| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536 | from sympy.combinatorics.permutations import Permutation, _af_invert, _af_rmulfrom sympy.ntheory import isprimermul = Permutation.rmul_af_new = Permutation._af_new############################################## Utilities for computational group theory#############################################def _base_ordering(base, degree):    r"""    Order `\{0, 1, \dots, n-1\}` so that base points come first and in order.    Parameters    ==========    base : the base    degree : the degree of the associated permutation group    Returns    =======    A list ``base_ordering`` such that ``base_ordering[point]`` is the    number of ``point`` in the ordering.    Examples    ========    >>> from sympy.combinatorics import SymmetricGroup    >>> from sympy.combinatorics.util import _base_ordering    >>> S = SymmetricGroup(4)    >>> S.schreier_sims()    >>> _base_ordering(S.base, S.degree)    [0, 1, 2, 3]    Notes    =====    This is used in backtrack searches, when we define a relation `\ll` on    the underlying set for a permutation group of degree `n`,    `\{0, 1, \dots, n-1\}`, so that if `(b_1, b_2, \dots, b_k)` is a base we    have `b_i \ll b_j` whenever `i<j` and `b_i \ll a` for all    `i\in\{1,2, \dots, k\}` and `a` is not in the base. The idea is developed    and applied to backtracking algorithms in [1], pp.108-132. The points    that are not in the base are taken in increasing order.    References    ==========    .. [1] Holt, D., Eick, B., O'Brien, E.           "Handbook of computational group theory"    """    base_len = len(base)    ordering = [0]*degree    for i in range(base_len):        ordering[base[i]] = i    current = base_len    for i in range(degree):        if i not in base:            ordering[i] = current            current += 1    return orderingdef _check_cycles_alt_sym(perm):    """    Checks for cycles of prime length p with n/2 < p < n-2.    Explanation    ===========    Here `n` is the degree of the permutation. This is a helper function for    the function is_alt_sym from sympy.combinatorics.perm_groups.    Examples    ========    >>> from sympy.combinatorics.util import _check_cycles_alt_sym    >>> from sympy.combinatorics import Permutation    >>> a = Permutation([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11, 12]])    >>> _check_cycles_alt_sym(a)    False    >>> b = Permutation([[0, 1, 2, 3, 4, 5, 6], [7, 8, 9, 10]])    >>> _check_cycles_alt_sym(b)    True    See Also    ========    sympy.combinatorics.perm_groups.PermutationGroup.is_alt_sym    """    n = perm.size    af = perm.array_form    current_len = 0    total_len = 0    used = set()    for i in range(n//2):        if i not in used and i < n//2 - total_len:            current_len = 1            used.add(i)            j = i            while af[j] != i:                current_len += 1                j = af[j]                used.add(j)            total_len += current_len            if current_len > n//2 and current_len < n - 2 and isprime(current_len):                return True    return Falsedef _distribute_gens_by_base(base, gens):    r"""    Distribute the group elements ``gens`` by membership in basic stabilizers.    Explanation    ===========    Notice that for a base `(b_1, b_2, \dots, b_k)`, the basic stabilizers    are defined as `G^{(i)} = G_{b_1, \dots, b_{i-1}}` for    `i \in\{1, 2, \dots, k\}`.    Parameters    ==========    base : a sequence of points in `\{0, 1, \dots, n-1\}`    gens : a list of elements of a permutation group of degree `n`.    Returns    =======    List of length `k`, where `k` is    the length of ``base``. The `i`-th entry contains those elements in    ``gens`` which fix the first `i` elements of ``base`` (so that the    `0`-th entry is equal to ``gens`` itself). If no element fixes the first    `i` elements of ``base``, the `i`-th element is set to a list containing    the identity element.    Examples    ========    >>> from sympy.combinatorics.named_groups import DihedralGroup    >>> from sympy.combinatorics.util import _distribute_gens_by_base    >>> D = DihedralGroup(3)    >>> D.schreier_sims()    >>> D.strong_gens    [(0 1 2), (0 2), (1 2)]    >>> D.base    [0, 1]    >>> _distribute_gens_by_base(D.base, D.strong_gens)    [[(0 1 2), (0 2), (1 2)],     [(1 2)]]    See Also    ========    _strong_gens_from_distr, _orbits_transversals_from_bsgs,    _handle_precomputed_bsgs    """    base_len = len(base)    degree = gens[0].size    stabs = [[] for _ in range(base_len)]    max_stab_index = 0    for gen in gens:        j = 0        while j < base_len - 1 and gen._array_form[base[j]] == base[j]:            j += 1        if j > max_stab_index:            max_stab_index = j        for k in range(j + 1):            stabs[k].append(gen)    for i in range(max_stab_index + 1, base_len):        stabs[i].append(_af_new(list(range(degree))))    return stabsdef _handle_precomputed_bsgs(base, strong_gens, transversals=None,                             basic_orbits=None, strong_gens_distr=None):    """    Calculate BSGS-related structures from those present.    Explanation    ===========    The base and strong generating set must be provided; if any of the    transversals, basic orbits or distributed strong generators are not    provided, they will be calculated from the base and strong generating set.    Parameters    ==========    ``base`` - the base    ``strong_gens`` - the strong generators    ``transversals`` - basic transversals    ``basic_orbits`` - basic orbits    ``strong_gens_distr`` - strong generators distributed by membership in basic    stabilizers    Returns    =======    ``(transversals, basic_orbits, strong_gens_distr)`` where ``transversals``    are the basic transversals, ``basic_orbits`` are the basic orbits, and    ``strong_gens_distr`` are the strong generators distributed by membership    in basic stabilizers.    Examples    ========    >>> from sympy.combinatorics.named_groups import DihedralGroup    >>> from sympy.combinatorics.util import _handle_precomputed_bsgs    >>> D = DihedralGroup(3)    >>> D.schreier_sims()    >>> _handle_precomputed_bsgs(D.base, D.strong_gens,    ... basic_orbits=D.basic_orbits)    ([{0: (2), 1: (0 1 2), 2: (0 2)}, {1: (2), 2: (1 2)}], [[0, 1, 2], [1, 2]], [[(0 1 2), (0 2), (1 2)], [(1 2)]])    See Also    ========    _orbits_transversals_from_bsgs, _distribute_gens_by_base    """    if strong_gens_distr is None:        strong_gens_distr = _distribute_gens_by_base(base, strong_gens)    if transversals is None:        if basic_orbits is None:            basic_orbits, transversals = \                _orbits_transversals_from_bsgs(base, strong_gens_distr)        else:            transversals = \                _orbits_transversals_from_bsgs(base, strong_gens_distr,                                           transversals_only=True)    else:        if basic_orbits is None:            base_len = len(base)            basic_orbits = [None]*base_len            for i in range(base_len):                basic_orbits[i] = list(transversals[i].keys())    return transversals, basic_orbits, strong_gens_distrdef _orbits_transversals_from_bsgs(base, strong_gens_distr,                                   transversals_only=False, slp=False):    """    Compute basic orbits and transversals from a base and strong generating set.    Explanation    ===========    The generators are provided as distributed across the basic stabilizers.    If the optional argument ``transversals_only`` is set to True, only the    transversals are returned.    Parameters    ==========    ``base`` - The base.    ``strong_gens_distr`` - Strong generators distributed by membership in basic    stabilizers.    ``transversals_only`` - bool        A flag switching between returning only the        transversals and both orbits and transversals.    ``slp`` -        If ``True``, return a list of dictionaries containing the        generator presentations of the elements of the transversals,        i.e. the list of indices of generators from ``strong_gens_distr[i]``        such that their product is the relevant transversal element.    Examples    ========    >>> from sympy.combinatorics import SymmetricGroup    >>> from sympy.combinatorics.util import _distribute_gens_by_base    >>> S = SymmetricGroup(3)    >>> S.schreier_sims()    >>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens)    >>> (S.base, strong_gens_distr)    ([0, 1], [[(0 1 2), (2)(0 1), (1 2)], [(1 2)]])    See Also    ========    _distribute_gens_by_base, _handle_precomputed_bsgs    """    from sympy.combinatorics.perm_groups import _orbit_transversal    base_len = len(base)    degree = strong_gens_distr[0][0].size    transversals = [None]*base_len    slps = [None]*base_len    if transversals_only is False:        basic_orbits = [None]*base_len    for i in range(base_len):        transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i],                                 base[i], pairs=True, slp=True)        transversals[i] = dict(transversals[i])        if transversals_only is False:            basic_orbits[i] = list(transversals[i].keys())    if transversals_only:        return transversals    else:        if not slp:            return basic_orbits, transversals        return basic_orbits, transversals, slpsdef _remove_gens(base, strong_gens, basic_orbits=None, strong_gens_distr=None):    """    Remove redundant generators from a strong generating set.    Parameters    ==========    ``base`` - a base    ``strong_gens`` - a strong generating set relative to ``base``    ``basic_orbits`` - basic orbits    ``strong_gens_distr`` - strong generators distributed by membership in basic    stabilizers    Returns    =======    A strong generating set with respect to ``base`` which is a subset of    ``strong_gens``.    Examples    ========    >>> from sympy.combinatorics import SymmetricGroup    >>> from sympy.combinatorics.util import _remove_gens    >>> from sympy.combinatorics.testutil import _verify_bsgs    >>> S = SymmetricGroup(15)    >>> base, strong_gens = S.schreier_sims_incremental()    >>> new_gens = _remove_gens(base, strong_gens)    >>> len(new_gens)    14    >>> _verify_bsgs(S, base, new_gens)    True    Notes    =====    This procedure is outlined in [1],p.95.    References    ==========    .. [1] Holt, D., Eick, B., O'Brien, E.           "Handbook of computational group theory"    """    from sympy.combinatorics.perm_groups import _orbit    base_len = len(base)    degree = strong_gens[0].size    if strong_gens_distr is None:        strong_gens_distr = _distribute_gens_by_base(base, strong_gens)    if basic_orbits is None:        basic_orbits = []        for i in range(base_len):            basic_orbit = _orbit(degree, strong_gens_distr[i], base[i])            basic_orbits.append(basic_orbit)    strong_gens_distr.append([])    res = strong_gens[:]    for i in range(base_len - 1, -1, -1):        gens_copy = strong_gens_distr[i][:]        for gen in strong_gens_distr[i]:            if gen not in strong_gens_distr[i + 1]:                temp_gens = gens_copy[:]                temp_gens.remove(gen)                if temp_gens == []:                    continue                temp_orbit = _orbit(degree, temp_gens, base[i])                if temp_orbit == basic_orbits[i]:                    gens_copy.remove(gen)                    res.remove(gen)    return resdef _strip(g, base, orbits, transversals):    """    Attempt to decompose a permutation using a (possibly partial) BSGS    structure.    Explanation    ===========    This is done by treating the sequence ``base`` as an actual base, and    the orbits ``orbits`` and transversals ``transversals`` as basic orbits and    transversals relative to it.    This process is called "sifting". A sift is unsuccessful when a certain    orbit element is not found or when after the sift the decomposition    does not end with the identity element.    The argument ``transversals`` is a list of dictionaries that provides    transversal elements for the orbits ``orbits``.    Parameters    ==========    ``g`` - permutation to be decomposed    ``base`` - sequence of points    ``orbits`` - a list in which the ``i``-th entry is an orbit of ``base[i]``    under some subgroup of the pointwise stabilizer of `    `base[0], base[1], ..., base[i - 1]``. The groups themselves are implicit    in this function since the only information we need is encoded in the orbits    and transversals    ``transversals`` - a list of orbit transversals associated with the orbits    ``orbits``.    Examples    ========    >>> from sympy.combinatorics import Permutation, SymmetricGroup    >>> from sympy.combinatorics.util import _strip    >>> S = SymmetricGroup(5)    >>> S.schreier_sims()    >>> g = Permutation([0, 2, 3, 1, 4])    >>> _strip(g, S.base, S.basic_orbits, S.basic_transversals)    ((4), 5)    Notes    =====    The algorithm is described in [1],pp.89-90. The reason for returning    both the current state of the element being decomposed and the level    at which the sifting ends is that they provide important information for    the randomized version of the Schreier-Sims algorithm.    References    ==========    .. [1] Holt, D., Eick, B., O'Brien, E."Handbook of computational group theory"    See Also    ========    sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims    sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims_random    """    h = g._array_form    base_len = len(base)    for i in range(base_len):        beta = h[base[i]]        if beta == base[i]:            continue        if beta not in orbits[i]:            return _af_new(h), i + 1        u = transversals[i][beta]._array_form        h = _af_rmul(_af_invert(u), h)    return _af_new(h), base_len + 1def _strip_af(h, base, orbits, transversals, j, slp=[], slps={}):    """    optimized _strip, with h, transversals and result in array form    if the stripped elements is the identity, it returns False, base_len + 1    j    h[base[i]] == base[i] for i <= j    """    base_len = len(base)    for i in range(j+1, base_len):        beta = h[base[i]]        if beta == base[i]:            continue        if beta not in orbits[i]:            if not slp:                return h, i + 1            return h, i + 1, slp        u = transversals[i][beta]        if h == u:            if not slp:                return False, base_len + 1            return False, base_len + 1, slp        h = _af_rmul(_af_invert(u), h)        if slp:            u_slp = slps[i][beta][:]            u_slp.reverse()            u_slp = [(i, (g,)) for g in u_slp]            slp = u_slp + slp    if not slp:        return h, base_len + 1    return h, base_len + 1, slpdef _strong_gens_from_distr(strong_gens_distr):    """    Retrieve strong generating set from generators of basic stabilizers.    This is just the union of the generators of the first and second basic    stabilizers.    Parameters    ==========    ``strong_gens_distr`` - strong generators distributed by membership in basic    stabilizers    Examples    ========    >>> from sympy.combinatorics import SymmetricGroup    >>> from sympy.combinatorics.util import (_strong_gens_from_distr,    ... _distribute_gens_by_base)    >>> S = SymmetricGroup(3)    >>> S.schreier_sims()    >>> S.strong_gens    [(0 1 2), (2)(0 1), (1 2)]    >>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens)    >>> _strong_gens_from_distr(strong_gens_distr)    [(0 1 2), (2)(0 1), (1 2)]    See Also    ========    _distribute_gens_by_base    """    if len(strong_gens_distr) == 1:        return strong_gens_distr[0][:]    else:        result = strong_gens_distr[0]        for gen in strong_gens_distr[1]:            if gen not in result:                result.append(gen)        return result
 |