123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475 |
- from sympy.concrete.summations import Sum
- from sympy.core.function import (Derivative, diff)
- from sympy.core.numbers import (Rational, oo, pi, zoo)
- from sympy.core.singleton import S
- from sympy.core.symbol import (Dummy, Symbol)
- from sympy.functions.combinatorial.factorials import (RisingFactorial, binomial, factorial)
- from sympy.functions.elementary.complexes import conjugate
- from sympy.functions.elementary.exponential import exp
- from sympy.functions.elementary.integers import floor
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.functions.elementary.trigonometric import cos
- from sympy.functions.special.gamma_functions import gamma
- from sympy.functions.special.hyper import hyper
- from sympy.functions.special.polynomials import (assoc_laguerre, assoc_legendre, chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, gegenbauer, hermite, hermite_prob, jacobi, jacobi_normalized, laguerre, legendre)
- from sympy.polys.orthopolys import laguerre_poly
- from sympy.polys.polyroots import roots
- from sympy.core.expr import unchanged
- from sympy.core.function import ArgumentIndexError
- from sympy.testing.pytest import raises
- x = Symbol('x')
- def test_jacobi():
- n = Symbol("n")
- a = Symbol("a")
- b = Symbol("b")
- assert jacobi(0, a, b, x) == 1
- assert jacobi(1, a, b, x) == a/2 - b/2 + x*(a/2 + b/2 + 1)
- assert jacobi(n, a, a, x) == RisingFactorial(
- a + 1, n)*gegenbauer(n, a + S.Half, x)/RisingFactorial(2*a + 1, n)
- assert jacobi(n, a, -a, x) == ((-1)**a*(-x + 1)**(-a/2)*(x + 1)**(a/2)*assoc_legendre(n, a, x)*
- factorial(-a + n)*gamma(a + n + 1)/(factorial(a + n)*gamma(n + 1)))
- assert jacobi(n, -b, b, x) == ((-x + 1)**(b/2)*(x + 1)**(-b/2)*assoc_legendre(n, b, x)*
- gamma(-b + n + 1)/gamma(n + 1))
- assert jacobi(n, 0, 0, x) == legendre(n, x)
- assert jacobi(n, S.Half, S.Half, x) == RisingFactorial(
- Rational(3, 2), n)*chebyshevu(n, x)/factorial(n + 1)
- assert jacobi(n, Rational(-1, 2), Rational(-1, 2), x) == RisingFactorial(
- S.Half, n)*chebyshevt(n, x)/factorial(n)
- X = jacobi(n, a, b, x)
- assert isinstance(X, jacobi)
- assert jacobi(n, a, b, -x) == (-1)**n*jacobi(n, b, a, x)
- assert jacobi(n, a, b, 0) == 2**(-n)*gamma(a + n + 1)*hyper(
- (-b - n, -n), (a + 1,), -1)/(factorial(n)*gamma(a + 1))
- assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n)/factorial(n)
- m = Symbol("m", positive=True)
- assert jacobi(m, a, b, oo) == oo*RisingFactorial(a + b + m + 1, m)
- assert unchanged(jacobi, n, a, b, oo)
- assert conjugate(jacobi(m, a, b, x)) == \
- jacobi(m, conjugate(a), conjugate(b), conjugate(x))
- _k = Dummy('k')
- assert diff(jacobi(n, a, b, x), n) == Derivative(jacobi(n, a, b, x), n)
- assert diff(jacobi(n, a, b, x), a).dummy_eq(Sum((jacobi(n, a, b, x) +
- (2*_k + a + b + 1)*RisingFactorial(_k + b + 1, -_k + n)*jacobi(_k, a,
- b, x)/((-_k + n)*RisingFactorial(_k + a + b + 1, -_k + n)))/(_k + a
- + b + n + 1), (_k, 0, n - 1)))
- assert diff(jacobi(n, a, b, x), b).dummy_eq(Sum(((-1)**(-_k + n)*(2*_k +
- a + b + 1)*RisingFactorial(_k + a + 1, -_k + n)*jacobi(_k, a, b, x)/
- ((-_k + n)*RisingFactorial(_k + a + b + 1, -_k + n)) + jacobi(n, a,
- b, x))/(_k + a + b + n + 1), (_k, 0, n - 1)))
- assert diff(jacobi(n, a, b, x), x) == \
- (a/2 + b/2 + n/2 + S.Half)*jacobi(n - 1, a + 1, b + 1, x)
- assert jacobi_normalized(n, a, b, x) == \
- (jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1)
- /((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1))))
- raises(ValueError, lambda: jacobi(-2.1, a, b, x))
- raises(ValueError, lambda: jacobi(Dummy(positive=True, integer=True), 1, 2, oo))
- assert jacobi(n, a, b, x).rewrite(Sum).dummy_eq(Sum((S.Half - x/2)
- **_k*RisingFactorial(-n, _k)*RisingFactorial(_k + a + 1, -_k + n)*
- RisingFactorial(a + b + n + 1, _k)/factorial(_k), (_k, 0, n))/factorial(n))
- assert jacobi(n, a, b, x).rewrite("polynomial").dummy_eq(Sum((S.Half - x/2)
- **_k*RisingFactorial(-n, _k)*RisingFactorial(_k + a + 1, -_k + n)*
- RisingFactorial(a + b + n + 1, _k)/factorial(_k), (_k, 0, n))/factorial(n))
- raises(ArgumentIndexError, lambda: jacobi(n, a, b, x).fdiff(5))
- def test_gegenbauer():
- n = Symbol("n")
- a = Symbol("a")
- assert gegenbauer(0, a, x) == 1
- assert gegenbauer(1, a, x) == 2*a*x
- assert gegenbauer(2, a, x) == -a + x**2*(2*a**2 + 2*a)
- assert gegenbauer(3, a, x) == \
- x**3*(4*a**3/3 + 4*a**2 + a*Rational(8, 3)) + x*(-2*a**2 - 2*a)
- assert gegenbauer(-1, a, x) == 0
- assert gegenbauer(n, S.Half, x) == legendre(n, x)
- assert gegenbauer(n, 1, x) == chebyshevu(n, x)
- assert gegenbauer(n, -1, x) == 0
- X = gegenbauer(n, a, x)
- assert isinstance(X, gegenbauer)
- assert gegenbauer(n, a, -x) == (-1)**n*gegenbauer(n, a, x)
- assert gegenbauer(n, a, 0) == 2**n*sqrt(pi) * \
- gamma(a + n/2)/(gamma(a)*gamma(-n/2 + S.Half)*gamma(n + 1))
- assert gegenbauer(n, a, 1) == gamma(2*a + n)/(gamma(2*a)*gamma(n + 1))
- assert gegenbauer(n, Rational(3, 4), -1) is zoo
- assert gegenbauer(n, Rational(1, 4), -1) == (sqrt(2)*cos(pi*(n + S.One/4))*
- gamma(n + S.Half)/(sqrt(pi)*gamma(n + 1)))
- m = Symbol("m", positive=True)
- assert gegenbauer(m, a, oo) == oo*RisingFactorial(a, m)
- assert unchanged(gegenbauer, n, a, oo)
- assert conjugate(gegenbauer(n, a, x)) == gegenbauer(n, conjugate(a), conjugate(x))
- _k = Dummy('k')
- assert diff(gegenbauer(n, a, x), n) == Derivative(gegenbauer(n, a, x), n)
- assert diff(gegenbauer(n, a, x), a).dummy_eq(Sum((2*(-1)**(-_k + n) + 2)*
- (_k + a)*gegenbauer(_k, a, x)/((-_k + n)*(_k + 2*a + n)) + ((2*_k +
- 2)/((_k + 2*a)*(2*_k + 2*a + 1)) + 2/(_k + 2*a + n))*gegenbauer(n, a
- , x), (_k, 0, n - 1)))
- assert diff(gegenbauer(n, a, x), x) == 2*a*gegenbauer(n - 1, a + 1, x)
- assert gegenbauer(n, a, x).rewrite(Sum).dummy_eq(
- Sum((-1)**_k*(2*x)**(-2*_k + n)*RisingFactorial(a, -_k + n)
- /(factorial(_k)*factorial(-2*_k + n)), (_k, 0, floor(n/2))))
- assert gegenbauer(n, a, x).rewrite("polynomial").dummy_eq(
- Sum((-1)**_k*(2*x)**(-2*_k + n)*RisingFactorial(a, -_k + n)
- /(factorial(_k)*factorial(-2*_k + n)), (_k, 0, floor(n/2))))
- raises(ArgumentIndexError, lambda: gegenbauer(n, a, x).fdiff(4))
- def test_legendre():
- assert legendre(0, x) == 1
- assert legendre(1, x) == x
- assert legendre(2, x) == ((3*x**2 - 1)/2).expand()
- assert legendre(3, x) == ((5*x**3 - 3*x)/2).expand()
- assert legendre(4, x) == ((35*x**4 - 30*x**2 + 3)/8).expand()
- assert legendre(5, x) == ((63*x**5 - 70*x**3 + 15*x)/8).expand()
- assert legendre(6, x) == ((231*x**6 - 315*x**4 + 105*x**2 - 5)/16).expand()
- assert legendre(10, -1) == 1
- assert legendre(11, -1) == -1
- assert legendre(10, 1) == 1
- assert legendre(11, 1) == 1
- assert legendre(10, 0) != 0
- assert legendre(11, 0) == 0
- assert legendre(-1, x) == 1
- k = Symbol('k')
- assert legendre(5 - k, x).subs(k, 2) == ((5*x**3 - 3*x)/2).expand()
- assert roots(legendre(4, x), x) == {
- sqrt(Rational(3, 7) - Rational(2, 35)*sqrt(30)): 1,
- -sqrt(Rational(3, 7) - Rational(2, 35)*sqrt(30)): 1,
- sqrt(Rational(3, 7) + Rational(2, 35)*sqrt(30)): 1,
- -sqrt(Rational(3, 7) + Rational(2, 35)*sqrt(30)): 1,
- }
- n = Symbol("n")
- X = legendre(n, x)
- assert isinstance(X, legendre)
- assert unchanged(legendre, n, x)
- assert legendre(n, 0) == sqrt(pi)/(gamma(S.Half - n/2)*gamma(n/2 + 1))
- assert legendre(n, 1) == 1
- assert legendre(n, oo) is oo
- assert legendre(-n, x) == legendre(n - 1, x)
- assert legendre(n, -x) == (-1)**n*legendre(n, x)
- assert unchanged(legendre, -n + k, x)
- assert conjugate(legendre(n, x)) == legendre(n, conjugate(x))
- assert diff(legendre(n, x), x) == \
- n*(x*legendre(n, x) - legendre(n - 1, x))/(x**2 - 1)
- assert diff(legendre(n, x), n) == Derivative(legendre(n, x), n)
- _k = Dummy('k')
- assert legendre(n, x).rewrite(Sum).dummy_eq(Sum((-1)**_k*(S.Half -
- x/2)**_k*(x/2 + S.Half)**(-_k + n)*binomial(n, _k)**2, (_k, 0, n)))
- assert legendre(n, x).rewrite("polynomial").dummy_eq(Sum((-1)**_k*(S.Half -
- x/2)**_k*(x/2 + S.Half)**(-_k + n)*binomial(n, _k)**2, (_k, 0, n)))
- raises(ArgumentIndexError, lambda: legendre(n, x).fdiff(1))
- raises(ArgumentIndexError, lambda: legendre(n, x).fdiff(3))
- def test_assoc_legendre():
- Plm = assoc_legendre
- Q = sqrt(1 - x**2)
- assert Plm(0, 0, x) == 1
- assert Plm(1, 0, x) == x
- assert Plm(1, 1, x) == -Q
- assert Plm(2, 0, x) == (3*x**2 - 1)/2
- assert Plm(2, 1, x) == -3*x*Q
- assert Plm(2, 2, x) == 3*Q**2
- assert Plm(3, 0, x) == (5*x**3 - 3*x)/2
- assert Plm(3, 1, x).expand() == (( 3*(1 - 5*x**2)/2 ).expand() * Q).expand()
- assert Plm(3, 2, x) == 15*x * Q**2
- assert Plm(3, 3, x) == -15 * Q**3
- # negative m
- assert Plm(1, -1, x) == -Plm(1, 1, x)/2
- assert Plm(2, -2, x) == Plm(2, 2, x)/24
- assert Plm(2, -1, x) == -Plm(2, 1, x)/6
- assert Plm(3, -3, x) == -Plm(3, 3, x)/720
- assert Plm(3, -2, x) == Plm(3, 2, x)/120
- assert Plm(3, -1, x) == -Plm(3, 1, x)/12
- n = Symbol("n")
- m = Symbol("m")
- X = Plm(n, m, x)
- assert isinstance(X, assoc_legendre)
- assert Plm(n, 0, x) == legendre(n, x)
- assert Plm(n, m, 0) == 2**m*sqrt(pi)/(gamma(-m/2 - n/2 +
- S.Half)*gamma(-m/2 + n/2 + 1))
- assert diff(Plm(m, n, x), x) == (m*x*assoc_legendre(m, n, x) -
- (m + n)*assoc_legendre(m - 1, n, x))/(x**2 - 1)
- _k = Dummy('k')
- assert Plm(m, n, x).rewrite(Sum).dummy_eq(
- (1 - x**2)**(n/2)*Sum((-1)**_k*2**(-m)*x**(-2*_k + m - n)*factorial
- (-2*_k + 2*m)/(factorial(_k)*factorial(-_k + m)*factorial(-2*_k + m
- - n)), (_k, 0, floor(m/2 - n/2))))
- assert Plm(m, n, x).rewrite("polynomial").dummy_eq(
- (1 - x**2)**(n/2)*Sum((-1)**_k*2**(-m)*x**(-2*_k + m - n)*factorial
- (-2*_k + 2*m)/(factorial(_k)*factorial(-_k + m)*factorial(-2*_k + m
- - n)), (_k, 0, floor(m/2 - n/2))))
- assert conjugate(assoc_legendre(n, m, x)) == \
- assoc_legendre(n, conjugate(m), conjugate(x))
- raises(ValueError, lambda: Plm(0, 1, x))
- raises(ValueError, lambda: Plm(-1, 1, x))
- raises(ArgumentIndexError, lambda: Plm(n, m, x).fdiff(1))
- raises(ArgumentIndexError, lambda: Plm(n, m, x).fdiff(2))
- raises(ArgumentIndexError, lambda: Plm(n, m, x).fdiff(4))
- def test_chebyshev():
- assert chebyshevt(0, x) == 1
- assert chebyshevt(1, x) == x
- assert chebyshevt(2, x) == 2*x**2 - 1
- assert chebyshevt(3, x) == 4*x**3 - 3*x
- for n in range(1, 4):
- for k in range(n):
- z = chebyshevt_root(n, k)
- assert chebyshevt(n, z) == 0
- raises(ValueError, lambda: chebyshevt_root(n, n))
- for n in range(1, 4):
- for k in range(n):
- z = chebyshevu_root(n, k)
- assert chebyshevu(n, z) == 0
- raises(ValueError, lambda: chebyshevu_root(n, n))
- n = Symbol("n")
- X = chebyshevt(n, x)
- assert isinstance(X, chebyshevt)
- assert unchanged(chebyshevt, n, x)
- assert chebyshevt(n, -x) == (-1)**n*chebyshevt(n, x)
- assert chebyshevt(-n, x) == chebyshevt(n, x)
- assert chebyshevt(n, 0) == cos(pi*n/2)
- assert chebyshevt(n, 1) == 1
- assert chebyshevt(n, oo) is oo
- assert conjugate(chebyshevt(n, x)) == chebyshevt(n, conjugate(x))
- assert diff(chebyshevt(n, x), x) == n*chebyshevu(n - 1, x)
- X = chebyshevu(n, x)
- assert isinstance(X, chebyshevu)
- y = Symbol('y')
- assert chebyshevu(n, -x) == (-1)**n*chebyshevu(n, x)
- assert chebyshevu(-n, x) == -chebyshevu(n - 2, x)
- assert unchanged(chebyshevu, -n + y, x)
- assert chebyshevu(n, 0) == cos(pi*n/2)
- assert chebyshevu(n, 1) == n + 1
- assert chebyshevu(n, oo) is oo
- assert conjugate(chebyshevu(n, x)) == chebyshevu(n, conjugate(x))
- assert diff(chebyshevu(n, x), x) == \
- (-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1)
- _k = Dummy('k')
- assert chebyshevt(n, x).rewrite(Sum).dummy_eq(Sum(x**(-2*_k + n)
- *(x**2 - 1)**_k*binomial(n, 2*_k), (_k, 0, floor(n/2))))
- assert chebyshevt(n, x).rewrite("polynomial").dummy_eq(Sum(x**(-2*_k + n)
- *(x**2 - 1)**_k*binomial(n, 2*_k), (_k, 0, floor(n/2))))
- assert chebyshevu(n, x).rewrite(Sum).dummy_eq(Sum((-1)**_k*(2*x)
- **(-2*_k + n)*factorial(-_k + n)/(factorial(_k)*
- factorial(-2*_k + n)), (_k, 0, floor(n/2))))
- assert chebyshevu(n, x).rewrite("polynomial").dummy_eq(Sum((-1)**_k*(2*x)
- **(-2*_k + n)*factorial(-_k + n)/(factorial(_k)*
- factorial(-2*_k + n)), (_k, 0, floor(n/2))))
- raises(ArgumentIndexError, lambda: chebyshevt(n, x).fdiff(1))
- raises(ArgumentIndexError, lambda: chebyshevt(n, x).fdiff(3))
- raises(ArgumentIndexError, lambda: chebyshevu(n, x).fdiff(1))
- raises(ArgumentIndexError, lambda: chebyshevu(n, x).fdiff(3))
- def test_hermite():
- assert hermite(0, x) == 1
- assert hermite(1, x) == 2*x
- assert hermite(2, x) == 4*x**2 - 2
- assert hermite(3, x) == 8*x**3 - 12*x
- assert hermite(4, x) == 16*x**4 - 48*x**2 + 12
- assert hermite(6, x) == 64*x**6 - 480*x**4 + 720*x**2 - 120
- n = Symbol("n")
- assert unchanged(hermite, n, x)
- assert hermite(n, -x) == (-1)**n*hermite(n, x)
- assert unchanged(hermite, -n, x)
- assert hermite(n, 0) == 2**n*sqrt(pi)/gamma(S.Half - n/2)
- assert hermite(n, oo) is oo
- assert conjugate(hermite(n, x)) == hermite(n, conjugate(x))
- _k = Dummy('k')
- assert hermite(n, x).rewrite(Sum).dummy_eq(factorial(n)*Sum((-1)
- **_k*(2*x)**(-2*_k + n)/(factorial(_k)*factorial(-2*_k + n)), (_k,
- 0, floor(n/2))))
- assert hermite(n, x).rewrite("polynomial").dummy_eq(factorial(n)*Sum((-1)
- **_k*(2*x)**(-2*_k + n)/(factorial(_k)*factorial(-2*_k + n)), (_k,
- 0, floor(n/2))))
- assert diff(hermite(n, x), x) == 2*n*hermite(n - 1, x)
- assert diff(hermite(n, x), n) == Derivative(hermite(n, x), n)
- raises(ArgumentIndexError, lambda: hermite(n, x).fdiff(3))
- assert hermite(n, x).rewrite(hermite_prob) == \
- sqrt(2)**n * hermite_prob(n, x*sqrt(2))
- def test_hermite_prob():
- assert hermite_prob(0, x) == 1
- assert hermite_prob(1, x) == x
- assert hermite_prob(2, x) == x**2 - 1
- assert hermite_prob(3, x) == x**3 - 3*x
- assert hermite_prob(4, x) == x**4 - 6*x**2 + 3
- assert hermite_prob(6, x) == x**6 - 15*x**4 + 45*x**2 - 15
- n = Symbol("n")
- assert unchanged(hermite_prob, n, x)
- assert hermite_prob(n, -x) == (-1)**n*hermite_prob(n, x)
- assert unchanged(hermite_prob, -n, x)
- assert hermite_prob(n, 0) == sqrt(pi)/gamma(S.Half - n/2)
- assert hermite_prob(n, oo) is oo
- assert conjugate(hermite_prob(n, x)) == hermite_prob(n, conjugate(x))
- _k = Dummy('k')
- assert hermite_prob(n, x).rewrite(Sum).dummy_eq(factorial(n) *
- Sum((-S.Half)**_k * x**(n-2*_k) / (factorial(_k) * factorial(n-2*_k)),
- (_k, 0, floor(n/2))))
- assert hermite_prob(n, x).rewrite("polynomial").dummy_eq(factorial(n) *
- Sum((-S.Half)**_k * x**(n-2*_k) / (factorial(_k) * factorial(n-2*_k)),
- (_k, 0, floor(n/2))))
- assert diff(hermite_prob(n, x), x) == n*hermite_prob(n-1, x)
- assert diff(hermite_prob(n, x), n) == Derivative(hermite_prob(n, x), n)
- raises(ArgumentIndexError, lambda: hermite_prob(n, x).fdiff(3))
- assert hermite_prob(n, x).rewrite(hermite) == \
- sqrt(2)**(-n) * hermite(n, x/sqrt(2))
- def test_laguerre():
- n = Symbol("n")
- m = Symbol("m", negative=True)
- # Laguerre polynomials:
- assert laguerre(0, x) == 1
- assert laguerre(1, x) == -x + 1
- assert laguerre(2, x) == x**2/2 - 2*x + 1
- assert laguerre(3, x) == -x**3/6 + 3*x**2/2 - 3*x + 1
- assert laguerre(-2, x) == (x + 1)*exp(x)
- X = laguerre(n, x)
- assert isinstance(X, laguerre)
- assert laguerre(n, 0) == 1
- assert laguerre(n, oo) == (-1)**n*oo
- assert laguerre(n, -oo) is oo
- assert conjugate(laguerre(n, x)) == laguerre(n, conjugate(x))
- _k = Dummy('k')
- assert laguerre(n, x).rewrite(Sum).dummy_eq(
- Sum(x**_k*RisingFactorial(-n, _k)/factorial(_k)**2, (_k, 0, n)))
- assert laguerre(n, x).rewrite("polynomial").dummy_eq(
- Sum(x**_k*RisingFactorial(-n, _k)/factorial(_k)**2, (_k, 0, n)))
- assert laguerre(m, x).rewrite(Sum).dummy_eq(
- exp(x)*Sum((-x)**_k*RisingFactorial(m + 1, _k)/factorial(_k)**2,
- (_k, 0, -m - 1)))
- assert laguerre(m, x).rewrite("polynomial").dummy_eq(
- exp(x)*Sum((-x)**_k*RisingFactorial(m + 1, _k)/factorial(_k)**2,
- (_k, 0, -m - 1)))
- assert diff(laguerre(n, x), x) == -assoc_laguerre(n - 1, 1, x)
- k = Symbol('k')
- assert laguerre(-n, x) == exp(x)*laguerre(n - 1, -x)
- assert laguerre(-3, x) == exp(x)*laguerre(2, -x)
- assert unchanged(laguerre, -n + k, x)
- raises(ValueError, lambda: laguerre(-2.1, x))
- raises(ValueError, lambda: laguerre(Rational(5, 2), x))
- raises(ArgumentIndexError, lambda: laguerre(n, x).fdiff(1))
- raises(ArgumentIndexError, lambda: laguerre(n, x).fdiff(3))
- def test_assoc_laguerre():
- n = Symbol("n")
- m = Symbol("m")
- alpha = Symbol("alpha")
- # generalized Laguerre polynomials:
- assert assoc_laguerre(0, alpha, x) == 1
- assert assoc_laguerre(1, alpha, x) == -x + alpha + 1
- assert assoc_laguerre(2, alpha, x).expand() == \
- (x**2/2 - (alpha + 2)*x + (alpha + 2)*(alpha + 1)/2).expand()
- assert assoc_laguerre(3, alpha, x).expand() == \
- (-x**3/6 + (alpha + 3)*x**2/2 - (alpha + 2)*(alpha + 3)*x/2 +
- (alpha + 1)*(alpha + 2)*(alpha + 3)/6).expand()
- # Test the lowest 10 polynomials with laguerre_poly, to make sure it works:
- for i in range(10):
- assert assoc_laguerre(i, 0, x).expand() == laguerre_poly(i, x)
- X = assoc_laguerre(n, m, x)
- assert isinstance(X, assoc_laguerre)
- assert assoc_laguerre(n, 0, x) == laguerre(n, x)
- assert assoc_laguerre(n, alpha, 0) == binomial(alpha + n, alpha)
- p = Symbol("p", positive=True)
- assert assoc_laguerre(p, alpha, oo) == (-1)**p*oo
- assert assoc_laguerre(p, alpha, -oo) is oo
- assert diff(assoc_laguerre(n, alpha, x), x) == \
- -assoc_laguerre(n - 1, alpha + 1, x)
- _k = Dummy('k')
- assert diff(assoc_laguerre(n, alpha, x), alpha).dummy_eq(
- Sum(assoc_laguerre(_k, alpha, x)/(-alpha + n), (_k, 0, n - 1)))
- assert conjugate(assoc_laguerre(n, alpha, x)) == \
- assoc_laguerre(n, conjugate(alpha), conjugate(x))
- assert assoc_laguerre(n, alpha, x).rewrite(Sum).dummy_eq(
- gamma(alpha + n + 1)*Sum(x**_k*RisingFactorial(-n, _k)/
- (factorial(_k)*gamma(_k + alpha + 1)), (_k, 0, n))/factorial(n))
- assert assoc_laguerre(n, alpha, x).rewrite("polynomial").dummy_eq(
- gamma(alpha + n + 1)*Sum(x**_k*RisingFactorial(-n, _k)/
- (factorial(_k)*gamma(_k + alpha + 1)), (_k, 0, n))/factorial(n))
- raises(ValueError, lambda: assoc_laguerre(-2.1, alpha, x))
- raises(ArgumentIndexError, lambda: assoc_laguerre(n, alpha, x).fdiff(1))
- raises(ArgumentIndexError, lambda: assoc_laguerre(n, alpha, x).fdiff(4))
|