test_blockmatrix.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445
  1. from sympy.matrices.expressions.trace import Trace
  2. from sympy.testing.pytest import raises, slow
  3. from sympy.matrices.expressions.blockmatrix import (
  4. block_collapse, bc_matmul, bc_block_plus_ident, BlockDiagMatrix,
  5. BlockMatrix, bc_dist, bc_matadd, bc_transpose, bc_inverse,
  6. blockcut, reblock_2x2, deblock)
  7. from sympy.matrices.expressions import (MatrixSymbol, Identity,
  8. Inverse, trace, Transpose, det, ZeroMatrix, OneMatrix)
  9. from sympy.matrices.common import NonInvertibleMatrixError
  10. from sympy.matrices import (
  11. Matrix, ImmutableMatrix, ImmutableSparseMatrix)
  12. from sympy.core import Tuple, symbols, Expr, S
  13. from sympy.functions import transpose, im, re
  14. i, j, k, l, m, n, p = symbols('i:n, p', integer=True)
  15. A = MatrixSymbol('A', n, n)
  16. B = MatrixSymbol('B', n, n)
  17. C = MatrixSymbol('C', n, n)
  18. D = MatrixSymbol('D', n, n)
  19. G = MatrixSymbol('G', n, n)
  20. H = MatrixSymbol('H', n, n)
  21. b1 = BlockMatrix([[G, H]])
  22. b2 = BlockMatrix([[G], [H]])
  23. def test_bc_matmul():
  24. assert bc_matmul(H*b1*b2*G) == BlockMatrix([[(H*G*G + H*H*H)*G]])
  25. def test_bc_matadd():
  26. assert bc_matadd(BlockMatrix([[G, H]]) + BlockMatrix([[H, H]])) == \
  27. BlockMatrix([[G+H, H+H]])
  28. def test_bc_transpose():
  29. assert bc_transpose(Transpose(BlockMatrix([[A, B], [C, D]]))) == \
  30. BlockMatrix([[A.T, C.T], [B.T, D.T]])
  31. def test_bc_dist_diag():
  32. A = MatrixSymbol('A', n, n)
  33. B = MatrixSymbol('B', m, m)
  34. C = MatrixSymbol('C', l, l)
  35. X = BlockDiagMatrix(A, B, C)
  36. assert bc_dist(X+X).equals(BlockDiagMatrix(2*A, 2*B, 2*C))
  37. def test_block_plus_ident():
  38. A = MatrixSymbol('A', n, n)
  39. B = MatrixSymbol('B', n, m)
  40. C = MatrixSymbol('C', m, n)
  41. D = MatrixSymbol('D', m, m)
  42. X = BlockMatrix([[A, B], [C, D]])
  43. Z = MatrixSymbol('Z', n + m, n + m)
  44. assert bc_block_plus_ident(X + Identity(m + n) + Z) == \
  45. BlockDiagMatrix(Identity(n), Identity(m)) + X + Z
  46. def test_BlockMatrix():
  47. A = MatrixSymbol('A', n, m)
  48. B = MatrixSymbol('B', n, k)
  49. C = MatrixSymbol('C', l, m)
  50. D = MatrixSymbol('D', l, k)
  51. M = MatrixSymbol('M', m + k, p)
  52. N = MatrixSymbol('N', l + n, k + m)
  53. X = BlockMatrix(Matrix([[A, B], [C, D]]))
  54. assert X.__class__(*X.args) == X
  55. # block_collapse does nothing on normal inputs
  56. E = MatrixSymbol('E', n, m)
  57. assert block_collapse(A + 2*E) == A + 2*E
  58. F = MatrixSymbol('F', m, m)
  59. assert block_collapse(E.T*A*F) == E.T*A*F
  60. assert X.shape == (l + n, k + m)
  61. assert X.blockshape == (2, 2)
  62. assert transpose(X) == BlockMatrix(Matrix([[A.T, C.T], [B.T, D.T]]))
  63. assert transpose(X).shape == X.shape[::-1]
  64. # Test that BlockMatrices and MatrixSymbols can still mix
  65. assert (X*M).is_MatMul
  66. assert X._blockmul(M).is_MatMul
  67. assert (X*M).shape == (n + l, p)
  68. assert (X + N).is_MatAdd
  69. assert X._blockadd(N).is_MatAdd
  70. assert (X + N).shape == X.shape
  71. E = MatrixSymbol('E', m, 1)
  72. F = MatrixSymbol('F', k, 1)
  73. Y = BlockMatrix(Matrix([[E], [F]]))
  74. assert (X*Y).shape == (l + n, 1)
  75. assert block_collapse(X*Y).blocks[0, 0] == A*E + B*F
  76. assert block_collapse(X*Y).blocks[1, 0] == C*E + D*F
  77. # block_collapse passes down into container objects, transposes, and inverse
  78. assert block_collapse(transpose(X*Y)) == transpose(block_collapse(X*Y))
  79. assert block_collapse(Tuple(X*Y, 2*X)) == (
  80. block_collapse(X*Y), block_collapse(2*X))
  81. # Make sure that MatrixSymbols will enter 1x1 BlockMatrix if it simplifies
  82. Ab = BlockMatrix([[A]])
  83. Z = MatrixSymbol('Z', *A.shape)
  84. assert block_collapse(Ab + Z) == A + Z
  85. def test_block_collapse_explicit_matrices():
  86. A = Matrix([[1, 2], [3, 4]])
  87. assert block_collapse(BlockMatrix([[A]])) == A
  88. A = ImmutableSparseMatrix([[1, 2], [3, 4]])
  89. assert block_collapse(BlockMatrix([[A]])) == A
  90. def test_issue_17624():
  91. a = MatrixSymbol("a", 2, 2)
  92. z = ZeroMatrix(2, 2)
  93. b = BlockMatrix([[a, z], [z, z]])
  94. assert block_collapse(b * b) == BlockMatrix([[a**2, z], [z, z]])
  95. assert block_collapse(b * b * b) == BlockMatrix([[a**3, z], [z, z]])
  96. def test_issue_18618():
  97. A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
  98. assert A == Matrix(BlockDiagMatrix(A))
  99. def test_BlockMatrix_trace():
  100. A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD']
  101. X = BlockMatrix([[A, B], [C, D]])
  102. assert trace(X) == trace(A) + trace(D)
  103. assert trace(BlockMatrix([ZeroMatrix(n, n)])) == 0
  104. def test_BlockMatrix_Determinant():
  105. A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD']
  106. X = BlockMatrix([[A, B], [C, D]])
  107. from sympy.assumptions.ask import Q
  108. from sympy.assumptions.assume import assuming
  109. with assuming(Q.invertible(A)):
  110. assert det(X) == det(A) * det(X.schur('A'))
  111. assert isinstance(det(X), Expr)
  112. assert det(BlockMatrix([A])) == det(A)
  113. assert det(BlockMatrix([ZeroMatrix(n, n)])) == 0
  114. def test_squareBlockMatrix():
  115. A = MatrixSymbol('A', n, n)
  116. B = MatrixSymbol('B', n, m)
  117. C = MatrixSymbol('C', m, n)
  118. D = MatrixSymbol('D', m, m)
  119. X = BlockMatrix([[A, B], [C, D]])
  120. Y = BlockMatrix([[A]])
  121. assert X.is_square
  122. Q = X + Identity(m + n)
  123. assert (block_collapse(Q) ==
  124. BlockMatrix([[A + Identity(n), B], [C, D + Identity(m)]]))
  125. assert (X + MatrixSymbol('Q', n + m, n + m)).is_MatAdd
  126. assert (X * MatrixSymbol('Q', n + m, n + m)).is_MatMul
  127. assert block_collapse(Y.I) == A.I
  128. assert isinstance(X.inverse(), Inverse)
  129. assert not X.is_Identity
  130. Z = BlockMatrix([[Identity(n), B], [C, D]])
  131. assert not Z.is_Identity
  132. def test_BlockMatrix_2x2_inverse_symbolic():
  133. A = MatrixSymbol('A', n, m)
  134. B = MatrixSymbol('B', n, k - m)
  135. C = MatrixSymbol('C', k - n, m)
  136. D = MatrixSymbol('D', k - n, k - m)
  137. X = BlockMatrix([[A, B], [C, D]])
  138. assert X.is_square and X.shape == (k, k)
  139. assert isinstance(block_collapse(X.I), Inverse) # Can't invert when none of the blocks is square
  140. # test code path where only A is invertible
  141. A = MatrixSymbol('A', n, n)
  142. B = MatrixSymbol('B', n, m)
  143. C = MatrixSymbol('C', m, n)
  144. D = ZeroMatrix(m, m)
  145. X = BlockMatrix([[A, B], [C, D]])
  146. assert block_collapse(X.inverse()) == BlockMatrix([
  147. [A.I + A.I * B * X.schur('A').I * C * A.I, -A.I * B * X.schur('A').I],
  148. [-X.schur('A').I * C * A.I, X.schur('A').I],
  149. ])
  150. # test code path where only B is invertible
  151. A = MatrixSymbol('A', n, m)
  152. B = MatrixSymbol('B', n, n)
  153. C = ZeroMatrix(m, m)
  154. D = MatrixSymbol('D', m, n)
  155. X = BlockMatrix([[A, B], [C, D]])
  156. assert block_collapse(X.inverse()) == BlockMatrix([
  157. [-X.schur('B').I * D * B.I, X.schur('B').I],
  158. [B.I + B.I * A * X.schur('B').I * D * B.I, -B.I * A * X.schur('B').I],
  159. ])
  160. # test code path where only C is invertible
  161. A = MatrixSymbol('A', n, m)
  162. B = ZeroMatrix(n, n)
  163. C = MatrixSymbol('C', m, m)
  164. D = MatrixSymbol('D', m, n)
  165. X = BlockMatrix([[A, B], [C, D]])
  166. assert block_collapse(X.inverse()) == BlockMatrix([
  167. [-C.I * D * X.schur('C').I, C.I + C.I * D * X.schur('C').I * A * C.I],
  168. [X.schur('C').I, -X.schur('C').I * A * C.I],
  169. ])
  170. # test code path where only D is invertible
  171. A = ZeroMatrix(n, n)
  172. B = MatrixSymbol('B', n, m)
  173. C = MatrixSymbol('C', m, n)
  174. D = MatrixSymbol('D', m, m)
  175. X = BlockMatrix([[A, B], [C, D]])
  176. assert block_collapse(X.inverse()) == BlockMatrix([
  177. [X.schur('D').I, -X.schur('D').I * B * D.I],
  178. [-D.I * C * X.schur('D').I, D.I + D.I * C * X.schur('D').I * B * D.I],
  179. ])
  180. def test_BlockMatrix_2x2_inverse_numeric():
  181. """Test 2x2 block matrix inversion numerically for all 4 formulas"""
  182. M = Matrix([[1, 2], [3, 4]])
  183. # rank deficient matrices that have full rank when two of them combined
  184. D1 = Matrix([[1, 2], [2, 4]])
  185. D2 = Matrix([[1, 3], [3, 9]])
  186. D3 = Matrix([[1, 4], [4, 16]])
  187. assert D1.rank() == D2.rank() == D3.rank() == 1
  188. assert (D1 + D2).rank() == (D2 + D3).rank() == (D3 + D1).rank() == 2
  189. # Only A is invertible
  190. K = BlockMatrix([[M, D1], [D2, D3]])
  191. assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
  192. # Only B is invertible
  193. K = BlockMatrix([[D1, M], [D2, D3]])
  194. assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
  195. # Only C is invertible
  196. K = BlockMatrix([[D1, D2], [M, D3]])
  197. assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
  198. # Only D is invertible
  199. K = BlockMatrix([[D1, D2], [D3, M]])
  200. assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
  201. @slow
  202. def test_BlockMatrix_3x3_symbolic():
  203. # Only test one of these, instead of all permutations, because it's slow
  204. rowblocksizes = (n, m, k)
  205. colblocksizes = (m, k, n)
  206. K = BlockMatrix([
  207. [MatrixSymbol('M%s%s' % (rows, cols), rows, cols) for cols in colblocksizes]
  208. for rows in rowblocksizes
  209. ])
  210. collapse = block_collapse(K.I)
  211. assert isinstance(collapse, BlockMatrix)
  212. def test_BlockDiagMatrix():
  213. A = MatrixSymbol('A', n, n)
  214. B = MatrixSymbol('B', m, m)
  215. C = MatrixSymbol('C', l, l)
  216. M = MatrixSymbol('M', n + m + l, n + m + l)
  217. X = BlockDiagMatrix(A, B, C)
  218. Y = BlockDiagMatrix(A, 2*B, 3*C)
  219. assert X.blocks[1, 1] == B
  220. assert X.shape == (n + m + l, n + m + l)
  221. assert all(X.blocks[i, j].is_ZeroMatrix if i != j else X.blocks[i, j] in [A, B, C]
  222. for i in range(3) for j in range(3))
  223. assert X.__class__(*X.args) == X
  224. assert X.get_diag_blocks() == (A, B, C)
  225. assert isinstance(block_collapse(X.I * X), Identity)
  226. assert bc_matmul(X*X) == BlockDiagMatrix(A*A, B*B, C*C)
  227. assert block_collapse(X*X) == BlockDiagMatrix(A*A, B*B, C*C)
  228. #XXX: should be == ??
  229. assert block_collapse(X + X).equals(BlockDiagMatrix(2*A, 2*B, 2*C))
  230. assert block_collapse(X*Y) == BlockDiagMatrix(A*A, 2*B*B, 3*C*C)
  231. assert block_collapse(X + Y) == BlockDiagMatrix(2*A, 3*B, 4*C)
  232. # Ensure that BlockDiagMatrices can still interact with normal MatrixExprs
  233. assert (X*(2*M)).is_MatMul
  234. assert (X + (2*M)).is_MatAdd
  235. assert (X._blockmul(M)).is_MatMul
  236. assert (X._blockadd(M)).is_MatAdd
  237. def test_BlockDiagMatrix_nonsquare():
  238. A = MatrixSymbol('A', n, m)
  239. B = MatrixSymbol('B', k, l)
  240. X = BlockDiagMatrix(A, B)
  241. assert X.shape == (n + k, m + l)
  242. assert X.shape == (n + k, m + l)
  243. assert X.rowblocksizes == [n, k]
  244. assert X.colblocksizes == [m, l]
  245. C = MatrixSymbol('C', n, m)
  246. D = MatrixSymbol('D', k, l)
  247. Y = BlockDiagMatrix(C, D)
  248. assert block_collapse(X + Y) == BlockDiagMatrix(A + C, B + D)
  249. assert block_collapse(X * Y.T) == BlockDiagMatrix(A * C.T, B * D.T)
  250. raises(NonInvertibleMatrixError, lambda: BlockDiagMatrix(A, C.T).inverse())
  251. def test_BlockDiagMatrix_determinant():
  252. A = MatrixSymbol('A', n, n)
  253. B = MatrixSymbol('B', m, m)
  254. assert det(BlockDiagMatrix()) == 1
  255. assert det(BlockDiagMatrix(A)) == det(A)
  256. assert det(BlockDiagMatrix(A, B)) == det(A) * det(B)
  257. # non-square blocks
  258. C = MatrixSymbol('C', m, n)
  259. D = MatrixSymbol('D', n, m)
  260. assert det(BlockDiagMatrix(C, D)) == 0
  261. def test_BlockDiagMatrix_trace():
  262. assert trace(BlockDiagMatrix()) == 0
  263. assert trace(BlockDiagMatrix(ZeroMatrix(n, n))) == 0
  264. A = MatrixSymbol('A', n, n)
  265. assert trace(BlockDiagMatrix(A)) == trace(A)
  266. B = MatrixSymbol('B', m, m)
  267. assert trace(BlockDiagMatrix(A, B)) == trace(A) + trace(B)
  268. # non-square blocks
  269. C = MatrixSymbol('C', m, n)
  270. D = MatrixSymbol('D', n, m)
  271. assert isinstance(trace(BlockDiagMatrix(C, D)), Trace)
  272. def test_BlockDiagMatrix_transpose():
  273. A = MatrixSymbol('A', n, m)
  274. B = MatrixSymbol('B', k, l)
  275. assert transpose(BlockDiagMatrix()) == BlockDiagMatrix()
  276. assert transpose(BlockDiagMatrix(A)) == BlockDiagMatrix(A.T)
  277. assert transpose(BlockDiagMatrix(A, B)) == BlockDiagMatrix(A.T, B.T)
  278. def test_issue_2460():
  279. bdm1 = BlockDiagMatrix(Matrix([i]), Matrix([j]))
  280. bdm2 = BlockDiagMatrix(Matrix([k]), Matrix([l]))
  281. assert block_collapse(bdm1 + bdm2) == BlockDiagMatrix(Matrix([i + k]), Matrix([j + l]))
  282. def test_blockcut():
  283. A = MatrixSymbol('A', n, m)
  284. B = blockcut(A, (n/2, n/2), (m/2, m/2))
  285. assert B == BlockMatrix([[A[:n/2, :m/2], A[:n/2, m/2:]],
  286. [A[n/2:, :m/2], A[n/2:, m/2:]]])
  287. M = ImmutableMatrix(4, 4, range(16))
  288. B = blockcut(M, (2, 2), (2, 2))
  289. assert M == ImmutableMatrix(B)
  290. B = blockcut(M, (1, 3), (2, 2))
  291. assert ImmutableMatrix(B.blocks[0, 1]) == ImmutableMatrix([[2, 3]])
  292. def test_reblock_2x2():
  293. B = BlockMatrix([[MatrixSymbol('A_%d%d'%(i,j), 2, 2)
  294. for j in range(3)]
  295. for i in range(3)])
  296. assert B.blocks.shape == (3, 3)
  297. BB = reblock_2x2(B)
  298. assert BB.blocks.shape == (2, 2)
  299. assert B.shape == BB.shape
  300. assert B.as_explicit() == BB.as_explicit()
  301. def test_deblock():
  302. B = BlockMatrix([[MatrixSymbol('A_%d%d'%(i,j), n, n)
  303. for j in range(4)]
  304. for i in range(4)])
  305. assert deblock(reblock_2x2(B)) == B
  306. def test_block_collapse_type():
  307. bm1 = BlockDiagMatrix(ImmutableMatrix([1]), ImmutableMatrix([2]))
  308. bm2 = BlockDiagMatrix(ImmutableMatrix([3]), ImmutableMatrix([4]))
  309. assert bm1.T.__class__ == BlockDiagMatrix
  310. assert block_collapse(bm1 - bm2).__class__ == BlockDiagMatrix
  311. assert block_collapse(Inverse(bm1)).__class__ == BlockDiagMatrix
  312. assert block_collapse(Transpose(bm1)).__class__ == BlockDiagMatrix
  313. assert bc_transpose(Transpose(bm1)).__class__ == BlockDiagMatrix
  314. assert bc_inverse(Inverse(bm1)).__class__ == BlockDiagMatrix
  315. def test_invalid_block_matrix():
  316. raises(ValueError, lambda: BlockMatrix([
  317. [Identity(2), Identity(5)],
  318. ]))
  319. raises(ValueError, lambda: BlockMatrix([
  320. [Identity(n), Identity(m)],
  321. ]))
  322. raises(ValueError, lambda: BlockMatrix([
  323. [ZeroMatrix(n, n), ZeroMatrix(n, n)],
  324. [ZeroMatrix(n, n - 1), ZeroMatrix(n, n + 1)],
  325. ]))
  326. raises(ValueError, lambda: BlockMatrix([
  327. [ZeroMatrix(n - 1, n), ZeroMatrix(n, n)],
  328. [ZeroMatrix(n + 1, n), ZeroMatrix(n, n)],
  329. ]))
  330. def test_block_lu_decomposition():
  331. A = MatrixSymbol('A', n, n)
  332. B = MatrixSymbol('B', n, m)
  333. C = MatrixSymbol('C', m, n)
  334. D = MatrixSymbol('D', m, m)
  335. X = BlockMatrix([[A, B], [C, D]])
  336. #LDU decomposition
  337. L, D, U = X.LDUdecomposition()
  338. assert block_collapse(L*D*U) == X
  339. #UDL decomposition
  340. U, D, L = X.UDLdecomposition()
  341. assert block_collapse(U*D*L) == X
  342. #LU decomposition
  343. L, U = X.LUdecomposition()
  344. assert block_collapse(L*U) == X
  345. def test_issue_21866():
  346. n = 10
  347. I = Identity(n)
  348. O = ZeroMatrix(n, n)
  349. A = BlockMatrix([[ I, O, O, O ],
  350. [ O, I, O, O ],
  351. [ O, O, I, O ],
  352. [ I, O, O, I ]])
  353. Ainv = block_collapse(A.inv())
  354. AinvT = BlockMatrix([[ I, O, O, O ],
  355. [ O, I, O, O ],
  356. [ O, O, I, O ],
  357. [ -I, O, O, I ]])
  358. assert Ainv == AinvT
  359. def test_adjoint_and_special_matrices():
  360. A = Identity(3)
  361. B = OneMatrix(3, 2)
  362. C = ZeroMatrix(2, 3)
  363. D = Identity(2)
  364. X = BlockMatrix([[A, B], [C, D]])
  365. X2 = BlockMatrix([[A, S.ImaginaryUnit*B], [C, D]])
  366. assert X.adjoint() == BlockMatrix([[A, ZeroMatrix(3, 2)], [OneMatrix(2, 3), D]])
  367. assert re(X) == X
  368. assert X2.adjoint() == BlockMatrix([[A, ZeroMatrix(3, 2)], [-S.ImaginaryUnit*OneMatrix(2, 3), D]])
  369. assert im(X2) == BlockMatrix([[ZeroMatrix(3, 3), OneMatrix(3, 2)], [ZeroMatrix(2, 3), ZeroMatrix(2, 2)]])