123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562 |
- from itertools import permutations
- from sympy.core.expr import unchanged
- from sympy.core.numbers import Integer
- from sympy.core.relational import Eq
- from sympy.core.symbol import Symbol
- from sympy.core.singleton import S
- from sympy.combinatorics.permutations import \
- Permutation, _af_parity, _af_rmul, _af_rmuln, AppliedPermutation, Cycle
- from sympy.printing import sstr, srepr, pretty, latex
- from sympy.testing.pytest import raises, warns_deprecated_sympy
- rmul = Permutation.rmul
- a = Symbol('a', integer=True)
- def test_Permutation():
- # don't auto fill 0
- raises(ValueError, lambda: Permutation([1]))
- p = Permutation([0, 1, 2, 3])
- # call as bijective
- assert [p(i) for i in range(p.size)] == list(p)
- # call as operator
- assert p(list(range(p.size))) == list(p)
- # call as function
- assert list(p(1, 2)) == [0, 2, 1, 3]
- raises(TypeError, lambda: p(-1))
- raises(TypeError, lambda: p(5))
- # conversion to list
- assert list(p) == list(range(4))
- assert Permutation(size=4) == Permutation(3)
- assert Permutation(Permutation(3), size=5) == Permutation(4)
- # cycle form with size
- assert Permutation([[1, 2]], size=4) == Permutation([[1, 2], [0], [3]])
- # random generation
- assert Permutation.random(2) in (Permutation([1, 0]), Permutation([0, 1]))
- p = Permutation([2, 5, 1, 6, 3, 0, 4])
- q = Permutation([[1], [0, 3, 5, 6, 2, 4]])
- assert len({p, p}) == 1
- r = Permutation([1, 3, 2, 0, 4, 6, 5])
- ans = Permutation(_af_rmuln(*[w.array_form for w in (p, q, r)])).array_form
- assert rmul(p, q, r).array_form == ans
- # make sure no other permutation of p, q, r could have given
- # that answer
- for a, b, c in permutations((p, q, r)):
- if (a, b, c) == (p, q, r):
- continue
- assert rmul(a, b, c).array_form != ans
- assert p.support() == list(range(7))
- assert q.support() == [0, 2, 3, 4, 5, 6]
- assert Permutation(p.cyclic_form).array_form == p.array_form
- assert p.cardinality == 5040
- assert q.cardinality == 5040
- assert q.cycles == 2
- assert rmul(q, p) == Permutation([4, 6, 1, 2, 5, 3, 0])
- assert rmul(p, q) == Permutation([6, 5, 3, 0, 2, 4, 1])
- assert _af_rmul(p.array_form, q.array_form) == \
- [6, 5, 3, 0, 2, 4, 1]
- assert rmul(Permutation([[1, 2, 3], [0, 4]]),
- Permutation([[1, 2, 4], [0], [3]])).cyclic_form == \
- [[0, 4, 2], [1, 3]]
- assert q.array_form == [3, 1, 4, 5, 0, 6, 2]
- assert q.cyclic_form == [[0, 3, 5, 6, 2, 4]]
- assert q.full_cyclic_form == [[0, 3, 5, 6, 2, 4], [1]]
- assert p.cyclic_form == [[0, 2, 1, 5], [3, 6, 4]]
- t = p.transpositions()
- assert t == [(0, 5), (0, 1), (0, 2), (3, 4), (3, 6)]
- assert Permutation.rmul(*[Permutation(Cycle(*ti)) for ti in (t)])
- assert Permutation([1, 0]).transpositions() == [(0, 1)]
- assert p**13 == p
- assert q**0 == Permutation(list(range(q.size)))
- assert q**-2 == ~q**2
- assert q**2 == Permutation([5, 1, 0, 6, 3, 2, 4])
- assert q**3 == q**2*q
- assert q**4 == q**2*q**2
- a = Permutation(1, 3)
- b = Permutation(2, 0, 3)
- I = Permutation(3)
- assert ~a == a**-1
- assert a*~a == I
- assert a*b**-1 == a*~b
- ans = Permutation(0, 5, 3, 1, 6)(2, 4)
- assert (p + q.rank()).rank() == ans.rank()
- assert (p + q.rank())._rank == ans.rank()
- assert (q + p.rank()).rank() == ans.rank()
- raises(TypeError, lambda: p + Permutation(list(range(10))))
- assert (p - q.rank()).rank() == Permutation(0, 6, 3, 1, 2, 5, 4).rank()
- assert p.rank() - q.rank() < 0 # for coverage: make sure mod is used
- assert (q - p.rank()).rank() == Permutation(1, 4, 6, 2)(3, 5).rank()
- assert p*q == Permutation(_af_rmuln(*[list(w) for w in (q, p)]))
- assert p*Permutation([]) == p
- assert Permutation([])*p == p
- assert p*Permutation([[0, 1]]) == Permutation([2, 5, 0, 6, 3, 1, 4])
- assert Permutation([[0, 1]])*p == Permutation([5, 2, 1, 6, 3, 0, 4])
- pq = p ^ q
- assert pq == Permutation([5, 6, 0, 4, 1, 2, 3])
- assert pq == rmul(q, p, ~q)
- qp = q ^ p
- assert qp == Permutation([4, 3, 6, 2, 1, 5, 0])
- assert qp == rmul(p, q, ~p)
- raises(ValueError, lambda: p ^ Permutation([]))
- assert p.commutator(q) == Permutation(0, 1, 3, 4, 6, 5, 2)
- assert q.commutator(p) == Permutation(0, 2, 5, 6, 4, 3, 1)
- assert p.commutator(q) == ~q.commutator(p)
- raises(ValueError, lambda: p.commutator(Permutation([])))
- assert len(p.atoms()) == 7
- assert q.atoms() == {0, 1, 2, 3, 4, 5, 6}
- assert p.inversion_vector() == [2, 4, 1, 3, 1, 0]
- assert q.inversion_vector() == [3, 1, 2, 2, 0, 1]
- assert Permutation.from_inversion_vector(p.inversion_vector()) == p
- assert Permutation.from_inversion_vector(q.inversion_vector()).array_form\
- == q.array_form
- raises(ValueError, lambda: Permutation.from_inversion_vector([0, 2]))
- assert Permutation(list(range(500, -1, -1))).inversions() == 125250
- s = Permutation([0, 4, 1, 3, 2])
- assert s.parity() == 0
- _ = s.cyclic_form # needed to create a value for _cyclic_form
- assert len(s._cyclic_form) != s.size and s.parity() == 0
- assert not s.is_odd
- assert s.is_even
- assert Permutation([0, 1, 4, 3, 2]).parity() == 1
- assert _af_parity([0, 4, 1, 3, 2]) == 0
- assert _af_parity([0, 1, 4, 3, 2]) == 1
- s = Permutation([0])
- assert s.is_Singleton
- assert Permutation([]).is_Empty
- r = Permutation([3, 2, 1, 0])
- assert (r**2).is_Identity
- assert rmul(~p, p).is_Identity
- assert (~p)**13 == Permutation([5, 2, 0, 4, 6, 1, 3])
- assert ~(r**2).is_Identity
- assert p.max() == 6
- assert p.min() == 0
- q = Permutation([[6], [5], [0, 1, 2, 3, 4]])
- assert q.max() == 4
- assert q.min() == 0
- p = Permutation([1, 5, 2, 0, 3, 6, 4])
- q = Permutation([[1, 2, 3, 5, 6], [0, 4]])
- assert p.ascents() == [0, 3, 4]
- assert q.ascents() == [1, 2, 4]
- assert r.ascents() == []
- assert p.descents() == [1, 2, 5]
- assert q.descents() == [0, 3, 5]
- assert Permutation(r.descents()).is_Identity
- assert p.inversions() == 7
- # test the merge-sort with a longer permutation
- big = list(p) + list(range(p.max() + 1, p.max() + 130))
- assert Permutation(big).inversions() == 7
- assert p.signature() == -1
- assert q.inversions() == 11
- assert q.signature() == -1
- assert rmul(p, ~p).inversions() == 0
- assert rmul(p, ~p).signature() == 1
- assert p.order() == 6
- assert q.order() == 10
- assert (p**(p.order())).is_Identity
- assert p.length() == 6
- assert q.length() == 7
- assert r.length() == 4
- assert p.runs() == [[1, 5], [2], [0, 3, 6], [4]]
- assert q.runs() == [[4], [2, 3, 5], [0, 6], [1]]
- assert r.runs() == [[3], [2], [1], [0]]
- assert p.index() == 8
- assert q.index() == 8
- assert r.index() == 3
- assert p.get_precedence_distance(q) == q.get_precedence_distance(p)
- assert p.get_adjacency_distance(q) == p.get_adjacency_distance(q)
- assert p.get_positional_distance(q) == p.get_positional_distance(q)
- p = Permutation([0, 1, 2, 3])
- q = Permutation([3, 2, 1, 0])
- assert p.get_precedence_distance(q) == 6
- assert p.get_adjacency_distance(q) == 3
- assert p.get_positional_distance(q) == 8
- p = Permutation([0, 3, 1, 2, 4])
- q = Permutation.josephus(4, 5, 2)
- assert p.get_adjacency_distance(q) == 3
- raises(ValueError, lambda: p.get_adjacency_distance(Permutation([])))
- raises(ValueError, lambda: p.get_positional_distance(Permutation([])))
- raises(ValueError, lambda: p.get_precedence_distance(Permutation([])))
- a = [Permutation.unrank_nonlex(4, i) for i in range(5)]
- iden = Permutation([0, 1, 2, 3])
- for i in range(5):
- for j in range(i + 1, 5):
- assert a[i].commutes_with(a[j]) == \
- (rmul(a[i], a[j]) == rmul(a[j], a[i]))
- if a[i].commutes_with(a[j]):
- assert a[i].commutator(a[j]) == iden
- assert a[j].commutator(a[i]) == iden
- a = Permutation(3)
- b = Permutation(0, 6, 3)(1, 2)
- assert a.cycle_structure == {1: 4}
- assert b.cycle_structure == {2: 1, 3: 1, 1: 2}
- # issue 11130
- raises(ValueError, lambda: Permutation(3, size=3))
- raises(ValueError, lambda: Permutation([1, 2, 0, 3], size=3))
- def test_Permutation_subclassing():
- # Subclass that adds permutation application on iterables
- class CustomPermutation(Permutation):
- def __call__(self, *i):
- try:
- return super().__call__(*i)
- except TypeError:
- pass
- try:
- perm_obj = i[0]
- return [self._array_form[j] for j in perm_obj]
- except TypeError:
- raise TypeError('unrecognized argument')
- def __eq__(self, other):
- if isinstance(other, Permutation):
- return self._hashable_content() == other._hashable_content()
- else:
- return super().__eq__(other)
- def __hash__(self):
- return super().__hash__()
- p = CustomPermutation([1, 2, 3, 0])
- q = Permutation([1, 2, 3, 0])
- assert p == q
- raises(TypeError, lambda: q([1, 2]))
- assert [2, 3] == p([1, 2])
- assert type(p * q) == CustomPermutation
- assert type(q * p) == Permutation # True because q.__mul__(p) is called!
- # Run all tests for the Permutation class also on the subclass
- def wrapped_test_Permutation():
- # Monkeypatch the class definition in the globals
- globals()['__Perm'] = globals()['Permutation']
- globals()['Permutation'] = CustomPermutation
- test_Permutation()
- globals()['Permutation'] = globals()['__Perm'] # Restore
- del globals()['__Perm']
- wrapped_test_Permutation()
- def test_josephus():
- assert Permutation.josephus(4, 6, 1) == Permutation([3, 1, 0, 2, 5, 4])
- assert Permutation.josephus(1, 5, 1).is_Identity
- def test_ranking():
- assert Permutation.unrank_lex(5, 10).rank() == 10
- p = Permutation.unrank_lex(15, 225)
- assert p.rank() == 225
- p1 = p.next_lex()
- assert p1.rank() == 226
- assert Permutation.unrank_lex(15, 225).rank() == 225
- assert Permutation.unrank_lex(10, 0).is_Identity
- p = Permutation.unrank_lex(4, 23)
- assert p.rank() == 23
- assert p.array_form == [3, 2, 1, 0]
- assert p.next_lex() is None
- p = Permutation([1, 5, 2, 0, 3, 6, 4])
- q = Permutation([[1, 2, 3, 5, 6], [0, 4]])
- a = [Permutation.unrank_trotterjohnson(4, i).array_form for i in range(5)]
- assert a == [[0, 1, 2, 3], [0, 1, 3, 2], [0, 3, 1, 2], [3, 0, 1,
- 2], [3, 0, 2, 1] ]
- assert [Permutation(pa).rank_trotterjohnson() for pa in a] == list(range(5))
- assert Permutation([0, 1, 2, 3]).next_trotterjohnson() == \
- Permutation([0, 1, 3, 2])
- assert q.rank_trotterjohnson() == 2283
- assert p.rank_trotterjohnson() == 3389
- assert Permutation([1, 0]).rank_trotterjohnson() == 1
- a = Permutation(list(range(3)))
- b = a
- l = []
- tj = []
- for i in range(6):
- l.append(a)
- tj.append(b)
- a = a.next_lex()
- b = b.next_trotterjohnson()
- assert a == b is None
- assert {tuple(a) for a in l} == {tuple(a) for a in tj}
- p = Permutation([2, 5, 1, 6, 3, 0, 4])
- q = Permutation([[6], [5], [0, 1, 2, 3, 4]])
- assert p.rank() == 1964
- assert q.rank() == 870
- assert Permutation([]).rank_nonlex() == 0
- prank = p.rank_nonlex()
- assert prank == 1600
- assert Permutation.unrank_nonlex(7, 1600) == p
- qrank = q.rank_nonlex()
- assert qrank == 41
- assert Permutation.unrank_nonlex(7, 41) == Permutation(q.array_form)
- a = [Permutation.unrank_nonlex(4, i).array_form for i in range(24)]
- assert a == [
- [1, 2, 3, 0], [3, 2, 0, 1], [1, 3, 0, 2], [1, 2, 0, 3], [2, 3, 1, 0],
- [2, 0, 3, 1], [3, 0, 1, 2], [2, 0, 1, 3], [1, 3, 2, 0], [3, 0, 2, 1],
- [1, 0, 3, 2], [1, 0, 2, 3], [2, 1, 3, 0], [2, 3, 0, 1], [3, 1, 0, 2],
- [2, 1, 0, 3], [3, 2, 1, 0], [0, 2, 3, 1], [0, 3, 1, 2], [0, 2, 1, 3],
- [3, 1, 2, 0], [0, 3, 2, 1], [0, 1, 3, 2], [0, 1, 2, 3]]
- N = 10
- p1 = Permutation(a[0])
- for i in range(1, N+1):
- p1 = p1*Permutation(a[i])
- p2 = Permutation.rmul_with_af(*[Permutation(h) for h in a[N::-1]])
- assert p1 == p2
- ok = []
- p = Permutation([1, 0])
- for i in range(3):
- ok.append(p.array_form)
- p = p.next_nonlex()
- if p is None:
- ok.append(None)
- break
- assert ok == [[1, 0], [0, 1], None]
- assert Permutation([3, 2, 0, 1]).next_nonlex() == Permutation([1, 3, 0, 2])
- assert [Permutation(pa).rank_nonlex() for pa in a] == list(range(24))
- def test_mul():
- a, b = [0, 2, 1, 3], [0, 1, 3, 2]
- assert _af_rmul(a, b) == [0, 2, 3, 1]
- assert _af_rmuln(a, b, list(range(4))) == [0, 2, 3, 1]
- assert rmul(Permutation(a), Permutation(b)).array_form == [0, 2, 3, 1]
- a = Permutation([0, 2, 1, 3])
- b = (0, 1, 3, 2)
- c = (3, 1, 2, 0)
- assert Permutation.rmul(a, b, c) == Permutation([1, 2, 3, 0])
- assert Permutation.rmul(a, c) == Permutation([3, 2, 1, 0])
- raises(TypeError, lambda: Permutation.rmul(b, c))
- n = 6
- m = 8
- a = [Permutation.unrank_nonlex(n, i).array_form for i in range(m)]
- h = list(range(n))
- for i in range(m):
- h = _af_rmul(h, a[i])
- h2 = _af_rmuln(*a[:i + 1])
- assert h == h2
- def test_args():
- p = Permutation([(0, 3, 1, 2), (4, 5)])
- assert p._cyclic_form is None
- assert Permutation(p) == p
- assert p.cyclic_form == [[0, 3, 1, 2], [4, 5]]
- assert p._array_form == [3, 2, 0, 1, 5, 4]
- p = Permutation((0, 3, 1, 2))
- assert p._cyclic_form is None
- assert p._array_form == [0, 3, 1, 2]
- assert Permutation([0]) == Permutation((0, ))
- assert Permutation([[0], [1]]) == Permutation(((0, ), (1, ))) == \
- Permutation(((0, ), [1]))
- assert Permutation([[1, 2]]) == Permutation([0, 2, 1])
- assert Permutation([[1], [4, 2]]) == Permutation([0, 1, 4, 3, 2])
- assert Permutation([[1], [4, 2]], size=1) == Permutation([0, 1, 4, 3, 2])
- assert Permutation(
- [[1], [4, 2]], size=6) == Permutation([0, 1, 4, 3, 2, 5])
- assert Permutation([[0, 1], [0, 2]]) == Permutation(0, 1, 2)
- assert Permutation([], size=3) == Permutation([0, 1, 2])
- assert Permutation(3).list(5) == [0, 1, 2, 3, 4]
- assert Permutation(3).list(-1) == []
- assert Permutation(5)(1, 2).list(-1) == [0, 2, 1]
- assert Permutation(5)(1, 2).list() == [0, 2, 1, 3, 4, 5]
- raises(ValueError, lambda: Permutation([1, 2], [0]))
- # enclosing brackets needed
- raises(ValueError, lambda: Permutation([[1, 2], 0]))
- # enclosing brackets needed on 0
- raises(ValueError, lambda: Permutation([1, 1, 0]))
- raises(ValueError, lambda: Permutation([4, 5], size=10)) # where are 0-3?
- # but this is ok because cycles imply that only those listed moved
- assert Permutation(4, 5) == Permutation([0, 1, 2, 3, 5, 4])
- def test_Cycle():
- assert str(Cycle()) == '()'
- assert Cycle(Cycle(1,2)) == Cycle(1, 2)
- assert Cycle(1,2).copy() == Cycle(1,2)
- assert list(Cycle(1, 3, 2)) == [0, 3, 1, 2]
- assert Cycle(1, 2)(2, 3) == Cycle(1, 3, 2)
- assert Cycle(1, 2)(2, 3)(4, 5) == Cycle(1, 3, 2)(4, 5)
- assert Permutation(Cycle(1, 2)(2, 1, 0, 3)).cyclic_form, Cycle(0, 2, 1)
- raises(ValueError, lambda: Cycle().list())
- assert Cycle(1, 2).list() == [0, 2, 1]
- assert Cycle(1, 2).list(4) == [0, 2, 1, 3]
- assert Cycle(3).list(2) == [0, 1]
- assert Cycle(3).list(6) == [0, 1, 2, 3, 4, 5]
- assert Permutation(Cycle(1, 2), size=4) == \
- Permutation([0, 2, 1, 3])
- assert str(Cycle(1, 2)(4, 5)) == '(1 2)(4 5)'
- assert str(Cycle(1, 2)) == '(1 2)'
- assert Cycle(Permutation(list(range(3)))) == Cycle()
- assert Cycle(1, 2).list() == [0, 2, 1]
- assert Cycle(1, 2).list(4) == [0, 2, 1, 3]
- assert Cycle().size == 0
- raises(ValueError, lambda: Cycle((1, 2)))
- raises(ValueError, lambda: Cycle(1, 2, 1))
- raises(TypeError, lambda: Cycle(1, 2)*{})
- raises(ValueError, lambda: Cycle(4)[a])
- raises(ValueError, lambda: Cycle(2, -4, 3))
- # check round-trip
- p = Permutation([[1, 2], [4, 3]], size=5)
- assert Permutation(Cycle(p)) == p
- def test_from_sequence():
- assert Permutation.from_sequence('SymPy') == Permutation(4)(0, 1, 3)
- assert Permutation.from_sequence('SymPy', key=lambda x: x.lower()) == \
- Permutation(4)(0, 2)(1, 3)
- def test_resize():
- p = Permutation(0, 1, 2)
- assert p.resize(5) == Permutation(0, 1, 2, size=5)
- assert p.resize(4) == Permutation(0, 1, 2, size=4)
- assert p.resize(3) == p
- raises(ValueError, lambda: p.resize(2))
- p = Permutation(0, 1, 2)(3, 4)(5, 6)
- assert p.resize(3) == Permutation(0, 1, 2)
- raises(ValueError, lambda: p.resize(4))
- def test_printing_cyclic():
- p1 = Permutation([0, 2, 1])
- assert repr(p1) == 'Permutation(1, 2)'
- assert str(p1) == '(1 2)'
- p2 = Permutation()
- assert repr(p2) == 'Permutation()'
- assert str(p2) == '()'
- p3 = Permutation([1, 2, 0, 3])
- assert repr(p3) == 'Permutation(3)(0, 1, 2)'
- def test_printing_non_cyclic():
- p1 = Permutation([0, 1, 2, 3, 4, 5])
- assert srepr(p1, perm_cyclic=False) == 'Permutation([], size=6)'
- assert sstr(p1, perm_cyclic=False) == 'Permutation([], size=6)'
- p2 = Permutation([0, 1, 2])
- assert srepr(p2, perm_cyclic=False) == 'Permutation([0, 1, 2])'
- assert sstr(p2, perm_cyclic=False) == 'Permutation([0, 1, 2])'
- p3 = Permutation([0, 2, 1])
- assert srepr(p3, perm_cyclic=False) == 'Permutation([0, 2, 1])'
- assert sstr(p3, perm_cyclic=False) == 'Permutation([0, 2, 1])'
- p4 = Permutation([0, 1, 3, 2, 4, 5, 6, 7])
- assert srepr(p4, perm_cyclic=False) == 'Permutation([0, 1, 3, 2], size=8)'
- def test_deprecated_print_cyclic():
- p = Permutation(0, 1, 2)
- try:
- Permutation.print_cyclic = True
- with warns_deprecated_sympy():
- assert sstr(p) == '(0 1 2)'
- with warns_deprecated_sympy():
- assert srepr(p) == 'Permutation(0, 1, 2)'
- with warns_deprecated_sympy():
- assert pretty(p) == '(0 1 2)'
- with warns_deprecated_sympy():
- assert latex(p) == r'\left( 0\; 1\; 2\right)'
- Permutation.print_cyclic = False
- with warns_deprecated_sympy():
- assert sstr(p) == 'Permutation([1, 2, 0])'
- with warns_deprecated_sympy():
- assert srepr(p) == 'Permutation([1, 2, 0])'
- with warns_deprecated_sympy():
- assert pretty(p, use_unicode=False) == '/0 1 2\\\n\\1 2 0/'
- with warns_deprecated_sympy():
- assert latex(p) == \
- r'\begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}'
- finally:
- Permutation.print_cyclic = None
- def test_permutation_equality():
- a = Permutation(0, 1, 2)
- b = Permutation(0, 1, 2)
- assert Eq(a, b) is S.true
- c = Permutation(0, 2, 1)
- assert Eq(a, c) is S.false
- d = Permutation(0, 1, 2, size=4)
- assert unchanged(Eq, a, d)
- e = Permutation(0, 2, 1, size=4)
- assert unchanged(Eq, a, e)
- i = Permutation()
- assert unchanged(Eq, i, 0)
- assert unchanged(Eq, 0, i)
- def test_issue_17661():
- c1 = Cycle(1,2)
- c2 = Cycle(1,2)
- assert c1 == c2
- assert repr(c1) == 'Cycle(1, 2)'
- assert c1 == c2
- def test_permutation_apply():
- x = Symbol('x')
- p = Permutation(0, 1, 2)
- assert p.apply(0) == 1
- assert isinstance(p.apply(0), Integer)
- assert p.apply(x) == AppliedPermutation(p, x)
- assert AppliedPermutation(p, x).subs(x, 0) == 1
- x = Symbol('x', integer=False)
- raises(NotImplementedError, lambda: p.apply(x))
- x = Symbol('x', negative=True)
- raises(NotImplementedError, lambda: p.apply(x))
- def test_AppliedPermutation():
- x = Symbol('x')
- p = Permutation(0, 1, 2)
- raises(ValueError, lambda: AppliedPermutation((0, 1, 2), x))
- assert AppliedPermutation(p, 1, evaluate=True) == 2
- assert AppliedPermutation(p, 1, evaluate=False).__class__ == \
- AppliedPermutation
|