123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- from sympy.combinatorics import Permutation
- from sympy.combinatorics.perm_groups import PermutationGroup
- from sympy.combinatorics.homomorphisms import homomorphism, group_isomorphism, is_isomorphic
- from sympy.combinatorics.free_groups import free_group
- from sympy.combinatorics.fp_groups import FpGroup
- from sympy.combinatorics.named_groups import AlternatingGroup, DihedralGroup, CyclicGroup
- from sympy.testing.pytest import raises
- def test_homomorphism():
- # FpGroup -> PermutationGroup
- F, a, b = free_group("a, b")
- G = FpGroup(F, [a**3, b**3, (a*b)**2])
- c = Permutation(3)(0, 1, 2)
- d = Permutation(3)(1, 2, 3)
- A = AlternatingGroup(4)
- T = homomorphism(G, A, [a, b], [c, d])
- assert T(a*b**2*a**-1) == c*d**2*c**-1
- assert T.is_isomorphism()
- assert T(T.invert(Permutation(3)(0, 2, 3))) == Permutation(3)(0, 2, 3)
- T = homomorphism(G, AlternatingGroup(4), G.generators)
- assert T.is_trivial()
- assert T.kernel().order() == G.order()
- E, e = free_group("e")
- G = FpGroup(E, [e**8])
- P = PermutationGroup([Permutation(0, 1, 2, 3), Permutation(0, 2)])
- T = homomorphism(G, P, [e], [Permutation(0, 1, 2, 3)])
- assert T.image().order() == 4
- assert T(T.invert(Permutation(0, 2)(1, 3))) == Permutation(0, 2)(1, 3)
- T = homomorphism(E, AlternatingGroup(4), E.generators, [c])
- assert T.invert(c**2) == e**-1 #order(c) == 3 so c**2 == c**-1
- # FreeGroup -> FreeGroup
- T = homomorphism(F, E, [a], [e])
- assert T(a**-2*b**4*a**2).is_identity
- # FreeGroup -> FpGroup
- G = FpGroup(F, [a*b*a**-1*b**-1])
- T = homomorphism(F, G, F.generators, G.generators)
- assert T.invert(a**-1*b**-1*a**2) == a*b**-1
- # PermutationGroup -> PermutationGroup
- D = DihedralGroup(8)
- p = Permutation(0, 1, 2, 3, 4, 5, 6, 7)
- P = PermutationGroup(p)
- T = homomorphism(P, D, [p], [p])
- assert T.is_injective()
- assert not T.is_isomorphism()
- assert T.invert(p**3) == p**3
- T2 = homomorphism(F, P, [F.generators[0]], P.generators)
- T = T.compose(T2)
- assert T.domain == F
- assert T.codomain == D
- assert T(a*b) == p
- D3 = DihedralGroup(3)
- T = homomorphism(D3, D3, D3.generators, D3.generators)
- assert T.is_isomorphism()
- def test_isomorphisms():
- F, a, b = free_group("a, b")
- E, c, d = free_group("c, d")
- # Infinite groups with differently ordered relators.
- G = FpGroup(F, [a**2, b**3])
- H = FpGroup(F, [b**3, a**2])
- assert is_isomorphic(G, H)
- # Trivial Case
- # FpGroup -> FpGroup
- H = FpGroup(F, [a**3, b**3, (a*b)**2])
- F, c, d = free_group("c, d")
- G = FpGroup(F, [c**3, d**3, (c*d)**2])
- check, T = group_isomorphism(G, H)
- assert check
- assert T(c**3*d**2) == a**3*b**2
- # FpGroup -> PermutationGroup
- # FpGroup is converted to the equivalent isomorphic group.
- F, a, b = free_group("a, b")
- G = FpGroup(F, [a**3, b**3, (a*b)**2])
- H = AlternatingGroup(4)
- check, T = group_isomorphism(G, H)
- assert check
- assert T(b*a*b**-1*a**-1*b**-1) == Permutation(0, 2, 3)
- assert T(b*a*b*a**-1*b**-1) == Permutation(0, 3, 2)
- # PermutationGroup -> PermutationGroup
- D = DihedralGroup(8)
- p = Permutation(0, 1, 2, 3, 4, 5, 6, 7)
- P = PermutationGroup(p)
- assert not is_isomorphic(D, P)
- A = CyclicGroup(5)
- B = CyclicGroup(7)
- assert not is_isomorphic(A, B)
- # Two groups of the same prime order are isomorphic to each other.
- G = FpGroup(F, [a, b**5])
- H = CyclicGroup(5)
- assert G.order() == H.order()
- assert is_isomorphic(G, H)
- def test_check_homomorphism():
- a = Permutation(1,2,3,4)
- b = Permutation(1,3)
- G = PermutationGroup([a, b])
- raises(ValueError, lambda: homomorphism(G, G, [a], [a]))
|