| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801 | """Adaptive numerical evaluation of SymPy expressions, using mpmathfor mathematical functions."""from __future__ import annotationsfrom typing import Tuple as tTuple, Optional, Union as tUnion, Callable, List, Dict as tDict, Type, TYPE_CHECKING, \    Any, overloadimport mathimport mpmath.libmp as libmpfrom mpmath import (    make_mpc, make_mpf, mp, mpc, mpf, nsum, quadts, quadosc, workprec)from mpmath import inf as mpmath_inffrom mpmath.libmp import (from_int, from_man_exp, from_rational, fhalf,        fnan, finf, fninf, fnone, fone, fzero, mpf_abs, mpf_add,        mpf_atan, mpf_atan2, mpf_cmp, mpf_cos, mpf_e, mpf_exp, mpf_log, mpf_lt,        mpf_mul, mpf_neg, mpf_pi, mpf_pow, mpf_pow_int, mpf_shift, mpf_sin,        mpf_sqrt, normalize, round_nearest, to_int, to_str)from mpmath.libmp import bitcount as mpmath_bitcountfrom mpmath.libmp.backend import MPZfrom mpmath.libmp.libmpc import _infs_nanfrom mpmath.libmp.libmpf import dps_to_prec, prec_to_dpsfrom .sympify import sympifyfrom .singleton import Sfrom sympy.external.gmpy import SYMPY_INTSfrom sympy.utilities.iterables import is_sequencefrom sympy.utilities.lambdify import lambdifyfrom sympy.utilities.misc import as_intif TYPE_CHECKING:    from sympy.core.expr import Expr    from sympy.core.add import Add    from sympy.core.mul import Mul    from sympy.core.power import Pow    from sympy.core.symbol import Symbol    from sympy.integrals.integrals import Integral    from sympy.concrete.summations import Sum    from sympy.concrete.products import Product    from sympy.functions.elementary.exponential import exp, log    from sympy.functions.elementary.complexes import Abs, re, im    from sympy.functions.elementary.integers import ceiling, floor    from sympy.functions.elementary.trigonometric import atan    from .numbers import Float, Rational, Integer, AlgebraicNumber, NumberLG10 = math.log(10, 2)rnd = round_nearestdef bitcount(n):    """Return smallest integer, b, such that |n|/2**b < 1.    """    return mpmath_bitcount(abs(int(n)))# Used in a few places as placeholder values to denote exponents and# precision levels, e.g. of exact numbers. Must be careful to avoid# passing these to mpmath functions or returning them in final results.INF = float(mpmath_inf)MINUS_INF = float(-mpmath_inf)# ~= 100 digits. Real men set this to INF.DEFAULT_MAXPREC = 333class PrecisionExhausted(ArithmeticError):    pass#----------------------------------------------------------------------------##                                                                            ##              Helper functions for arithmetic and complex parts             ##                                                                            ##----------------------------------------------------------------------------#"""An mpf value tuple is a tuple of integers (sign, man, exp, bc)representing a floating-point number: [1, -1][sign]*man*2**exp wheresign is 0 or 1 and bc should correspond to the number of bits used torepresent the mantissa (man) in binary notation, e.g."""MPF_TUP = tTuple[int, int, int, int]  # mpf value tuple"""Explanation===========>>> from sympy.core.evalf import bitcount>>> sign, man, exp, bc = 0, 5, 1, 3>>> n = [1, -1][sign]*man*2**exp>>> n, bitcount(man)(10, 3)A temporary result is a tuple (re, im, re_acc, im_acc) wherere and im are nonzero mpf value tuples representing approximatenumbers, or None to denote exact zeros.re_acc, im_acc are integers denoting log2(e) where e is the estimatedrelative accuracy of the respective complex part, but may be anythingif the corresponding complex part is None."""TMP_RES = Any  # temporary result, should be some variant of# tUnion[tTuple[Optional[MPF_TUP], Optional[MPF_TUP],#               Optional[int], Optional[int]],#        'ComplexInfinity']# but mypy reports error because it doesn't know as we know# 1. re and re_acc are either both None or both MPF_TUP# 2. sometimes the result can't be zoo# type of the "options" parameter in internal evalf functionsOPT_DICT = tDict[str, Any]def fastlog(x: Optional[MPF_TUP]) -> tUnion[int, Any]:    """Fast approximation of log2(x) for an mpf value tuple x.    Explanation    ===========    Calculated as exponent + width of mantissa. This is an    approximation for two reasons: 1) it gives the ceil(log2(abs(x)))    value and 2) it is too high by 1 in the case that x is an exact    power of 2. Although this is easy to remedy by testing to see if    the odd mpf mantissa is 1 (indicating that one was dealing with    an exact power of 2) that would decrease the speed and is not    necessary as this is only being used as an approximation for the    number of bits in x. The correct return value could be written as    "x[2] + (x[3] if x[1] != 1 else 0)".        Since mpf tuples always have an odd mantissa, no check is done    to see if the mantissa is a multiple of 2 (in which case the    result would be too large by 1).    Examples    ========    >>> from sympy import log    >>> from sympy.core.evalf import fastlog, bitcount    >>> s, m, e = 0, 5, 1    >>> bc = bitcount(m)    >>> n = [1, -1][s]*m*2**e    >>> n, (log(n)/log(2)).evalf(2), fastlog((s, m, e, bc))    (10, 3.3, 4)    """    if not x or x == fzero:        return MINUS_INF    return x[2] + x[3]def pure_complex(v: 'Expr', or_real=False) -> tuple['Number', 'Number'] | None:    """Return a and b if v matches a + I*b where b is not zero and    a and b are Numbers, else None. If `or_real` is True then 0 will    be returned for `b` if `v` is a real number.    Examples    ========    >>> from sympy.core.evalf import pure_complex    >>> from sympy import sqrt, I, S    >>> a, b, surd = S(2), S(3), sqrt(2)    >>> pure_complex(a)    >>> pure_complex(a, or_real=True)    (2, 0)    >>> pure_complex(surd)    >>> pure_complex(a + b*I)    (2, 3)    >>> pure_complex(I)    (0, 1)    """    h, t = v.as_coeff_Add()    if t:        c, i = t.as_coeff_Mul()        if i is S.ImaginaryUnit:            return h, c    elif or_real:        return h, S.Zero    return None# I don't know what this is, see function scaled_zero belowSCALED_ZERO_TUP = tTuple[List[int], int, int, int]@overloaddef scaled_zero(mag: SCALED_ZERO_TUP, sign=1) -> MPF_TUP:    ...@overloaddef scaled_zero(mag: int, sign=1) -> tTuple[SCALED_ZERO_TUP, int]:    ...def scaled_zero(mag: tUnion[SCALED_ZERO_TUP, int], sign=1) -> \        tUnion[MPF_TUP, tTuple[SCALED_ZERO_TUP, int]]:    """Return an mpf representing a power of two with magnitude ``mag``    and -1 for precision. Or, if ``mag`` is a scaled_zero tuple, then just    remove the sign from within the list that it was initially wrapped    in.    Examples    ========    >>> from sympy.core.evalf import scaled_zero    >>> from sympy import Float    >>> z, p = scaled_zero(100)    >>> z, p    (([0], 1, 100, 1), -1)    >>> ok = scaled_zero(z)    >>> ok    (0, 1, 100, 1)    >>> Float(ok)    1.26765060022823e+30    >>> Float(ok, p)    0.e+30    >>> ok, p = scaled_zero(100, -1)    >>> Float(scaled_zero(ok), p)    -0.e+30    """    if isinstance(mag, tuple) and len(mag) == 4 and iszero(mag, scaled=True):        return (mag[0][0],) + mag[1:]    elif isinstance(mag, SYMPY_INTS):        if sign not in [-1, 1]:            raise ValueError('sign must be +/-1')        rv, p = mpf_shift(fone, mag), -1        s = 0 if sign == 1 else 1        rv = ([s],) + rv[1:]        return rv, p    else:        raise ValueError('scaled zero expects int or scaled_zero tuple.')def iszero(mpf: tUnion[MPF_TUP, SCALED_ZERO_TUP, None], scaled=False) -> Optional[bool]:    if not scaled:        return not mpf or not mpf[1] and not mpf[-1]    return mpf and isinstance(mpf[0], list) and mpf[1] == mpf[-1] == 1def complex_accuracy(result: TMP_RES) -> tUnion[int, Any]:    """    Returns relative accuracy of a complex number with given accuracies    for the real and imaginary parts. The relative accuracy is defined    in the complex norm sense as ||z|+|error|| / |z| where error    is equal to (real absolute error) + (imag absolute error)*i.    The full expression for the (logarithmic) error can be approximated    easily by using the max norm to approximate the complex norm.    In the worst case (re and im equal), this is wrong by a factor    sqrt(2), or by log2(sqrt(2)) = 0.5 bit.    """    if result is S.ComplexInfinity:        return INF    re, im, re_acc, im_acc = result    if not im:        if not re:            return INF        return re_acc    if not re:        return im_acc    re_size = fastlog(re)    im_size = fastlog(im)    absolute_error = max(re_size - re_acc, im_size - im_acc)    relative_error = absolute_error - max(re_size, im_size)    return -relative_errordef get_abs(expr: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:    result = evalf(expr, prec + 2, options)    if result is S.ComplexInfinity:        return finf, None, prec, None    re, im, re_acc, im_acc = result    if not re:        re, re_acc, im, im_acc = im, im_acc, re, re_acc    if im:        if expr.is_number:            abs_expr, _, acc, _ = evalf(abs(N(expr, prec + 2)),                                        prec + 2, options)            return abs_expr, None, acc, None        else:            if 'subs' in options:                return libmp.mpc_abs((re, im), prec), None, re_acc, None            return abs(expr), None, prec, None    elif re:        return mpf_abs(re), None, re_acc, None    else:        return None, None, None, Nonedef get_complex_part(expr: 'Expr', no: int, prec: int, options: OPT_DICT) -> TMP_RES:    """no = 0 for real part, no = 1 for imaginary part"""    workprec = prec    i = 0    while 1:        res = evalf(expr, workprec, options)        if res is S.ComplexInfinity:            return fnan, None, prec, None        value, accuracy = res[no::2]        # XXX is the last one correct? Consider re((1+I)**2).n()        if (not value) or accuracy >= prec or -value[2] > prec:            return value, None, accuracy, None        workprec += max(30, 2**i)        i += 1def evalf_abs(expr: 'Abs', prec: int, options: OPT_DICT) -> TMP_RES:    return get_abs(expr.args[0], prec, options)def evalf_re(expr: 're', prec: int, options: OPT_DICT) -> TMP_RES:    return get_complex_part(expr.args[0], 0, prec, options)def evalf_im(expr: 'im', prec: int, options: OPT_DICT) -> TMP_RES:    return get_complex_part(expr.args[0], 1, prec, options)def finalize_complex(re: MPF_TUP, im: MPF_TUP, prec: int) -> TMP_RES:    if re == fzero and im == fzero:        raise ValueError("got complex zero with unknown accuracy")    elif re == fzero:        return None, im, None, prec    elif im == fzero:        return re, None, prec, None    size_re = fastlog(re)    size_im = fastlog(im)    if size_re > size_im:        re_acc = prec        im_acc = prec + min(-(size_re - size_im), 0)    else:        im_acc = prec        re_acc = prec + min(-(size_im - size_re), 0)    return re, im, re_acc, im_accdef chop_parts(value: TMP_RES, prec: int) -> TMP_RES:    """    Chop off tiny real or complex parts.    """    if value is S.ComplexInfinity:        return value    re, im, re_acc, im_acc = value    # Method 1: chop based on absolute value    if re and re not in _infs_nan and (fastlog(re) < -prec + 4):        re, re_acc = None, None    if im and im not in _infs_nan and (fastlog(im) < -prec + 4):        im, im_acc = None, None    # Method 2: chop if inaccurate and relatively small    if re and im:        delta = fastlog(re) - fastlog(im)        if re_acc < 2 and (delta - re_acc <= -prec + 4):            re, re_acc = None, None        if im_acc < 2 and (delta - im_acc >= prec - 4):            im, im_acc = None, None    return re, im, re_acc, im_accdef check_target(expr: 'Expr', result: TMP_RES, prec: int):    a = complex_accuracy(result)    if a < prec:        raise PrecisionExhausted("Failed to distinguish the expression: \n\n%s\n\n"            "from zero. Try simplifying the input, using chop=True, or providing "            "a higher maxn for evalf" % (expr))def get_integer_part(expr: 'Expr', no: int, options: OPT_DICT, return_ints=False) -> \        tUnion[TMP_RES, tTuple[int, int]]:    """    With no = 1, computes ceiling(expr)    With no = -1, computes floor(expr)    Note: this function either gives the exact result or signals failure.    """    from sympy.functions.elementary.complexes import re, im    # The expression is likely less than 2^30 or so    assumed_size = 30    result = evalf(expr, assumed_size, options)    if result is S.ComplexInfinity:        raise ValueError("Cannot get integer part of Complex Infinity")    ire, iim, ire_acc, iim_acc = result    # We now know the size, so we can calculate how much extra precision    # (if any) is needed to get within the nearest integer    if ire and iim:        gap = max(fastlog(ire) - ire_acc, fastlog(iim) - iim_acc)    elif ire:        gap = fastlog(ire) - ire_acc    elif iim:        gap = fastlog(iim) - iim_acc    else:        # ... or maybe the expression was exactly zero        if return_ints:            return 0, 0        else:            return None, None, None, None    margin = 10    if gap >= -margin:        prec = margin + assumed_size + gap        ire, iim, ire_acc, iim_acc = evalf(            expr, prec, options)    else:        prec = assumed_size    # We can now easily find the nearest integer, but to find floor/ceil, we    # must also calculate whether the difference to the nearest integer is    # positive or negative (which may fail if very close).    def calc_part(re_im: 'Expr', nexpr: MPF_TUP):        from .add import Add        _, _, exponent, _ = nexpr        is_int = exponent == 0        nint = int(to_int(nexpr, rnd))        if is_int:            # make sure that we had enough precision to distinguish            # between nint and the re or im part (re_im) of expr that            # was passed to calc_part            ire, iim, ire_acc, iim_acc = evalf(                re_im - nint, 10, options)  # don't need much precision            assert not iim            size = -fastlog(ire) + 2  # -ve b/c ire is less than 1            if size > prec:                ire, iim, ire_acc, iim_acc = evalf(                    re_im, size, options)                assert not iim                nexpr = ire            nint = int(to_int(nexpr, rnd))            _, _, new_exp, _ = ire            is_int = new_exp == 0        if not is_int:            # if there are subs and they all contain integer re/im parts            # then we can (hopefully) safely substitute them into the            # expression            s = options.get('subs', False)            if s:                doit = True                # use strict=False with as_int because we take                # 2.0 == 2                for v in s.values():                    try:                        as_int(v, strict=False)                    except ValueError:                        try:                            [as_int(i, strict=False) for i in v.as_real_imag()]                            continue                        except (ValueError, AttributeError):                            doit = False                            break                if doit:                    re_im = re_im.subs(s)            re_im = Add(re_im, -nint, evaluate=False)            x, _, x_acc, _ = evalf(re_im, 10, options)            try:                check_target(re_im, (x, None, x_acc, None), 3)            except PrecisionExhausted:                if not re_im.equals(0):                    raise PrecisionExhausted                x = fzero            nint += int(no*(mpf_cmp(x or fzero, fzero) == no))        nint = from_int(nint)        return nint, INF    re_, im_, re_acc, im_acc = None, None, None, None    if ire:        re_, re_acc = calc_part(re(expr, evaluate=False), ire)    if iim:        im_, im_acc = calc_part(im(expr, evaluate=False), iim)    if return_ints:        return int(to_int(re_ or fzero)), int(to_int(im_ or fzero))    return re_, im_, re_acc, im_accdef evalf_ceiling(expr: 'ceiling', prec: int, options: OPT_DICT) -> TMP_RES:    return get_integer_part(expr.args[0], 1, options)def evalf_floor(expr: 'floor', prec: int, options: OPT_DICT) -> TMP_RES:    return get_integer_part(expr.args[0], -1, options)def evalf_float(expr: 'Float', prec: int, options: OPT_DICT) -> TMP_RES:    return expr._mpf_, None, prec, Nonedef evalf_rational(expr: 'Rational', prec: int, options: OPT_DICT) -> TMP_RES:    return from_rational(expr.p, expr.q, prec), None, prec, Nonedef evalf_integer(expr: 'Integer', prec: int, options: OPT_DICT) -> TMP_RES:    return from_int(expr.p, prec), None, prec, None#----------------------------------------------------------------------------##                                                                            ##                            Arithmetic operations                           ##                                                                            ##----------------------------------------------------------------------------#def add_terms(terms: list, prec: int, target_prec: int) -> \        tTuple[tUnion[MPF_TUP, SCALED_ZERO_TUP, None], Optional[int]]:    """    Helper for evalf_add. Adds a list of (mpfval, accuracy) terms.    Returns    =======    - None, None if there are no non-zero terms;    - terms[0] if there is only 1 term;    - scaled_zero if the sum of the terms produces a zero by cancellation      e.g. mpfs representing 1 and -1 would produce a scaled zero which need      special handling since they are not actually zero and they are purposely      malformed to ensure that they cannot be used in anything but accuracy      calculations;    - a tuple that is scaled to target_prec that corresponds to the      sum of the terms.    The returned mpf tuple will be normalized to target_prec; the input    prec is used to define the working precision.    XXX explain why this is needed and why one cannot just loop using mpf_add    """    terms = [t for t in terms if not iszero(t[0])]    if not terms:        return None, None    elif len(terms) == 1:        return terms[0]    # see if any argument is NaN or oo and thus warrants a special return    special = []    from .numbers import Float    for t in terms:        arg = Float._new(t[0], 1)        if arg is S.NaN or arg.is_infinite:            special.append(arg)    if special:        from .add import Add        rv = evalf(Add(*special), prec + 4, {})        return rv[0], rv[2]    working_prec = 2*prec    sum_man, sum_exp = 0, 0    absolute_err: List[int] = []    for x, accuracy in terms:        sign, man, exp, bc = x        if sign:            man = -man        absolute_err.append(bc + exp - accuracy)        delta = exp - sum_exp        if exp >= sum_exp:            # x much larger than existing sum?            # first: quick test            if ((delta > working_prec) and                ((not sum_man) or                 delta - bitcount(abs(sum_man)) > working_prec)):                sum_man = man                sum_exp = exp            else:                sum_man += (man << delta)        else:            delta = -delta            # x much smaller than existing sum?            if delta - bc > working_prec:                if not sum_man:                    sum_man, sum_exp = man, exp            else:                sum_man = (sum_man << delta) + man                sum_exp = exp    absolute_error = max(absolute_err)    if not sum_man:        return scaled_zero(absolute_error)    if sum_man < 0:        sum_sign = 1        sum_man = -sum_man    else:        sum_sign = 0    sum_bc = bitcount(sum_man)    sum_accuracy = sum_exp + sum_bc - absolute_error    r = normalize(sum_sign, sum_man, sum_exp, sum_bc, target_prec,        rnd), sum_accuracy    return rdef evalf_add(v: 'Add', prec: int, options: OPT_DICT) -> TMP_RES:    res = pure_complex(v)    if res:        h, c = res        re, _, re_acc, _ = evalf(h, prec, options)        im, _, im_acc, _ = evalf(c, prec, options)        return re, im, re_acc, im_acc    oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)    i = 0    target_prec = prec    while 1:        options['maxprec'] = min(oldmaxprec, 2*prec)        terms = [evalf(arg, prec + 10, options) for arg in v.args]        n = terms.count(S.ComplexInfinity)        if n >= 2:            return fnan, None, prec, None        re, re_acc = add_terms(            [a[0::2] for a in terms if isinstance(a, tuple) and a[0]], prec, target_prec)        im, im_acc = add_terms(            [a[1::2] for a in terms if isinstance(a, tuple) and a[1]], prec, target_prec)        if n == 1:            if re in (finf, fninf, fnan) or im in (finf, fninf, fnan):                return fnan, None, prec, None            return S.ComplexInfinity        acc = complex_accuracy((re, im, re_acc, im_acc))        if acc >= target_prec:            if options.get('verbose'):                print("ADD: wanted", target_prec, "accurate bits, got", re_acc, im_acc)            break        else:            if (prec - target_prec) > options['maxprec']:                break            prec = prec + max(10 + 2**i, target_prec - acc)            i += 1            if options.get('verbose'):                print("ADD: restarting with prec", prec)    options['maxprec'] = oldmaxprec    if iszero(re, scaled=True):        re = scaled_zero(re)    if iszero(im, scaled=True):        im = scaled_zero(im)    return re, im, re_acc, im_accdef evalf_mul(v: 'Mul', prec: int, options: OPT_DICT) -> TMP_RES:    res = pure_complex(v)    if res:        # the only pure complex that is a mul is h*I        _, h = res        im, _, im_acc, _ = evalf(h, prec, options)        return None, im, None, im_acc    args = list(v.args)    # see if any argument is NaN or oo and thus warrants a special return    has_zero = False    special = []    from .numbers import Float    for arg in args:        result = evalf(arg, prec, options)        if result is S.ComplexInfinity:            special.append(result)            continue        if result[0] is None:            if result[1] is None:                has_zero = True            continue        num = Float._new(result[0], 1)        if num is S.NaN:            return fnan, None, prec, None        if num.is_infinite:            special.append(num)    if special:        if has_zero:            return fnan, None, prec, None        from .mul import Mul        return evalf(Mul(*special), prec + 4, {})    if has_zero:        return None, None, None, None    # With guard digits, multiplication in the real case does not destroy    # accuracy. This is also true in the complex case when considering the    # total accuracy; however accuracy for the real or imaginary parts    # separately may be lower.    acc = prec    # XXX: big overestimate    working_prec = prec + len(args) + 5    # Empty product is 1    start = man, exp, bc = MPZ(1), 0, 1    # First, we multiply all pure real or pure imaginary numbers.    # direction tells us that the result should be multiplied by    # I**direction; all other numbers get put into complex_factors    # to be multiplied out after the first phase.    last = len(args)    direction = 0    args.append(S.One)    complex_factors = []    for i, arg in enumerate(args):        if i != last and pure_complex(arg):            args[-1] = (args[-1]*arg).expand()            continue        elif i == last and arg is S.One:            continue        re, im, re_acc, im_acc = evalf(arg, working_prec, options)        if re and im:            complex_factors.append((re, im, re_acc, im_acc))            continue        elif re:            (s, m, e, b), w_acc = re, re_acc        elif im:            (s, m, e, b), w_acc = im, im_acc            direction += 1        else:            return None, None, None, None        direction += 2*s        man *= m        exp += e        bc += b        while bc > 3*working_prec:            man >>= working_prec            exp += working_prec            bc -= working_prec        acc = min(acc, w_acc)    sign = (direction & 2) >> 1    if not complex_factors:        v = normalize(sign, man, exp, bitcount(man), prec, rnd)        # multiply by i        if direction & 1:            return None, v, None, acc        else:            return v, None, acc, None    else:        # initialize with the first term        if (man, exp, bc) != start:            # there was a real part; give it an imaginary part            re, im = (sign, man, exp, bitcount(man)), (0, MPZ(0), 0, 0)            i0 = 0        else:            # there is no real part to start (other than the starting 1)            wre, wim, wre_acc, wim_acc = complex_factors[0]            acc = min(acc,                      complex_accuracy((wre, wim, wre_acc, wim_acc)))            re = wre            im = wim            i0 = 1        for wre, wim, wre_acc, wim_acc in complex_factors[i0:]:            # acc is the overall accuracy of the product; we aren't            # computing exact accuracies of the product.            acc = min(acc,                      complex_accuracy((wre, wim, wre_acc, wim_acc)))            use_prec = working_prec            A = mpf_mul(re, wre, use_prec)            B = mpf_mul(mpf_neg(im), wim, use_prec)            C = mpf_mul(re, wim, use_prec)            D = mpf_mul(im, wre, use_prec)            re = mpf_add(A, B, use_prec)            im = mpf_add(C, D, use_prec)        if options.get('verbose'):            print("MUL: wanted", prec, "accurate bits, got", acc)        # multiply by I        if direction & 1:            re, im = mpf_neg(im), re        return re, im, acc, accdef evalf_pow(v: 'Pow', prec: int, options) -> TMP_RES:    target_prec = prec    base, exp = v.args    # We handle x**n separately. This has two purposes: 1) it is much    # faster, because we avoid calling evalf on the exponent, and 2) it    # allows better handling of real/imaginary parts that are exactly zero    if exp.is_Integer:        p: int = exp.p  # type: ignore        # Exact        if not p:            return fone, None, prec, None        # Exponentiation by p magnifies relative error by |p|, so the        # base must be evaluated with increased precision if p is large        prec += int(math.log(abs(p), 2))        result = evalf(base, prec + 5, options)        if result is S.ComplexInfinity:            if p < 0:                return None, None, None, None            return result        re, im, re_acc, im_acc = result        # Real to integer power        if re and not im:            return mpf_pow_int(re, p, target_prec), None, target_prec, None        # (x*I)**n = I**n * x**n        if im and not re:            z = mpf_pow_int(im, p, target_prec)            case = p % 4            if case == 0:                return z, None, target_prec, None            if case == 1:                return None, z, None, target_prec            if case == 2:                return mpf_neg(z), None, target_prec, None            if case == 3:                return None, mpf_neg(z), None, target_prec        # Zero raised to an integer power        if not re:            if p < 0:                return S.ComplexInfinity            return None, None, None, None        # General complex number to arbitrary integer power        re, im = libmp.mpc_pow_int((re, im), p, prec)        # Assumes full accuracy in input        return finalize_complex(re, im, target_prec)    result = evalf(base, prec + 5, options)    if result is S.ComplexInfinity:        if exp.is_Rational:            if exp < 0:                return None, None, None, None            return result        raise NotImplementedError    # Pure square root    if exp is S.Half:        xre, xim, _, _ = result        # General complex square root        if xim:            re, im = libmp.mpc_sqrt((xre or fzero, xim), prec)            return finalize_complex(re, im, prec)        if not xre:            return None, None, None, None        # Square root of a negative real number        if mpf_lt(xre, fzero):            return None, mpf_sqrt(mpf_neg(xre), prec), None, prec        # Positive square root        return mpf_sqrt(xre, prec), None, prec, None    # We first evaluate the exponent to find its magnitude    # This determines the working precision that must be used    prec += 10    result = evalf(exp, prec, options)    if result is S.ComplexInfinity:        return fnan, None, prec, None    yre, yim, _, _ = result    # Special cases: x**0    if not (yre or yim):        return fone, None, prec, None    ysize = fastlog(yre)    # Restart if too big    # XXX: prec + ysize might exceed maxprec    if ysize > 5:        prec += ysize        yre, yim, _, _ = evalf(exp, prec, options)    # Pure exponential function; no need to evalf the base    if base is S.Exp1:        if yim:            re, im = libmp.mpc_exp((yre or fzero, yim), prec)            return finalize_complex(re, im, target_prec)        return mpf_exp(yre, target_prec), None, target_prec, None    xre, xim, _, _ = evalf(base, prec + 5, options)    # 0**y    if not (xre or xim):        if yim:            return fnan, None, prec, None        if yre[0] == 1:  # y < 0            return S.ComplexInfinity        return None, None, None, None    # (real ** complex) or (complex ** complex)    if yim:        re, im = libmp.mpc_pow(            (xre or fzero, xim or fzero), (yre or fzero, yim),            target_prec)        return finalize_complex(re, im, target_prec)    # complex ** real    if xim:        re, im = libmp.mpc_pow_mpf((xre or fzero, xim), yre, target_prec)        return finalize_complex(re, im, target_prec)    # negative ** real    elif mpf_lt(xre, fzero):        re, im = libmp.mpc_pow_mpf((xre, fzero), yre, target_prec)        return finalize_complex(re, im, target_prec)    # positive ** real    else:        return mpf_pow(xre, yre, target_prec), None, target_prec, None#----------------------------------------------------------------------------##                                                                            ##                            Special functions                               ##                                                                            ##----------------------------------------------------------------------------#def evalf_exp(expr: 'exp', prec: int, options: OPT_DICT) -> TMP_RES:    from .power import Pow    return evalf_pow(Pow(S.Exp1, expr.exp, evaluate=False), prec, options)def evalf_trig(v: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:    """    This function handles sin and cos of complex arguments.    TODO: should also handle tan of complex arguments.    """    from sympy.functions.elementary.trigonometric import cos, sin    if isinstance(v, cos):        func = mpf_cos    elif isinstance(v, sin):        func = mpf_sin    else:        raise NotImplementedError    arg = v.args[0]    # 20 extra bits is possibly overkill. It does make the need    # to restart very unlikely    xprec = prec + 20    re, im, re_acc, im_acc = evalf(arg, xprec, options)    if im:        if 'subs' in options:            v = v.subs(options['subs'])        return evalf(v._eval_evalf(prec), prec, options)    if not re:        if isinstance(v, cos):            return fone, None, prec, None        elif isinstance(v, sin):            return None, None, None, None        else:            raise NotImplementedError    # For trigonometric functions, we are interested in the    # fixed-point (absolute) accuracy of the argument.    xsize = fastlog(re)    # Magnitude <= 1.0. OK to compute directly, because there is no    # danger of hitting the first root of cos (with sin, magnitude    # <= 2.0 would actually be ok)    if xsize < 1:        return func(re, prec, rnd), None, prec, None    # Very large    if xsize >= 10:        xprec = prec + xsize        re, im, re_acc, im_acc = evalf(arg, xprec, options)    # Need to repeat in case the argument is very close to a    # multiple of pi (or pi/2), hitting close to a root    while 1:        y = func(re, prec, rnd)        ysize = fastlog(y)        gap = -ysize        accuracy = (xprec - xsize) - gap        if accuracy < prec:            if options.get('verbose'):                print("SIN/COS", accuracy, "wanted", prec, "gap", gap)                print(to_str(y, 10))            if xprec > options.get('maxprec', DEFAULT_MAXPREC):                return y, None, accuracy, None            xprec += gap            re, im, re_acc, im_acc = evalf(arg, xprec, options)            continue        else:            return y, None, prec, Nonedef evalf_log(expr: 'log', prec: int, options: OPT_DICT) -> TMP_RES:    if len(expr.args)>1:        expr = expr.doit()        return evalf(expr, prec, options)    arg = expr.args[0]    workprec = prec + 10    result = evalf(arg, workprec, options)    if result is S.ComplexInfinity:        return result    xre, xim, xacc, _ = result    # evalf can return NoneTypes if chop=True    # issue 18516, 19623    if xre is xim is None:        # Dear reviewer, I do not know what -inf is;        # it looks to be (1, 0, -789, -3)        # but I'm not sure in general,        # so we just let mpmath figure        # it out by taking log of 0 directly.        # It would be better to return -inf instead.        xre = fzero    if xim:        from sympy.functions.elementary.complexes import Abs        from sympy.functions.elementary.exponential import log        # XXX: use get_abs etc instead        re = evalf_log(            log(Abs(arg, evaluate=False), evaluate=False), prec, options)        im = mpf_atan2(xim, xre or fzero, prec)        return re[0], im, re[2], prec    imaginary_term = (mpf_cmp(xre, fzero) < 0)    re = mpf_log(mpf_abs(xre), prec, rnd)    size = fastlog(re)    if prec - size > workprec and re != fzero:        from .add import Add        # We actually need to compute 1+x accurately, not x        add = Add(S.NegativeOne, arg, evaluate=False)        xre, xim, _, _ = evalf_add(add, prec, options)        prec2 = workprec - fastlog(xre)        # xre is now x - 1 so we add 1 back here to calculate x        re = mpf_log(mpf_abs(mpf_add(xre, fone, prec2)), prec, rnd)    re_acc = prec    if imaginary_term:        return re, mpf_pi(prec), re_acc, prec    else:        return re, None, re_acc, Nonedef evalf_atan(v: 'atan', prec: int, options: OPT_DICT) -> TMP_RES:    arg = v.args[0]    xre, xim, reacc, imacc = evalf(arg, prec + 5, options)    if xre is xim is None:        return (None,)*4    if xim:        raise NotImplementedError    return mpf_atan(xre, prec, rnd), None, prec, Nonedef evalf_subs(prec: int, subs: dict) -> dict:    """ Change all Float entries in `subs` to have precision prec. """    newsubs = {}    for a, b in subs.items():        b = S(b)        if b.is_Float:            b = b._eval_evalf(prec)        newsubs[a] = b    return newsubsdef evalf_piecewise(expr: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:    from .numbers import Float, Integer    if 'subs' in options:        expr = expr.subs(evalf_subs(prec, options['subs']))        newopts = options.copy()        del newopts['subs']        if hasattr(expr, 'func'):            return evalf(expr, prec, newopts)        if isinstance(expr, float):            return evalf(Float(expr), prec, newopts)        if isinstance(expr, int):            return evalf(Integer(expr), prec, newopts)    # We still have undefined symbols    raise NotImplementedErrordef evalf_alg_num(a: 'AlgebraicNumber', prec: int, options: OPT_DICT) -> TMP_RES:    return evalf(a.to_root(), prec, options)#----------------------------------------------------------------------------##                                                                            ##                            High-level operations                           ##                                                                            ##----------------------------------------------------------------------------#def as_mpmath(x: Any, prec: int, options: OPT_DICT) -> tUnion[mpc, mpf]:    from .numbers import Infinity, NegativeInfinity, Zero    x = sympify(x)    if isinstance(x, Zero) or x == 0.0:        return mpf(0)    if isinstance(x, Infinity):        return mpf('inf')    if isinstance(x, NegativeInfinity):        return mpf('-inf')    # XXX    result = evalf(x, prec, options)    return quad_to_mpmath(result)def do_integral(expr: 'Integral', prec: int, options: OPT_DICT) -> TMP_RES:    func = expr.args[0]    x, xlow, xhigh = expr.args[1]    if xlow == xhigh:        xlow = xhigh = 0    elif x not in func.free_symbols:        # only the difference in limits matters in this case        # so if there is a symbol in common that will cancel        # out when taking the difference, then use that        # difference        if xhigh.free_symbols & xlow.free_symbols:            diff = xhigh - xlow            if diff.is_number:                xlow, xhigh = 0, diff    oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)    options['maxprec'] = min(oldmaxprec, 2*prec)    with workprec(prec + 5):        xlow = as_mpmath(xlow, prec + 15, options)        xhigh = as_mpmath(xhigh, prec + 15, options)        # Integration is like summation, and we can phone home from        # the integrand function to update accuracy summation style        # Note that this accuracy is inaccurate, since it fails        # to account for the variable quadrature weights,        # but it is better than nothing        from sympy.functions.elementary.trigonometric import cos, sin        from .symbol import Wild        have_part = [False, False]        max_real_term: tUnion[float, int] = MINUS_INF        max_imag_term: tUnion[float, int] = MINUS_INF        def f(t: 'Expr') -> tUnion[mpc, mpf]:            nonlocal max_real_term, max_imag_term            re, im, re_acc, im_acc = evalf(func, mp.prec, {'subs': {x: t}})            have_part[0] = re or have_part[0]            have_part[1] = im or have_part[1]            max_real_term = max(max_real_term, fastlog(re))            max_imag_term = max(max_imag_term, fastlog(im))            if im:                return mpc(re or fzero, im)            return mpf(re or fzero)        if options.get('quad') == 'osc':            A = Wild('A', exclude=[x])            B = Wild('B', exclude=[x])            D = Wild('D')            m = func.match(cos(A*x + B)*D)            if not m:                m = func.match(sin(A*x + B)*D)            if not m:                raise ValueError("An integrand of the form sin(A*x+B)*f(x) "                  "or cos(A*x+B)*f(x) is required for oscillatory quadrature")            period = as_mpmath(2*S.Pi/m[A], prec + 15, options)            result = quadosc(f, [xlow, xhigh], period=period)            # XXX: quadosc does not do error detection yet            quadrature_error = MINUS_INF        else:            result, quadrature_err = quadts(f, [xlow, xhigh], error=1)            quadrature_error = fastlog(quadrature_err._mpf_)    options['maxprec'] = oldmaxprec    if have_part[0]:        re: Optional[MPF_TUP] = result.real._mpf_        re_acc: Optional[int]        if re == fzero:            re_s, re_acc = scaled_zero(int(-max(prec, max_real_term, quadrature_error)))            re = scaled_zero(re_s)  # handled ok in evalf_integral        else:            re_acc = int(-max(max_real_term - fastlog(re) - prec, quadrature_error))    else:        re, re_acc = None, None    if have_part[1]:        im: Optional[MPF_TUP] = result.imag._mpf_        im_acc: Optional[int]        if im == fzero:            im_s, im_acc = scaled_zero(int(-max(prec, max_imag_term, quadrature_error)))            im = scaled_zero(im_s)  # handled ok in evalf_integral        else:            im_acc = int(-max(max_imag_term - fastlog(im) - prec, quadrature_error))    else:        im, im_acc = None, None    result = re, im, re_acc, im_acc    return resultdef evalf_integral(expr: 'Integral', prec: int, options: OPT_DICT) -> TMP_RES:    limits = expr.limits    if len(limits) != 1 or len(limits[0]) != 3:        raise NotImplementedError    workprec = prec    i = 0    maxprec = options.get('maxprec', INF)    while 1:        result = do_integral(expr, workprec, options)        accuracy = complex_accuracy(result)        if accuracy >= prec:  # achieved desired precision            break        if workprec >= maxprec:  # can't increase accuracy any more            break        if accuracy == -1:            # maybe the answer really is zero and maybe we just haven't increased            # the precision enough. So increase by doubling to not take too long            # to get to maxprec.            workprec *= 2        else:            workprec += max(prec, 2**i)        workprec = min(workprec, maxprec)        i += 1    return resultdef check_convergence(numer: 'Expr', denom: 'Expr', n: 'Symbol') -> tTuple[int, Any, Any]:    """    Returns    =======    (h, g, p) where    -- h is:        > 0 for convergence of rate 1/factorial(n)**h        < 0 for divergence of rate factorial(n)**(-h)        = 0 for geometric or polynomial convergence or divergence    -- abs(g) is:        > 1 for geometric convergence of rate 1/h**n        < 1 for geometric divergence of rate h**n        = 1 for polynomial convergence or divergence        (g < 0 indicates an alternating series)    -- p is:        > 1 for polynomial convergence of rate 1/n**h        <= 1 for polynomial divergence of rate n**(-h)    """    from sympy.polys.polytools import Poly    npol = Poly(numer, n)    dpol = Poly(denom, n)    p = npol.degree()    q = dpol.degree()    rate = q - p    if rate:        return rate, None, None    constant = dpol.LC() / npol.LC()    from .numbers import equal_valued    if not equal_valued(abs(constant), 1):        return rate, constant, None    if npol.degree() == dpol.degree() == 0:        return rate, constant, 0    pc = npol.all_coeffs()[1]    qc = dpol.all_coeffs()[1]    return rate, constant, (qc - pc)/dpol.LC()def hypsum(expr: 'Expr', n: 'Symbol', start: int, prec: int) -> mpf:    """    Sum a rapidly convergent infinite hypergeometric series with    given general term, e.g. e = hypsum(1/factorial(n), n). The    quotient between successive terms must be a quotient of integer    polynomials.    """    from .numbers import Float, equal_valued    from sympy.simplify.simplify import hypersimp    if prec == float('inf'):        raise NotImplementedError('does not support inf prec')    if start:        expr = expr.subs(n, n + start)    hs = hypersimp(expr, n)    if hs is None:        raise NotImplementedError("a hypergeometric series is required")    num, den = hs.as_numer_denom()    func1 = lambdify(n, num)    func2 = lambdify(n, den)    h, g, p = check_convergence(num, den, n)    if h < 0:        raise ValueError("Sum diverges like (n!)^%i" % (-h))    term = expr.subs(n, 0)    if not term.is_Rational:        raise NotImplementedError("Non rational term functionality is not implemented.")    # Direct summation if geometric or faster    if h > 0 or (h == 0 and abs(g) > 1):        term = (MPZ(term.p) << prec) // term.q        s = term        k = 1        while abs(term) > 5:            term *= MPZ(func1(k - 1))            term //= MPZ(func2(k - 1))            s += term            k += 1        return from_man_exp(s, -prec)    else:        alt = g < 0        if abs(g) < 1:            raise ValueError("Sum diverges like (%i)^n" % abs(1/g))        if p < 1 or (equal_valued(p, 1) and not alt):            raise ValueError("Sum diverges like n^%i" % (-p))        # We have polynomial convergence: use Richardson extrapolation        vold = None        ndig = prec_to_dps(prec)        while True:            # Need to use at least quad precision because a lot of cancellation            # might occur in the extrapolation process; we check the answer to            # make sure that the desired precision has been reached, too.            prec2 = 4*prec            term0 = (MPZ(term.p) << prec2) // term.q            def summand(k, _term=[term0]):                if k:                    k = int(k)                    _term[0] *= MPZ(func1(k - 1))                    _term[0] //= MPZ(func2(k - 1))                return make_mpf(from_man_exp(_term[0], -prec2))            with workprec(prec):                v = nsum(summand, [0, mpmath_inf], method='richardson')            vf = Float(v, ndig)            if vold is not None and vold == vf:                break            prec += prec  # double precision each time            vold = vf        return v._mpf_def evalf_prod(expr: 'Product', prec: int, options: OPT_DICT) -> TMP_RES:    if all((l[1] - l[2]).is_Integer for l in expr.limits):        result = evalf(expr.doit(), prec=prec, options=options)    else:        from sympy.concrete.summations import Sum        result = evalf(expr.rewrite(Sum), prec=prec, options=options)    return resultdef evalf_sum(expr: 'Sum', prec: int, options: OPT_DICT) -> TMP_RES:    from .numbers import Float    if 'subs' in options:        expr = expr.subs(options['subs'])    func = expr.function    limits = expr.limits    if len(limits) != 1 or len(limits[0]) != 3:        raise NotImplementedError    if func.is_zero:        return None, None, prec, None    prec2 = prec + 10    try:        n, a, b = limits[0]        if b is not S.Infinity or a is S.NegativeInfinity or a != int(a):            raise NotImplementedError        # Use fast hypergeometric summation if possible        v = hypsum(func, n, int(a), prec2)        delta = prec - fastlog(v)        if fastlog(v) < -10:            v = hypsum(func, n, int(a), delta)        return v, None, min(prec, delta), None    except NotImplementedError:        # Euler-Maclaurin summation for general series        eps = Float(2.0)**(-prec)        for i in range(1, 5):            m = n = 2**i * prec            s, err = expr.euler_maclaurin(m=m, n=n, eps=eps,                eval_integral=False)            err = err.evalf()            if err is S.NaN:                raise NotImplementedError            if err <= eps:                break        err = fastlog(evalf(abs(err), 20, options)[0])        re, im, re_acc, im_acc = evalf(s, prec2, options)        if re_acc is None:            re_acc = -err        if im_acc is None:            im_acc = -err        return re, im, re_acc, im_acc#----------------------------------------------------------------------------##                                                                            ##                            Symbolic interface                              ##                                                                            ##----------------------------------------------------------------------------#def evalf_symbol(x: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:    val = options['subs'][x]    if isinstance(val, mpf):        if not val:            return None, None, None, None        return val._mpf_, None, prec, None    else:        if '_cache' not in options:            options['_cache'] = {}        cache = options['_cache']        cached, cached_prec = cache.get(x, (None, MINUS_INF))        if cached_prec >= prec:            return cached        v = evalf(sympify(val), prec, options)        cache[x] = (v, prec)        return vevalf_table: tDict[Type['Expr'], Callable[['Expr', int, OPT_DICT], TMP_RES]] = {}def _create_evalf_table():    global evalf_table    from sympy.concrete.products import Product    from sympy.concrete.summations import Sum    from .add import Add    from .mul import Mul    from .numbers import Exp1, Float, Half, ImaginaryUnit, Integer, NaN, NegativeOne, One, Pi, Rational, \        Zero, ComplexInfinity, AlgebraicNumber    from .power import Pow    from .symbol import Dummy, Symbol    from sympy.functions.elementary.complexes import Abs, im, re    from sympy.functions.elementary.exponential import exp, log    from sympy.functions.elementary.integers import ceiling, floor    from sympy.functions.elementary.piecewise import Piecewise    from sympy.functions.elementary.trigonometric import atan, cos, sin    from sympy.integrals.integrals import Integral    evalf_table = {        Symbol: evalf_symbol,        Dummy: evalf_symbol,        Float: evalf_float,        Rational: evalf_rational,        Integer: evalf_integer,        Zero: lambda x, prec, options: (None, None, prec, None),        One: lambda x, prec, options: (fone, None, prec, None),        Half: lambda x, prec, options: (fhalf, None, prec, None),        Pi: lambda x, prec, options: (mpf_pi(prec), None, prec, None),        Exp1: lambda x, prec, options: (mpf_e(prec), None, prec, None),        ImaginaryUnit: lambda x, prec, options: (None, fone, None, prec),        NegativeOne: lambda x, prec, options: (fnone, None, prec, None),        ComplexInfinity: lambda x, prec, options: S.ComplexInfinity,        NaN: lambda x, prec, options: (fnan, None, prec, None),        exp: evalf_exp,        cos: evalf_trig,        sin: evalf_trig,        Add: evalf_add,        Mul: evalf_mul,        Pow: evalf_pow,        log: evalf_log,        atan: evalf_atan,        Abs: evalf_abs,        re: evalf_re,        im: evalf_im,        floor: evalf_floor,        ceiling: evalf_ceiling,        Integral: evalf_integral,        Sum: evalf_sum,        Product: evalf_prod,        Piecewise: evalf_piecewise,        AlgebraicNumber: evalf_alg_num,    }def evalf(x: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:    """    Evaluate the ``Expr`` instance, ``x``    to a binary precision of ``prec``. This    function is supposed to be used internally.    Parameters    ==========    x : Expr        The formula to evaluate to a float.    prec : int        The binary precision that the output should have.    options : dict        A dictionary with the same entries as        ``EvalfMixin.evalf`` and in addition,        ``maxprec`` which is the maximum working precision.    Returns    =======    An optional tuple, ``(re, im, re_acc, im_acc)``    which are the real, imaginary, real accuracy    and imaginary accuracy respectively. ``re`` is    an mpf value tuple and so is ``im``. ``re_acc``    and ``im_acc`` are ints.    NB: all these return values can be ``None``.    If all values are ``None``, then that represents 0.    Note that 0 is also represented as ``fzero = (0, 0, 0, 0)``.    """    from sympy.functions.elementary.complexes import re as re_, im as im_    try:        rf = evalf_table[type(x)]        r = rf(x, prec, options)    except KeyError:        # Fall back to ordinary evalf if possible        if 'subs' in options:            x = x.subs(evalf_subs(prec, options['subs']))        xe = x._eval_evalf(prec)        if xe is None:            raise NotImplementedError        as_real_imag = getattr(xe, "as_real_imag", None)        if as_real_imag is None:            raise NotImplementedError # e.g. FiniteSet(-1.0, 1.0).evalf()        re, im = as_real_imag()        if re.has(re_) or im.has(im_):            raise NotImplementedError        if re == 0.0:            re = None            reprec = None        elif re.is_number:            re = re._to_mpmath(prec, allow_ints=False)._mpf_            reprec = prec        else:            raise NotImplementedError        if im == 0.0:            im = None            imprec = None        elif im.is_number:            im = im._to_mpmath(prec, allow_ints=False)._mpf_            imprec = prec        else:            raise NotImplementedError        r = re, im, reprec, imprec    if options.get("verbose"):        print("### input", x)        print("### output", to_str(r[0] or fzero, 50) if isinstance(r, tuple) else r)        print("### raw", r) # r[0], r[2]        print()    chop = options.get('chop', False)    if chop:        if chop is True:            chop_prec = prec        else:            # convert (approximately) from given tolerance;            # the formula here will will make 1e-i rounds to 0 for            # i in the range +/-27 while 2e-i will not be chopped            chop_prec = int(round(-3.321*math.log10(chop) + 2.5))            if chop_prec == 3:                chop_prec -= 1        r = chop_parts(r, chop_prec)    if options.get("strict"):        check_target(x, r, prec)    return rdef quad_to_mpmath(q, ctx=None):    """Turn the quad returned by ``evalf`` into an ``mpf`` or ``mpc``. """    mpc = make_mpc if ctx is None else ctx.make_mpc    mpf = make_mpf if ctx is None else ctx.make_mpf    if q is S.ComplexInfinity:        raise NotImplementedError    re, im, _, _ = q    if im:        if not re:            re = fzero        return mpc((re, im))    elif re:        return mpf(re)    else:        return mpf(fzero)class EvalfMixin:    """Mixin class adding evalf capability."""    __slots__ = ()  # type: tTuple[str, ...]    def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False):        """        Evaluate the given formula to an accuracy of *n* digits.        Parameters        ==========        subs : dict, optional            Substitute numerical values for symbols, e.g.            ``subs={x:3, y:1+pi}``. The substitutions must be given as a            dictionary.        maxn : int, optional            Allow a maximum temporary working precision of maxn digits.        chop : bool or number, optional            Specifies how to replace tiny real or imaginary parts in            subresults by exact zeros.            When ``True`` the chop value defaults to standard precision.            Otherwise the chop value is used to determine the            magnitude of "small" for purposes of chopping.            >>> from sympy import N            >>> x = 1e-4            >>> N(x, chop=True)            0.000100000000000000            >>> N(x, chop=1e-5)            0.000100000000000000            >>> N(x, chop=1e-4)            0        strict : bool, optional            Raise ``PrecisionExhausted`` if any subresult fails to            evaluate to full accuracy, given the available maxprec.        quad : str, optional            Choose algorithm for numerical quadrature. By default,            tanh-sinh quadrature is used. For oscillatory            integrals on an infinite interval, try ``quad='osc'``.        verbose : bool, optional            Print debug information.        Notes        =====        When Floats are naively substituted into an expression,        precision errors may adversely affect the result. For example,        adding 1e16 (a Float) to 1 will truncate to 1e16; if 1e16 is        then subtracted, the result will be 0.        That is exactly what happens in the following:        >>> from sympy.abc import x, y, z        >>> values = {x: 1e16, y: 1, z: 1e16}        >>> (x + y - z).subs(values)        0        Using the subs argument for evalf is the accurate way to        evaluate such an expression:        >>> (x + y - z).evalf(subs=values)        1.00000000000000        """        from .numbers import Float, Number        n = n if n is not None else 15        if subs and is_sequence(subs):            raise TypeError('subs must be given as a dictionary')        # for sake of sage that doesn't like evalf(1)        if n == 1 and isinstance(self, Number):            from .expr import _mag            rv = self.evalf(2, subs, maxn, chop, strict, quad, verbose)            m = _mag(rv)            rv = rv.round(1 - m)            return rv        if not evalf_table:            _create_evalf_table()        prec = dps_to_prec(n)        options = {'maxprec': max(prec, int(maxn*LG10)), 'chop': chop,               'strict': strict, 'verbose': verbose}        if subs is not None:            options['subs'] = subs        if quad is not None:            options['quad'] = quad        try:            result = evalf(self, prec + 4, options)        except NotImplementedError:            # Fall back to the ordinary evalf            if hasattr(self, 'subs') and subs is not None:  # issue 20291                v = self.subs(subs)._eval_evalf(prec)            else:                v = self._eval_evalf(prec)            if v is None:                return self            elif not v.is_number:                return v            try:                # If the result is numerical, normalize it                result = evalf(v, prec, options)            except NotImplementedError:                # Probably contains symbols or unknown functions                return v        if result is S.ComplexInfinity:            return result        re, im, re_acc, im_acc = result        if re is S.NaN or im is S.NaN:            return S.NaN        if re:            p = max(min(prec, re_acc), 1)            re = Float._new(re, p)        else:            re = S.Zero        if im:            p = max(min(prec, im_acc), 1)            im = Float._new(im, p)            return re + im*S.ImaginaryUnit        else:            return re    n = evalf    def _evalf(self, prec):        """Helper for evalf. Does the same thing but takes binary precision"""        r = self._eval_evalf(prec)        if r is None:            r = self        return r    def _eval_evalf(self, prec):        return    def _to_mpmath(self, prec, allow_ints=True):        # mpmath functions accept ints as input        errmsg = "cannot convert to mpmath number"        if allow_ints and self.is_Integer:            return self.p        if hasattr(self, '_as_mpf_val'):            return make_mpf(self._as_mpf_val(prec))        try:            result = evalf(self, prec, {})            return quad_to_mpmath(result)        except NotImplementedError:            v = self._eval_evalf(prec)            if v is None:                raise ValueError(errmsg)            if v.is_Float:                return make_mpf(v._mpf_)            # Number + Number*I is also fine            re, im = v.as_real_imag()            if allow_ints and re.is_Integer:                re = from_int(re.p)            elif re.is_Float:                re = re._mpf_            else:                raise ValueError(errmsg)            if allow_ints and im.is_Integer:                im = from_int(im.p)            elif im.is_Float:                im = im._mpf_            else:                raise ValueError(errmsg)            return make_mpc((re, im))def N(x, n=15, **options):    r"""    Calls x.evalf(n, \*\*options).    Explanations    ============    Both .n() and N() are equivalent to .evalf(); use the one that you like better.    See also the docstring of .evalf() for information on the options.    Examples    ========    >>> from sympy import Sum, oo, N    >>> from sympy.abc import k    >>> Sum(1/k**k, (k, 1, oo))    Sum(k**(-k), (k, 1, oo))    >>> N(_, 4)    1.291    """    # by using rational=True, any evaluation of a string    # will be done using exact values for the Floats    return sympify(x, rational=True).evalf(n, **options)def _evalf_with_bounded_error(x: 'Expr', eps: 'Optional[Expr]' = None,                              m: int = 0,                              options: Optional[OPT_DICT] = None) -> TMP_RES:    """    Evaluate *x* to within a bounded absolute error.    Parameters    ==========    x : Expr        The quantity to be evaluated.    eps : Expr, None, optional (default=None)        Positive real upper bound on the acceptable error.    m : int, optional (default=0)        If *eps* is None, then use 2**(-m) as the upper bound on the error.    options: OPT_DICT        As in the ``evalf`` function.    Returns    =======    A tuple ``(re, im, re_acc, im_acc)``, as returned by ``evalf``.    See Also    ========    evalf    """    if eps is not None:        if not (eps.is_Rational or eps.is_Float) or not eps > 0:            raise ValueError("eps must be positive")        r, _, _, _ = evalf(1/eps, 1, {})        m = fastlog(r)    c, d, _, _ = evalf(x, 1, {})    # Note: If x = a + b*I, then |a| <= 2|c| and |b| <= 2|d|, with equality    # only in the zero case.    # If a is non-zero, then |c| = 2**nc for some integer nc, and c has    # bitcount 1. Therefore 2**fastlog(c) = 2**(nc+1) = 2|c| is an upper bound    # on |a|. Likewise for b and d.    nr, ni = fastlog(c), fastlog(d)    n = max(nr, ni) + 1    # If x is 0, then n is MINUS_INF, and p will be 1. Otherwise,    # n - 1 bits get us past the integer parts of a and b, and +1 accounts for    # the factor of <= sqrt(2) that is |x|/max(|a|, |b|).    p = max(1, m + n + 1)    options = options or {}    return evalf(x, p, options)
 |