, 3], [3, 9]])
- D3 = Matrix([[1, 4], [4, 16]])
- assert D1.rank() == D2.rank() == D3.rank() == 1
- assert (D1 + D2).rank() == (D2 + D3).rank() == (D3 + D1).rank() == 2
- # Only A is invertible
- K = BlockMatrix([[M, D1], [D2, D3]])
- assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
- # Only B is invertible
- K = BlockMatrix([[D1, M], [D2, D3]])
- assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
- # Only C is invertible
- K = BlockMatrix([[D1, D2], [M, D3]])
- assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
- # Only D is invertible
- K = BlockMatrix([[D1, D2], [D3, M]])
- assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
- @slow
- def test_BlockMatrix_3x3_symbolic():
- # Only test one of these, instead of all permutations, because it's slow
- rowblocksizes = (n, m, k)
- colblocksizes = (m, k, n)
- K = BlockMatrix([
- [MatrixSymbol('M%s%s' % (rows, cols), rows, cols) for cols in colblocksizes]
- for rows in rowblocksizes
- ])
- collapse = block_collapse(K.I)
- assert isinstance(collapse, BlockMatrix)
- def test_BlockDiagMatrix():
- A = MatrixSymbol('A', n, n)
- B = MatrixSymbol('B', m, m)
- C = MatrixSymbol('C', l, l)
- M = MatrixSymbol('M', n + m + l, n + m + l)
- X = BlockDiagMatrix(A, B, C)
- Y = BlockDiagMatrix(A, 2*B, 3*C)
- assert X.blocks[1, 1] == B
- assert X.shape == (n + m + l, n + m + l)
- assert all(X.blocks[i, j].is_ZeroMatrix if i != j else X.blocks[i, j] in [A, B, C]
- for i in range(3) for j in range(3))
- assert X.__class__(*X.args) == X
- assert X.get_diag_blocks() == (A, B, C)
- assert isinstance(block_collapse(X.I * X), Identity)
- assert bc_matmul(X*X) == BlockDiagMatrix(A*A, B*B, C*C)
- assert block_collapse(X*X) == BlockDiagMatrix(A*A, B*B, C*C)
- #XXX: should be == ??
- assert block_collapse(X + X).equals(BlockDiagMatrix(2*A, 2*B, 2*C))
- assert block_collapse(X*Y) == BlockDiagMatrix(A*A, 2*B*B, 3*C*C)
- assert block_collapse(X + Y) == BlockDiagMatrix(2*A, 3*B, 4*C)
- # Ensure that BlockDiagMatrices can still interact with normal MatrixExprs
- assert (X*(2*M)).is_MatMul
- assert (X + (2*M)).is_MatAdd
- assert (X._blockmul(M)).is_MatMul
- assert (X._blockadd(M)).is_MatAdd
- def test_BlockDiagMatrix_nonsquare():
- A = MatrixSymbol('A', n, m)
- B = MatrixSymbol('B', k, l)
- X = BlockDiagMatrix(A, B)
- assert X.shape == (n + k, m + l)
- assert X.shape == (n + k, m + l)
- assert X.rowblocksizes == [n, k]
- assert X.colblocksizes == [m, l]
- C = MatrixSymbol('C', n, m)
- D = MatrixSymbol('D', k, l)
- Y = BlockDiagMatrix(C, D)
- assert block_collapse(X + Y) == BlockDiagMatrix(A + C, B + D)
- assert block_collapse(X * Y.T) == BlockDiagMatrix(A * C.T, B * D.T)
- raises(NonInvertibleMatrixError, lambda: BlockDiagMatrix(A, C.T).inverse())
- def test_BlockDiagMatrix_determinant():
- A = MatrixSymbol('A', n, n)
- B = MatrixSymbol('B', m, m)
- assert det(BlockDiagMatrix()) == 1
- assert det(BlockDiagMatrix(A)) == det(A)
- assert det(BlockDiagMatrix(A, B)) == det(A) * det(B)
- # non-square blocks
- C = MatrixSymbol('C', m, n)
- D = MatrixSymbol('D', n, m)
- assert det(BlockDiagMatrix(C, D)) == 0
- def test_BlockDiagMatrix_trace():
- assert trace(BlockDiagMatrix()) == 0
- assert trace(BlockDiagMatrix(ZeroMatrix(n, n))) == 0
- A = MatrixSymbol('A', n, n)
- assert trace(BlockDiagMatrix(A)) == trace(A)
- B = MatrixSymbol('B', m, m)
- assert trace(BlockDiagMatrix(A, B)) == trace(A) + trace(B)
- # non-square blocks
- C = MatrixSymbol('C', m, n)
- D = MatrixSymbol('D', n, m)
- assert isinstance(trace(BlockDiagMatrix(C, D)), Trace)
- def test_BlockDiagMatrix_transpose():
- A = MatrixSymbol('A', n, m)
- B = MatrixSymbol('B', k, l)
- assert transpose(BlockDiagMatrix()) == BlockDiagMatrix()
- assert transpose(BlockDiagMatrix(A)) == BlockDiagMatrix(A.T)
- assert transpose(BlockDiagMatrix(A, B)) == BlockDiagMatrix(A.T, B.T)
- def test_issue_2460():
- bdm1 = BlockDiagMatrix(Matrix([i]), Matrix([j]))
- bdm2 = BlockDiagMatrix(Matrix([k]), Matrix([l]))
- assert block_collapse(bdm1 + bdm2) == BlockDiagMatrix(Matrix([i + k]), Matrix([j + l]))
- def test_blockcut():
- A = MatrixSymbol('A', n, m)
- B = blockcut(A, (n/2, n/2), (m/2, m/2))
- assert B == BlockMatrix([[A[:n/2, :m/2], A[:n/2, m/2:]],
- [A[n/2:, :m/2], A[n/2:, m/2:]]])
- M = ImmutableMatrix(4, 4, range(16))
- B = blockcut(M, (2, 2), (2, 2))
- assert M == ImmutableMatrix(B)
- B = blockcut(M, (1, 3), (2, 2))
- assert ImmutableMatrix(B.blocks[0, 1]) == ImmutableMatrix([[2, 3]])
- def test_reblock_2x2():
- B = BlockMatrix([[MatrixSymbol('A_%d%d'%(i,j), 2, 2)
- for j in range(3)]
- for i in range(3)])
- assert B.blocks.shape == (3, 3)
- BB = reblock_2x2(B)
- assert BB.blocks.shape == (2, 2)
- assert B.shape == BB.shape
- assert B.as_explicit() == BB.as_explicit()
- def test_deblock():
- B = BlockMatrix([[MatrixSymbol('A_%d%d'%(i,j), n, n)
- for j in range(4)]
- for i in range(4)])
- assert deblock(reblock_2x2(B)) == B
- def test_block_collapse_type():
- bm1 = BlockDiagMatrix(ImmutableMatrix([1]), ImmutableMatrix([2]))
- bm2 = BlockDiagMatrix(ImmutableMatrix([3]), ImmutableMatrix([4]))
- assert bm1.T.__class__ == BlockDiagMatrix
- assert block_collapse(bm1 - bm2).__class__ == BlockDiagMatrix
- assert block_collapse(Inverse(bm1)).__class__ == BlockDiagMatrix
- assert block_collapse(Transpose(bm1)).__class__ == BlockDiagMatrix
- assert bc_transpose(Transpose(bm1)).__class__ == BlockDiagMatrix
- assert bc_inverse(Inverse(bm1)).__class__ == BlockDiagMatrix
- def test_invalid_block_matrix():
- raises(ValueError, lambda: BlockMatrix([
- [Identity(2), Identity(5)],
- ]))
- raises(ValueError, lambda: BlockMatrix([
- [Identity(n), Identity(m)],
- ]))
- raises(ValueError, lambda: BlockMatrix([
- [ZeroMatrix(n, n), ZeroMatrix(n, n)],
- [ZeroMatrix(n, n - 1), ZeroMatrix(n, n + 1)],
- ]))
- raises(ValueError, lambda: BlockMatrix([
- [ZeroMatrix(n - 1, n), ZeroMatrix(n, n)],
- [ZeroMatrix(n + 1, n), ZeroMatrix(n, n)],
- ]))
- def test_block_lu_decomposition():
- A = MatrixSymbol('A', n, n)
- B = MatrixSymbol('B', n, m)
- C = MatrixSymbol('C', m, n)
- D = MatrixSymbol('D', m, m)
- X = BlockMatrix([[A, B], [C, D]])
- #LDU decomposition
- L, D, U = X.LDUdecomposition()
- assert block_collapse(L*D*U) == X
- #UDL decomposition
- U, D, L = X.UDLdecomposition()
- assert block_collapse(U*D*L) == X
- #LU decomposition
- L, U = X.LUdecomposition()
- assert block_collapse(L*U) == X
- def test_issue_21866():
- n = 10
- I = Identity(n)
- O = ZeroMatrix(n, n)
- A = BlockMatrix([[ I, O, O, O ],
- [ O, I, O, O ],
- [ O, O, I, O ],
- [ I, O, O, I ]])
- Ainv = block_collapse(A.inv())
- AinvT = BlockMatrix([[ I, O, O, O ],
- [ O, I, O, O ],
- [ O, O, I, O ],
- [ -I, O, O, I ]])
- assert Ainv == AinvT
- def test_adjoint_and_special_matrices():
- A = Identity(3)
- B = OneMatrix(3, 2)
- C = ZeroMatrix(2, 3)
- D = Identity(2)
- X = BlockMatrix([[A, B], [C, D]])
- X2 = BlockMatrix([[A, S.ImaginaryUnit*B], [C, D]])
- assert X.adjoint() == BlockMatrix([[A, ZeroMatrix(3, 2)], [OneMatrix(2, 3), D]])
- assert re(X) == X
- assert X2.adjoint() == BlockMatrix([[A, ZeroMatrix(3, 2)], [-S.ImaginaryUnit*OneMatrix(2, 3), D]])
- assert im(X2) == BlockMatrix([[ZeroMatrix(3, 3), OneMatrix(3, 2)], [ZeroMatrix(2, 3), ZeroMatrix(2, 2)]])
|