123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664 |
- from sympy.core.numbers import (Float, Rational, oo, pi)
- from sympy.core.singleton import S
- from sympy.core.symbol import (Symbol, symbols)
- from sympy.functions.elementary.complexes import Abs
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.functions.elementary.trigonometric import (acos, cos, sin)
- from sympy.functions.elementary.trigonometric import tan
- from sympy.geometry import (Circle, Ellipse, GeometryError, Point, Point2D,
- Polygon, Ray, RegularPolygon, Segment, Triangle,
- are_similar, convex_hull, intersection, Line, Ray2D)
- from sympy.testing.pytest import raises, slow, warns
- from sympy.core.random import verify_numerically
- from sympy.geometry.polygon import rad, deg
- from sympy.integrals.integrals import integrate
- def feq(a, b):
- """Test if two floating point values are 'equal'."""
- t_float = Float("1.0E-10")
- return -t_float < a - b < t_float
- @slow
- def test_polygon():
- x = Symbol('x', real=True)
- y = Symbol('y', real=True)
- q = Symbol('q', real=True)
- u = Symbol('u', real=True)
- v = Symbol('v', real=True)
- w = Symbol('w', real=True)
- x1 = Symbol('x1', real=True)
- half = S.Half
- a, b, c = Point(0, 0), Point(2, 0), Point(3, 3)
- t = Triangle(a, b, c)
- assert Polygon(Point(0, 0)) == Point(0, 0)
- assert Polygon(a, Point(1, 0), b, c) == t
- assert Polygon(Point(1, 0), b, c, a) == t
- assert Polygon(b, c, a, Point(1, 0)) == t
- # 2 "remove folded" tests
- assert Polygon(a, Point(3, 0), b, c) == t
- assert Polygon(a, b, Point(3, -1), b, c) == t
- # remove multiple collinear points
- assert Polygon(Point(-4, 15), Point(-11, 15), Point(-15, 15),
- Point(-15, 33/5), Point(-15, -87/10), Point(-15, -15),
- Point(-42/5, -15), Point(-2, -15), Point(7, -15), Point(15, -15),
- Point(15, -3), Point(15, 10), Point(15, 15)) == \
- Polygon(Point(-15, -15), Point(15, -15), Point(15, 15), Point(-15, 15))
- p1 = Polygon(
- Point(0, 0), Point(3, -1),
- Point(6, 0), Point(4, 5),
- Point(2, 3), Point(0, 3))
- p2 = Polygon(
- Point(6, 0), Point(3, -1),
- Point(0, 0), Point(0, 3),
- Point(2, 3), Point(4, 5))
- p3 = Polygon(
- Point(0, 0), Point(3, 0),
- Point(5, 2), Point(4, 4))
- p4 = Polygon(
- Point(0, 0), Point(4, 4),
- Point(5, 2), Point(3, 0))
- p5 = Polygon(
- Point(0, 0), Point(4, 4),
- Point(0, 4))
- p6 = Polygon(
- Point(-11, 1), Point(-9, 6.6),
- Point(-4, -3), Point(-8.4, -8.7))
- p7 = Polygon(
- Point(x, y), Point(q, u),
- Point(v, w))
- p8 = Polygon(
- Point(x, y), Point(v, w),
- Point(q, u))
- p9 = Polygon(
- Point(0, 0), Point(4, 4),
- Point(3, 0), Point(5, 2))
- p10 = Polygon(
- Point(0, 2), Point(2, 2),
- Point(0, 0), Point(2, 0))
- p11 = Polygon(Point(0, 0), 1, n=3)
- p12 = Polygon(Point(0, 0), 1, 0, n=3)
- r = Ray(Point(-9, 6.6), Point(-9, 5.5))
- #
- # General polygon
- #
- assert p1 == p2
- assert len(p1.args) == 6
- assert len(p1.sides) == 6
- assert p1.perimeter == 5 + 2*sqrt(10) + sqrt(29) + sqrt(8)
- assert p1.area == 22
- assert not p1.is_convex()
- assert Polygon((-1, 1), (2, -1), (2, 1), (-1, -1), (3, 0)
- ).is_convex() is False
- # ensure convex for both CW and CCW point specification
- assert p3.is_convex()
- assert p4.is_convex()
- dict5 = p5.angles
- assert dict5[Point(0, 0)] == pi / 4
- assert dict5[Point(0, 4)] == pi / 2
- assert p5.encloses_point(Point(x, y)) is None
- assert p5.encloses_point(Point(1, 3))
- assert p5.encloses_point(Point(0, 0)) is False
- assert p5.encloses_point(Point(4, 0)) is False
- assert p1.encloses(Circle(Point(2.5, 2.5), 5)) is False
- assert p1.encloses(Ellipse(Point(2.5, 2), 5, 6)) is False
- assert p5.plot_interval('x') == [x, 0, 1]
- assert p5.distance(
- Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2)
- assert p5.distance(
- Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4
- with warns(UserWarning, \
- match="Polygons may intersect producing erroneous output"):
- Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance(
- Polygon(Point(0, 0), Point(0, 1), Point(1, 1)))
- assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4)))
- assert hash(p1) == hash(p2)
- assert hash(p7) == hash(p8)
- assert hash(p3) != hash(p9)
- assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0))
- assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5
- assert p5 != Point(0, 4)
- assert Point(0, 1) in p5
- assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \
- Point(0, 0)
- raises(ValueError, lambda: Polygon(
- Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x'))
- assert p6.intersection(r) == [Point(-9, Rational(-84, 13)), Point(-9, Rational(33, 5))]
- assert p10.area == 0
- assert p11 == RegularPolygon(Point(0, 0), 1, 3, 0)
- assert p11 == p12
- assert p11.vertices[0] == Point(1, 0)
- assert p11.args[0] == Point(0, 0)
- p11.spin(pi/2)
- assert p11.vertices[0] == Point(0, 1)
- #
- # Regular polygon
- #
- p1 = RegularPolygon(Point(0, 0), 10, 5)
- p2 = RegularPolygon(Point(0, 0), 5, 5)
- raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0,
- 1), Point(1, 1)))
- raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2))
- raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5))
- assert p1 != p2
- assert p1.interior_angle == pi*Rational(3, 5)
- assert p1.exterior_angle == pi*Rational(2, 5)
- assert p2.apothem == 5*cos(pi/5)
- assert p2.circumcenter == p1.circumcenter == Point(0, 0)
- assert p1.circumradius == p1.radius == 10
- assert p2.circumcircle == Circle(Point(0, 0), 5)
- assert p2.incircle == Circle(Point(0, 0), p2.apothem)
- assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4)
- p2.spin(pi / 10)
- dict1 = p2.angles
- assert dict1[Point(0, 5)] == 3 * pi / 5
- assert p1.is_convex()
- assert p1.rotation == 0
- assert p1.encloses_point(Point(0, 0))
- assert p1.encloses_point(Point(11, 0)) is False
- assert p2.encloses_point(Point(0, 4.9))
- p1.spin(pi/3)
- assert p1.rotation == pi/3
- assert p1.vertices[0] == Point(5, 5*sqrt(3))
- for var in p1.args:
- if isinstance(var, Point):
- assert var == Point(0, 0)
- else:
- assert var in (5, 10, pi / 3)
- assert p1 != Point(0, 0)
- assert p1 != p5
- # while spin works in place (notice that rotation is 2pi/3 below)
- # rotate returns a new object
- p1_old = p1
- assert p1.rotate(pi/3) == RegularPolygon(Point(0, 0), 10, 5, pi*Rational(2, 3))
- assert p1 == p1_old
- assert p1.area == (-250*sqrt(5) + 1250)/(4*tan(pi/5))
- assert p1.length == 20*sqrt(-sqrt(5)/8 + Rational(5, 8))
- assert p1.scale(2, 2) == \
- RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation)
- assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \
- Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3))
- assert repr(p1) == str(p1)
- #
- # Angles
- #
- angles = p4.angles
- assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
- assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
- assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
- assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))
- angles = p3.angles
- assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
- assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
- assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
- assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))
- #
- # Triangle
- #
- p1 = Point(0, 0)
- p2 = Point(5, 0)
- p3 = Point(0, 5)
- t1 = Triangle(p1, p2, p3)
- t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4))))
- t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
- s1 = t1.sides
- assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2)
- raises(GeometryError, lambda: Triangle(Point(0, 0)))
- # Basic stuff
- assert Triangle(p1, p1, p1) == p1
- assert Triangle(p2, p2*2, p2*3) == Segment(p2, p2*3)
- assert t1.area == Rational(25, 2)
- assert t1.is_right()
- assert t2.is_right() is False
- assert t3.is_right()
- assert p1 in t1
- assert t1.sides[0] in t1
- assert Segment((0, 0), (1, 0)) in t1
- assert Point(5, 5) not in t2
- assert t1.is_convex()
- assert feq(t1.angles[p1].evalf(), pi.evalf()/2)
- assert t1.is_equilateral() is False
- assert t2.is_equilateral()
- assert t3.is_equilateral() is False
- assert are_similar(t1, t2) is False
- assert are_similar(t1, t3)
- assert are_similar(t2, t3) is False
- assert t1.is_similar(Point(0, 0)) is False
- assert t1.is_similar(t2) is False
- # Bisectors
- bisectors = t1.bisectors()
- assert bisectors[p1] == Segment(
- p1, Point(Rational(5, 2), Rational(5, 2)))
- assert t2.bisectors()[p2] == Segment(
- Point(5, 0), Point(Rational(5, 4), 5*sqrt(3)/4))
- p4 = Point(0, x1)
- assert t3.bisectors()[p4] == Segment(p4, Point(x1*(sqrt(2) - 1), 0))
- ic = (250 - 125*sqrt(2))/50
- assert t1.incenter == Point(ic, ic)
- # Inradius
- assert t1.inradius == t1.incircle.radius == 5 - 5*sqrt(2)/2
- assert t2.inradius == t2.incircle.radius == 5*sqrt(3)/6
- assert t3.inradius == t3.incircle.radius == x1**2/((2 + sqrt(2))*Abs(x1))
- # Exradius
- assert t1.exradii[t1.sides[2]] == 5*sqrt(2)/2
- # Excenters
- assert t1.excenters[t1.sides[2]] == Point2D(25*sqrt(2), -5*sqrt(2)/2)
- # Circumcircle
- assert t1.circumcircle.center == Point(2.5, 2.5)
- # Medians + Centroid
- m = t1.medians
- assert t1.centroid == Point(Rational(5, 3), Rational(5, 3))
- assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
- assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2))
- assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]
- assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5))
- # Nine-point circle
- assert t1.nine_point_circle == Circle(Point(2.5, 0),
- Point(0, 2.5), Point(2.5, 2.5))
- assert t1.nine_point_circle == Circle(Point(0, 0),
- Point(0, 2.5), Point(2.5, 2.5))
- # Perpendicular
- altitudes = t1.altitudes
- assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
- assert altitudes[p2].equals(s1[0])
- assert altitudes[p3] == s1[2]
- assert t1.orthocenter == p1
- t = S('''Triangle(
- Point(100080156402737/5000000000000, 79782624633431/500000000000),
- Point(39223884078253/2000000000000, 156345163124289/1000000000000),
- Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''')
- assert t.orthocenter == S('''Point(-780660869050599840216997'''
- '''79471538701955848721853/80368430960602242240789074233100000000000000,'''
- '''20151573611150265741278060334545897615974257/16073686192120448448157'''
- '''8148466200000000000)''')
- # Ensure
- assert len(intersection(*bisectors.values())) == 1
- assert len(intersection(*altitudes.values())) == 1
- assert len(intersection(*m.values())) == 1
- # Distance
- p1 = Polygon(
- Point(0, 0), Point(1, 0),
- Point(1, 1), Point(0, 1))
- p2 = Polygon(
- Point(0, Rational(5)/4), Point(1, Rational(5)/4),
- Point(1, Rational(9)/4), Point(0, Rational(9)/4))
- p3 = Polygon(
- Point(1, 2), Point(2, 2),
- Point(2, 1))
- p4 = Polygon(
- Point(1, 1), Point(Rational(6)/5, 1),
- Point(1, Rational(6)/5))
- pt1 = Point(half, half)
- pt2 = Point(1, 1)
- '''Polygon to Point'''
- assert p1.distance(pt1) == half
- assert p1.distance(pt2) == 0
- assert p2.distance(pt1) == Rational(3)/4
- assert p3.distance(pt2) == sqrt(2)/2
- '''Polygon to Polygon'''
- # p1.distance(p2) emits a warning
- with warns(UserWarning, \
- match="Polygons may intersect producing erroneous output"):
- assert p1.distance(p2) == half/2
- assert p1.distance(p3) == sqrt(2)/2
- # p3.distance(p4) emits a warning
- with warns(UserWarning, \
- match="Polygons may intersect producing erroneous output"):
- assert p3.distance(p4) == (sqrt(2)/2 - sqrt(Rational(2)/25)/2)
- def test_convex_hull():
- p = [Point(-5, -1), Point(-2, 1), Point(-2, -1), Point(-1, -3), \
- Point(0, 0), Point(1, 1), Point(2, 2), Point(2, -1), Point(3, 1), \
- Point(4, -1), Point(6, 2)]
- ch = Polygon(p[0], p[3], p[9], p[10], p[6], p[1])
- #test handling of duplicate points
- p.append(p[3])
- #more than 3 collinear points
- another_p = [Point(-45, -85), Point(-45, 85), Point(-45, 26), \
- Point(-45, -24)]
- ch2 = Segment(another_p[0], another_p[1])
- assert convex_hull(*another_p) == ch2
- assert convex_hull(*p) == ch
- assert convex_hull(p[0]) == p[0]
- assert convex_hull(p[0], p[1]) == Segment(p[0], p[1])
- # no unique points
- assert convex_hull(*[p[-1]]*3) == p[-1]
- # collection of items
- assert convex_hull(*[Point(0, 0), \
- Segment(Point(1, 0), Point(1, 1)), \
- RegularPolygon(Point(2, 0), 2, 4)]) == \
- Polygon(Point(0, 0), Point(2, -2), Point(4, 0), Point(2, 2))
- def test_encloses():
- # square with a dimpled left side
- s = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1), \
- Point(S.Half, S.Half))
- # the following is True if the polygon isn't treated as closing on itself
- assert s.encloses(Point(0, S.Half)) is False
- assert s.encloses(Point(S.Half, S.Half)) is False # it's a vertex
- assert s.encloses(Point(Rational(3, 4), S.Half)) is True
- def test_triangle_kwargs():
- assert Triangle(sss=(3, 4, 5)) == \
- Triangle(Point(0, 0), Point(3, 0), Point(3, 4))
- assert Triangle(asa=(30, 2, 30)) == \
- Triangle(Point(0, 0), Point(2, 0), Point(1, sqrt(3)/3))
- assert Triangle(sas=(1, 45, 2)) == \
- Triangle(Point(0, 0), Point(2, 0), Point(sqrt(2)/2, sqrt(2)/2))
- assert Triangle(sss=(1, 2, 5)) is None
- assert deg(rad(180)) == 180
- def test_transform():
- pts = [Point(0, 0), Point(S.Half, Rational(1, 4)), Point(1, 1)]
- pts_out = [Point(-4, -10), Point(-3, Rational(-37, 4)), Point(-2, -7)]
- assert Triangle(*pts).scale(2, 3, (4, 5)) == Triangle(*pts_out)
- assert RegularPolygon((0, 0), 1, 4).scale(2, 3, (4, 5)) == \
- Polygon(Point(-2, -10), Point(-4, -7), Point(-6, -10), Point(-4, -13))
- # Checks for symmetric scaling
- assert RegularPolygon((0, 0), 1, 4).scale(2, 2) == \
- RegularPolygon(Point2D(0, 0), 2, 4, 0)
- def test_reflect():
- x = Symbol('x', real=True)
- y = Symbol('y', real=True)
- b = Symbol('b')
- m = Symbol('m')
- l = Line((0, b), slope=m)
- p = Point(x, y)
- r = p.reflect(l)
- dp = l.perpendicular_segment(p).length
- dr = l.perpendicular_segment(r).length
- assert verify_numerically(dp, dr)
- assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \
- == Triangle(Point(5, 0), Point(4, 0), Point(4, 2))
- assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \
- == Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2))
- assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \
- == Triangle(Point(1, 6), Point(2, 6), Point(2, 4))
- assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \
- == Triangle(Point(1, 0), Point(2, 0), Point(2, -2))
- def test_bisectors():
- p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
- p = Polygon(Point(0, 0), Point(2, 0), Point(1, 1), Point(0, 3))
- q = Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(-1, 5))
- poly = Polygon(Point(3, 4), Point(0, 0), Point(8, 7), Point(-1, 1), Point(19, -19))
- t = Triangle(p1, p2, p3)
- assert t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1))
- assert p.bisectors()[Point2D(0, 3)] == Ray2D(Point2D(0, 3), \
- Point2D(sin(acos(2*sqrt(5)/5)/2), 3 - cos(acos(2*sqrt(5)/5)/2)))
- assert q.bisectors()[Point2D(-1, 5)] == \
- Ray2D(Point2D(-1, 5), Point2D(-1 + sqrt(29)*(5*sin(acos(9*sqrt(145)/145)/2) + \
- 2*cos(acos(9*sqrt(145)/145)/2))/29, sqrt(29)*(-5*cos(acos(9*sqrt(145)/145)/2) + \
- 2*sin(acos(9*sqrt(145)/145)/2))/29 + 5))
- assert poly.bisectors()[Point2D(-1, 1)] == Ray2D(Point2D(-1, 1), \
- Point2D(-1 + sin(acos(sqrt(26)/26)/2 + pi/4), 1 - sin(-acos(sqrt(26)/26)/2 + pi/4)))
- def test_incenter():
- assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).incenter \
- == Point(1 - sqrt(2)/2, 1 - sqrt(2)/2)
- def test_inradius():
- assert Triangle(Point(0, 0), Point(4, 0), Point(0, 3)).inradius == 1
- def test_incircle():
- assert Triangle(Point(0, 0), Point(2, 0), Point(0, 2)).incircle \
- == Circle(Point(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2))
- def test_exradii():
- t = Triangle(Point(0, 0), Point(6, 0), Point(0, 2))
- assert t.exradii[t.sides[2]] == (-2 + sqrt(10))
- def test_medians():
- t = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
- assert t.medians[Point(0, 0)] == Segment(Point(0, 0), Point(S.Half, S.Half))
- def test_medial():
- assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).medial \
- == Triangle(Point(S.Half, 0), Point(S.Half, S.Half), Point(0, S.Half))
- def test_nine_point_circle():
- assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).nine_point_circle \
- == Circle(Point2D(Rational(1, 4), Rational(1, 4)), sqrt(2)/4)
- def test_eulerline():
- assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).eulerline \
- == Line(Point2D(0, 0), Point2D(S.Half, S.Half))
- assert Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3))).eulerline \
- == Point2D(5, 5*sqrt(3)/3)
- assert Triangle(Point(4, -6), Point(4, -1), Point(-3, 3)).eulerline \
- == Line(Point2D(Rational(64, 7), 3), Point2D(Rational(-29, 14), Rational(-7, 2)))
- def test_intersection():
- poly1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
- poly2 = Polygon(Point(0, 1), Point(-5, 0),
- Point(0, -4), Point(0, Rational(1, 5)),
- Point(S.Half, -0.1), Point(1, 0), Point(0, 1))
- assert poly1.intersection(poly2) == [Point2D(Rational(1, 3), 0),
- Segment(Point(0, Rational(1, 5)), Point(0, 0)),
- Segment(Point(1, 0), Point(0, 1))]
- assert poly2.intersection(poly1) == [Point(Rational(1, 3), 0),
- Segment(Point(0, 0), Point(0, Rational(1, 5))),
- Segment(Point(1, 0), Point(0, 1))]
- assert poly1.intersection(Point(0, 0)) == [Point(0, 0)]
- assert poly1.intersection(Point(-12, -43)) == []
- assert poly2.intersection(Line((-12, 0), (12, 0))) == [Point(-5, 0),
- Point(0, 0), Point(Rational(1, 3), 0), Point(1, 0)]
- assert poly2.intersection(Line((-12, 12), (12, 12))) == []
- assert poly2.intersection(Ray((-3, 4), (1, 0))) == [Segment(Point(1, 0),
- Point(0, 1))]
- assert poly2.intersection(Circle((0, -1), 1)) == [Point(0, -2),
- Point(0, 0)]
- assert poly1.intersection(poly1) == [Segment(Point(0, 0), Point(1, 0)),
- Segment(Point(0, 1), Point(0, 0)), Segment(Point(1, 0), Point(0, 1))]
- assert poly2.intersection(poly2) == [Segment(Point(-5, 0), Point(0, -4)),
- Segment(Point(0, -4), Point(0, Rational(1, 5))),
- Segment(Point(0, Rational(1, 5)), Point(S.Half, Rational(-1, 10))),
- Segment(Point(0, 1), Point(-5, 0)),
- Segment(Point(S.Half, Rational(-1, 10)), Point(1, 0)),
- Segment(Point(1, 0), Point(0, 1))]
- assert poly2.intersection(Triangle(Point(0, 1), Point(1, 0), Point(-1, 1))) \
- == [Point(Rational(-5, 7), Rational(6, 7)), Segment(Point2D(0, 1), Point(1, 0))]
- assert poly1.intersection(RegularPolygon((-12, -15), 3, 3)) == []
- def test_parameter_value():
- t = Symbol('t')
- sq = Polygon((0, 0), (0, 1), (1, 1), (1, 0))
- assert sq.parameter_value((0.5, 1), t) == {t: Rational(3, 8)}
- q = Polygon((0, 0), (2, 1), (2, 4), (4, 0))
- assert q.parameter_value((4, 0), t) == {t: -6 + 3*sqrt(5)} # ~= 0.708
- raises(ValueError, lambda: sq.parameter_value((5, 6), t))
- raises(ValueError, lambda: sq.parameter_value(Circle(Point(0, 0), 1), t))
- def test_issue_12966():
- poly = Polygon(Point(0, 0), Point(0, 10), Point(5, 10), Point(5, 5),
- Point(10, 5), Point(10, 0))
- t = Symbol('t')
- pt = poly.arbitrary_point(t)
- DELTA = 5/poly.perimeter
- assert [pt.subs(t, DELTA*i) for i in range(int(1/DELTA))] == [
- Point(0, 0), Point(0, 5), Point(0, 10), Point(5, 10),
- Point(5, 5), Point(10, 5), Point(10, 0), Point(5, 0)]
- def test_second_moment_of_area():
- x, y = symbols('x, y')
- # triangle
- p1, p2, p3 = [(0, 0), (4, 0), (0, 2)]
- p = (0, 0)
- # equation of hypotenuse
- eq_y = (1-x/4)*2
- I_yy = integrate((x**2) * (integrate(1, (y, 0, eq_y))), (x, 0, 4))
- I_xx = integrate(1 * (integrate(y**2, (y, 0, eq_y))), (x, 0, 4))
- I_xy = integrate(x * (integrate(y, (y, 0, eq_y))), (x, 0, 4))
- triangle = Polygon(p1, p2, p3)
- assert (I_xx - triangle.second_moment_of_area(p)[0]) == 0
- assert (I_yy - triangle.second_moment_of_area(p)[1]) == 0
- assert (I_xy - triangle.second_moment_of_area(p)[2]) == 0
- # rectangle
- p1, p2, p3, p4=[(0, 0), (4, 0), (4, 2), (0, 2)]
- I_yy = integrate((x**2) * integrate(1, (y, 0, 2)), (x, 0, 4))
- I_xx = integrate(1 * integrate(y**2, (y, 0, 2)), (x, 0, 4))
- I_xy = integrate(x * integrate(y, (y, 0, 2)), (x, 0, 4))
- rectangle = Polygon(p1, p2, p3, p4)
- assert (I_xx - rectangle.second_moment_of_area(p)[0]) == 0
- assert (I_yy - rectangle.second_moment_of_area(p)[1]) == 0
- assert (I_xy - rectangle.second_moment_of_area(p)[2]) == 0
- r = RegularPolygon(Point(0, 0), 5, 3)
- assert r.second_moment_of_area() == (1875*sqrt(3)/S(32), 1875*sqrt(3)/S(32), 0)
- def test_first_moment():
- a, b = symbols('a, b', positive=True)
- # rectangle
- p1 = Polygon((0, 0), (a, 0), (a, b), (0, b))
- assert p1.first_moment_of_area() == (a*b**2/8, a**2*b/8)
- assert p1.first_moment_of_area((a/3, b/4)) == (-3*a*b**2/32, -a**2*b/9)
- p1 = Polygon((0, 0), (40, 0), (40, 30), (0, 30))
- assert p1.first_moment_of_area() == (4500, 6000)
- # triangle
- p2 = Polygon((0, 0), (a, 0), (a/2, b))
- assert p2.first_moment_of_area() == (4*a*b**2/81, a**2*b/24)
- assert p2.first_moment_of_area((a/8, b/6)) == (-25*a*b**2/648, -5*a**2*b/768)
- p2 = Polygon((0, 0), (12, 0), (12, 30))
- assert p2.first_moment_of_area() == (S(1600)/3, -S(640)/3)
- def test_section_modulus_and_polar_second_moment_of_area():
- a, b = symbols('a, b', positive=True)
- x, y = symbols('x, y')
- rectangle = Polygon((0, b), (0, 0), (a, 0), (a, b))
- assert rectangle.section_modulus(Point(x, y)) == (a*b**3/12/(-b/2 + y), a**3*b/12/(-a/2 + x))
- assert rectangle.polar_second_moment_of_area() == a**3*b/12 + a*b**3/12
- convex = RegularPolygon((0, 0), 1, 6)
- assert convex.section_modulus() == (Rational(5, 8), sqrt(3)*Rational(5, 16))
- assert convex.polar_second_moment_of_area() == 5*sqrt(3)/S(8)
- concave = Polygon((0, 0), (1, 8), (3, 4), (4, 6), (7, 1))
- assert concave.section_modulus() == (Rational(-6371, 429), Rational(-9778, 519))
- assert concave.polar_second_moment_of_area() == Rational(-38669, 252)
- def test_cut_section():
- # concave polygon
- p = Polygon((-1, -1), (1, Rational(5, 2)), (2, 1), (3, Rational(5, 2)), (4, 2), (5, 3), (-1, 3))
- l = Line((0, 0), (Rational(9, 2), 3))
- p1 = p.cut_section(l)[0]
- p2 = p.cut_section(l)[1]
- assert p1 == Polygon(
- Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(1, Rational(5, 2)), Point2D(Rational(24, 13), Rational(16, 13)),
- Point2D(Rational(12, 5), Rational(8, 5)), Point2D(3, Rational(5, 2)), Point2D(Rational(24, 7), Rational(16, 7)),
- Point2D(Rational(9, 2), 3), Point2D(-1, 3), Point2D(-1, Rational(-2, 3)))
- assert p2 == Polygon(Point2D(-1, -1), Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(Rational(24, 13), Rational(16, 13)),
- Point2D(2, 1), Point2D(Rational(12, 5), Rational(8, 5)), Point2D(Rational(24, 7), Rational(16, 7)), Point2D(4, 2), Point2D(5, 3),
- Point2D(Rational(9, 2), 3), Point2D(-1, Rational(-2, 3)))
- # convex polygon
- p = RegularPolygon(Point2D(0, 0), 6, 6)
- s = p.cut_section(Line((0, 0), slope=1))
- assert s[0] == Polygon(Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9), Point2D(3, 3*sqrt(3)),
- Point2D(-3, 3*sqrt(3)), Point2D(-6, 0), Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)))
- assert s[1] == Polygon(Point2D(6, 0), Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9),
- Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)), Point2D(-3, -3*sqrt(3)), Point2D(3, -3*sqrt(3)))
- # case where line does not intersects but coincides with the edge of polygon
- a, b = 20, 10
- t1, t2, t3, t4 = [(0, b), (0, 0), (a, 0), (a, b)]
- p = Polygon(t1, t2, t3, t4)
- p1, p2 = p.cut_section(Line((0, b), slope=0))
- assert p1 == None
- assert p2 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10))
- p3, p4 = p.cut_section(Line((0, 0), slope=0))
- assert p3 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10))
- assert p4 == None
- # case where the line does not intersect with a polygon at all
- raises(ValueError, lambda: p.cut_section(Line((0, a), slope=0)))
- def test_type_of_triangle():
- # Isoceles triangle
- p1 = Polygon(Point(0, 0), Point(5, 0), Point(2, 4))
- assert p1.is_isosceles() == True
- assert p1.is_scalene() == False
- assert p1.is_equilateral() == False
- # Scalene triangle
- p2 = Polygon (Point(0, 0), Point(0, 2), Point(4, 0))
- assert p2.is_isosceles() == False
- assert p2.is_scalene() == True
- assert p2.is_equilateral() == False
- # Equilateral triagle
- p3 = Polygon(Point(0, 0), Point(6, 0), Point(3, sqrt(27)))
- assert p3.is_isosceles() == True
- assert p3.is_scalene() == False
- assert p3.is_equilateral() == True
- def test_do_poly_distance():
- # Non-intersecting polygons
- square1 = Polygon (Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
- triangle1 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
- assert square1._do_poly_distance(triangle1) == sqrt(2)/2
- # Polygons which sides intersect
- square2 = Polygon(Point(1, 0), Point(2, 0), Point(2, 1), Point(1, 1))
- with warns(UserWarning, \
- match="Polygons may intersect producing erroneous output", test_stacklevel=False):
- assert square1._do_poly_distance(square2) == 0
- # Polygons which bodies intersect
- triangle2 = Polygon(Point(0, -1), Point(2, -1), Point(S.Half, S.Half))
- with warns(UserWarning, \
- match="Polygons may intersect producing erroneous output", test_stacklevel=False):
- assert triangle2._do_poly_distance(square1) == 0
|