123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260 |
- r"""A module for special angle forumlas for trigonometric functions
- TODO
- ====
- This module should be developed in the future to contain direct squrae root
- representation of
- .. math
- F(\frac{n}{m} \pi)
- for every
- - $m \in \{ 3, 5, 17, 257, 65537 \}$
- - $n \in \mathbb{N}$, $0 \le n < m$
- - $F \in \{\sin, \cos, \tan, \csc, \sec, \cot\}$
- Without multi-step rewrites
- (e.g. $\tan \to \cos/\sin \to \cos/\sqrt \to \ sqrt$)
- or using chebyshev identities
- (e.g. $\cos \to \cos + \cos^2 + \cdots \to \sqrt{} + \sqrt{}^2 + \cdots $),
- which are trivial to implement in sympy,
- and had used to give overly complicated expressions.
- The reference can be found below, if anyone may need help implementing them.
- References
- ==========
- .. [*] Gottlieb, Christian. (1999). The Simple and straightforward construction
- of the regular 257-gon. The Mathematical Intelligencer. 21. 31-37.
- 10.1007/BF03024829.
- .. [*] https://resources.wolframcloud.com/FunctionRepository/resources/Cos2PiOverFermatPrime
- """
- from __future__ import annotations
- from typing import Callable
- from functools import reduce
- from sympy.core.expr import Expr
- from sympy.core.singleton import S
- from sympy.core.numbers import igcdex, Integer
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.core.cache import cacheit
- def migcdex(*x: int) -> tuple[tuple[int, ...], int]:
- r"""Compute extended gcd for multiple integers.
- Explanation
- ===========
- Given the integers $x_1, \cdots, x_n$ and
- an extended gcd for multiple arguments are defined as a solution
- $(y_1, \cdots, y_n), g$ for the diophantine equation
- $x_1 y_1 + \cdots + x_n y_n = g$ such that
- $g = \gcd(x_1, \cdots, x_n)$.
- Examples
- ========
- >>> from sympy.functions.elementary._trigonometric_special import migcdex
- >>> migcdex()
- ((), 0)
- >>> migcdex(4)
- ((1,), 4)
- >>> migcdex(4, 6)
- ((-1, 1), 2)
- >>> migcdex(6, 10, 15)
- ((1, 1, -1), 1)
- """
- if not x:
- return (), 0
- if len(x) == 1:
- return (1,), x[0]
- if len(x) == 2:
- u, v, h = igcdex(x[0], x[1])
- return (u, v), h
- y, g = migcdex(*x[1:])
- u, v, h = igcdex(x[0], g)
- return (u, *(v * i for i in y)), h
- def ipartfrac(*denoms: int) -> tuple[int, ...]:
- r"""Compute the the partial fraction decomposition.
- Explanation
- ===========
- Given a rational number $\frac{1}{q_1 \cdots q_n}$ where all
- $q_1, \cdots, q_n$ are pairwise coprime,
- A partial fraction decomposition is defined as
- .. math::
- \frac{1}{q_1 \cdots q_n} = \frac{p_1}{q_1} + \cdots + \frac{p_n}{q_n}
- And it can be derived from solving the following diophantine equation for
- the $p_1, \cdots, p_n$
- .. math::
- 1 = p_1 \prod_{i \ne 1}q_i + \cdots + p_n \prod_{i \ne n}q_i
- Where $q_1, \cdots, q_n$ being pairwise coprime implies
- $\gcd(\prod_{i \ne 1}q_i, \cdots, \prod_{i \ne n}q_i) = 1$,
- which guarantees the existance of the solution.
- It is sufficient to compute partial fraction decomposition only
- for numerator $1$ because partial fraction decomposition for any
- $\frac{n}{q_1 \cdots q_n}$ can be easily computed by multiplying
- the result by $n$ afterwards.
- Parameters
- ==========
- denoms : int
- The pairwise coprime integer denominators $q_i$ which defines the
- rational number $\frac{1}{q_1 \cdots q_n}$
- Returns
- =======
- tuple[int, ...]
- The list of numerators which semantically corresponds to $p_i$ of the
- partial fraction decomposition
- $\frac{1}{q_1 \cdots q_n} = \frac{p_1}{q_1} + \cdots + \frac{p_n}{q_n}$
- Examples
- ========
- >>> from sympy import Rational, Mul
- >>> from sympy.functions.elementary._trigonometric_special import ipartfrac
- >>> denoms = 2, 3, 5
- >>> numers = ipartfrac(2, 3, 5)
- >>> numers
- (1, 7, -14)
- >>> Rational(1, Mul(*denoms))
- 1/30
- >>> out = 0
- >>> for n, d in zip(numers, denoms):
- ... out += Rational(n, d)
- >>> out
- 1/30
- """
- if not denoms:
- return ()
- def mul(x: int, y: int) -> int:
- return x * y
- denom = reduce(mul, denoms)
- a = [denom // x for x in denoms]
- h, _ = migcdex(*a)
- return h
- def fermat_coords(n: int) -> list[int] | None:
- """If n can be factored in terms of Fermat primes with
- multiplicity of each being 1, return those primes, else
- None
- """
- primes = []
- for p in [3, 5, 17, 257, 65537]:
- quotient, remainder = divmod(n, p)
- if remainder == 0:
- n = quotient
- primes.append(p)
- if n == 1:
- return primes
- return None
- @cacheit
- def cos_3() -> Expr:
- r"""Computes $\cos \frac{\pi}{3}$ in square roots"""
- return S.Half
- @cacheit
- def cos_5() -> Expr:
- r"""Computes $\cos \frac{\pi}{5}$ in square roots"""
- return (sqrt(5) + 1) / 4
- @cacheit
- def cos_17() -> Expr:
- r"""Computes $\cos \frac{\pi}{17}$ in square roots"""
- return sqrt(
- (15 + sqrt(17)) / 32 + sqrt(2) * (sqrt(17 - sqrt(17)) +
- sqrt(sqrt(2) * (-8 * sqrt(17 + sqrt(17)) - (1 - sqrt(17))
- * sqrt(17 - sqrt(17))) + 6 * sqrt(17) + 34)) / 32)
- @cacheit
- def cos_257() -> Expr:
- r"""Computes $\cos \frac{\pi}{257}$ in square roots
- References
- ==========
- .. [*] https://math.stackexchange.com/questions/516142/how-does-cos2-pi-257-look-like-in-real-radicals
- .. [*] https://r-knott.surrey.ac.uk/Fibonacci/simpleTrig.html
- """
- def f1(a: Expr, b: Expr) -> tuple[Expr, Expr]:
- return (a + sqrt(a**2 + b)) / 2, (a - sqrt(a**2 + b)) / 2
- def f2(a: Expr, b: Expr) -> Expr:
- return (a - sqrt(a**2 + b))/2
- t1, t2 = f1(S.NegativeOne, Integer(256))
- z1, z3 = f1(t1, Integer(64))
- z2, z4 = f1(t2, Integer(64))
- y1, y5 = f1(z1, 4*(5 + t1 + 2*z1))
- y6, y2 = f1(z2, 4*(5 + t2 + 2*z2))
- y3, y7 = f1(z3, 4*(5 + t1 + 2*z3))
- y8, y4 = f1(z4, 4*(5 + t2 + 2*z4))
- x1, x9 = f1(y1, -4*(t1 + y1 + y3 + 2*y6))
- x2, x10 = f1(y2, -4*(t2 + y2 + y4 + 2*y7))
- x3, x11 = f1(y3, -4*(t1 + y3 + y5 + 2*y8))
- x4, x12 = f1(y4, -4*(t2 + y4 + y6 + 2*y1))
- x5, x13 = f1(y5, -4*(t1 + y5 + y7 + 2*y2))
- x6, x14 = f1(y6, -4*(t2 + y6 + y8 + 2*y3))
- x15, x7 = f1(y7, -4*(t1 + y7 + y1 + 2*y4))
- x8, x16 = f1(y8, -4*(t2 + y8 + y2 + 2*y5))
- v1 = f2(x1, -4*(x1 + x2 + x3 + x6))
- v2 = f2(x2, -4*(x2 + x3 + x4 + x7))
- v3 = f2(x8, -4*(x8 + x9 + x10 + x13))
- v4 = f2(x9, -4*(x9 + x10 + x11 + x14))
- v5 = f2(x10, -4*(x10 + x11 + x12 + x15))
- v6 = f2(x16, -4*(x16 + x1 + x2 + x5))
- u1 = -f2(-v1, -4*(v2 + v3))
- u2 = -f2(-v4, -4*(v5 + v6))
- w1 = -2*f2(-u1, -4*u2)
- return sqrt(sqrt(2)*sqrt(w1 + 4)/8 + S.Half)
- def cos_table() -> dict[int, Callable[[], Expr]]:
- r"""Lazily evaluated table for $\cos \frac{\pi}{n}$ in square roots for
- $n \in \{3, 5, 17, 257, 65537\}$.
- Notes
- =====
- 65537 is the only other known Fermat prime and it is nearly impossible to
- build in the current SymPy due to performance issues.
- References
- ==========
- https://r-knott.surrey.ac.uk/Fibonacci/simpleTrig.html
- """
- return {
- 3: cos_3,
- 5: cos_5,
- 17: cos_17,
- 257: cos_257
- }
|