123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- from sympy.core.containers import Tuple
- from sympy.core.numbers import (Rational, pi)
- from sympy.core.singleton import S
- from sympy.core.symbol import (Symbol, symbols)
- from sympy.functions.elementary.hyperbolic import asinh
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.geometry import Curve, Line, Point, Ellipse, Ray, Segment, Circle, Polygon, RegularPolygon
- from sympy.testing.pytest import raises, slow
- def test_curve():
- x = Symbol('x', real=True)
- s = Symbol('s')
- z = Symbol('z')
- # this curve is independent of the indicated parameter
- c = Curve([2*s, s**2], (z, 0, 2))
- assert c.parameter == z
- assert c.functions == (2*s, s**2)
- assert c.arbitrary_point() == Point(2*s, s**2)
- assert c.arbitrary_point(z) == Point(2*s, s**2)
- # this is how it is normally used
- c = Curve([2*s, s**2], (s, 0, 2))
- assert c.parameter == s
- assert c.functions == (2*s, s**2)
- t = Symbol('t')
- # the t returned as assumptions
- assert c.arbitrary_point() != Point(2*t, t**2)
- t = Symbol('t', real=True)
- # now t has the same assumptions so the test passes
- assert c.arbitrary_point() == Point(2*t, t**2)
- assert c.arbitrary_point(z) == Point(2*z, z**2)
- assert c.arbitrary_point(c.parameter) == Point(2*s, s**2)
- assert c.arbitrary_point(None) == Point(2*s, s**2)
- assert c.plot_interval() == [t, 0, 2]
- assert c.plot_interval(z) == [z, 0, 2]
- assert Curve([x, x], (x, 0, 1)).rotate(pi/2) == Curve([-x, x], (x, 0, 1))
- assert Curve([x, x], (x, 0, 1)).rotate(pi/2, (1, 2)).scale(2, 3).translate(
- 1, 3).arbitrary_point(s) == \
- Line((0, 0), (1, 1)).rotate(pi/2, (1, 2)).scale(2, 3).translate(
- 1, 3).arbitrary_point(s) == \
- Point(-2*s + 7, 3*s + 6)
- raises(ValueError, lambda: Curve((s), (s, 1, 2)))
- raises(ValueError, lambda: Curve((x, x * 2), (1, x)))
- raises(ValueError, lambda: Curve((s, s + t), (s, 1, 2)).arbitrary_point())
- raises(ValueError, lambda: Curve((s, s + t), (t, 1, 2)).arbitrary_point(s))
- @slow
- def test_free_symbols():
- a, b, c, d, e, f, s = symbols('a:f,s')
- assert Point(a, b).free_symbols == {a, b}
- assert Line((a, b), (c, d)).free_symbols == {a, b, c, d}
- assert Ray((a, b), (c, d)).free_symbols == {a, b, c, d}
- assert Ray((a, b), angle=c).free_symbols == {a, b, c}
- assert Segment((a, b), (c, d)).free_symbols == {a, b, c, d}
- assert Line((a, b), slope=c).free_symbols == {a, b, c}
- assert Curve((a*s, b*s), (s, c, d)).free_symbols == {a, b, c, d}
- assert Ellipse((a, b), c, d).free_symbols == {a, b, c, d}
- assert Ellipse((a, b), c, eccentricity=d).free_symbols == \
- {a, b, c, d}
- assert Ellipse((a, b), vradius=c, eccentricity=d).free_symbols == \
- {a, b, c, d}
- assert Circle((a, b), c).free_symbols == {a, b, c}
- assert Circle((a, b), (c, d), (e, f)).free_symbols == \
- {e, d, c, b, f, a}
- assert Polygon((a, b), (c, d), (e, f)).free_symbols == \
- {e, b, d, f, a, c}
- assert RegularPolygon((a, b), c, d, e).free_symbols == {e, a, b, c, d}
- def test_transform():
- x = Symbol('x', real=True)
- y = Symbol('y', real=True)
- c = Curve((x, x**2), (x, 0, 1))
- cout = Curve((2*x - 4, 3*x**2 - 10), (x, 0, 1))
- pts = [Point(0, 0), Point(S.Half, Rational(1, 4)), Point(1, 1)]
- pts_out = [Point(-4, -10), Point(-3, Rational(-37, 4)), Point(-2, -7)]
- assert c.scale(2, 3, (4, 5)) == cout
- assert [c.subs(x, xi/2) for xi in Tuple(0, 1, 2)] == pts
- assert [cout.subs(x, xi/2) for xi in Tuple(0, 1, 2)] == pts_out
- assert Curve((x + y, 3*x), (x, 0, 1)).subs(y, S.Half) == \
- Curve((x + S.Half, 3*x), (x, 0, 1))
- assert Curve((x, 3*x), (x, 0, 1)).translate(4, 5) == \
- Curve((x + 4, 3*x + 5), (x, 0, 1))
- def test_length():
- t = Symbol('t', real=True)
- c1 = Curve((t, 0), (t, 0, 1))
- assert c1.length == 1
- c2 = Curve((t, t), (t, 0, 1))
- assert c2.length == sqrt(2)
- c3 = Curve((t ** 2, t), (t, 2, 5))
- assert c3.length == -sqrt(17) - asinh(4) / 4 + asinh(10) / 4 + 5 * sqrt(101) / 2
- def test_parameter_value():
- t = Symbol('t')
- C = Curve([2*t, t**2], (t, 0, 2))
- assert C.parameter_value((2, 1), t) == {t: 1}
- raises(ValueError, lambda: C.parameter_value((2, 0), t))
- def test_issue_17997():
- t, s = symbols('t s')
- c = Curve((t, t**2), (t, 0, 10))
- p = Curve([2*s, s**2], (s, 0, 2))
- assert c(2) == Point(2, 4)
- assert p(1) == Point(2, 1)
|