123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252 |
- from sympy.core.singleton import S
- from sympy.combinatorics.fp_groups import (FpGroup, low_index_subgroups,
- reidemeister_presentation, FpSubgroup,
- simplify_presentation)
- from sympy.combinatorics.free_groups import (free_group, FreeGroup)
- from sympy.testing.pytest import slow
- """
- References
- ==========
- [1] Holt, D., Eick, B., O'Brien, E.
- "Handbook of Computational Group Theory"
- [2] John J. Cannon; Lucien A. Dimino; George Havas; Jane M. Watson
- Mathematics of Computation, Vol. 27, No. 123. (Jul., 1973), pp. 463-490.
- "Implementation and Analysis of the Todd-Coxeter Algorithm"
- [3] PROC. SECOND INTERNAT. CONF. THEORY OF GROUPS, CANBERRA 1973,
- pp. 347-356. "A Reidemeister-Schreier program" by George Havas.
- http://staff.itee.uq.edu.au/havas/1973cdhw.pdf
- """
- def test_low_index_subgroups():
- F, x, y = free_group("x, y")
- # Example 5.10 from [1] Pg. 194
- f = FpGroup(F, [x**2, y**3, (x*y)**4])
- L = low_index_subgroups(f, 4)
- t1 = [[[0, 0, 0, 0]],
- [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 3, 3]],
- [[0, 0, 1, 2], [2, 2, 2, 0], [1, 1, 0, 1]],
- [[1, 1, 0, 0], [0, 0, 1, 1]]]
- for i in range(len(t1)):
- assert L[i].table == t1[i]
- f = FpGroup(F, [x**2, y**3, (x*y)**7])
- L = low_index_subgroups(f, 15)
- t2 = [[[0, 0, 0, 0]],
- [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5],
- [4, 4, 5, 3], [6, 6, 3, 4], [5, 5, 6, 6]],
- [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5],
- [6, 6, 5, 3], [5, 5, 3, 4], [4, 4, 6, 6]],
- [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5],
- [6, 6, 5, 3], [7, 7, 3, 4], [4, 4, 8, 9], [5, 5, 10, 11],
- [11, 11, 9, 6], [9, 9, 6, 8], [12, 12, 11, 7], [8, 8, 7, 10],
- [10, 10, 13, 14], [14, 14, 14, 12], [13, 13, 12, 13]],
- [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5],
- [6, 6, 5, 3], [7, 7, 3, 4], [4, 4, 8, 9], [5, 5, 10, 11],
- [11, 11, 9, 6], [12, 12, 6, 8], [10, 10, 11, 7], [8, 8, 7, 10],
- [9, 9, 13, 14], [14, 14, 14, 12], [13, 13, 12, 13]],
- [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5],
- [6, 6, 5, 3], [7, 7, 3, 4], [4, 4, 8, 9], [5, 5, 10, 11],
- [11, 11, 9, 6], [12, 12, 6, 8], [13, 13, 11, 7], [8, 8, 7, 10],
- [9, 9, 12, 12], [10, 10, 13, 13]],
- [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 3, 3], [2, 2, 5, 6]
- , [7, 7, 6, 4], [8, 8, 4, 5], [5, 5, 8, 9], [6, 6, 9, 7],
- [10, 10, 7, 8], [9, 9, 11, 12], [11, 11, 12, 10], [13, 13, 10, 11],
- [12, 12, 13, 13]],
- [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 3, 3], [2, 2, 5, 6]
- , [7, 7, 6, 4], [8, 8, 4, 5], [5, 5, 8, 9], [6, 6, 9, 7],
- [10, 10, 7, 8], [9, 9, 11, 12], [13, 13, 12, 10], [12, 12, 10, 11],
- [11, 11, 13, 13]],
- [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 4, 4]
- , [7, 7, 6, 3], [8, 8, 3, 5], [5, 5, 8, 9], [6, 6, 9, 7],
- [10, 10, 7, 8], [9, 9, 11, 12], [13, 13, 12, 10], [12, 12, 10, 11],
- [11, 11, 13, 13]],
- [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
- , [5, 5, 6, 3], [9, 9, 3, 5], [10, 10, 8, 4], [8, 8, 4, 7],
- [6, 6, 10, 11], [7, 7, 11, 9], [12, 12, 9, 10], [11, 11, 13, 14],
- [14, 14, 14, 12], [13, 13, 12, 13]],
- [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
- , [6, 6, 6, 3], [5, 5, 3, 5], [8, 8, 8, 4], [7, 7, 4, 7]],
- [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
- , [9, 9, 6, 3], [6, 6, 3, 5], [10, 10, 8, 4], [11, 11, 4, 7],
- [5, 5, 10, 12], [7, 7, 12, 9], [8, 8, 11, 11], [13, 13, 9, 10],
- [12, 12, 13, 13]],
- [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
- , [9, 9, 6, 3], [6, 6, 3, 5], [10, 10, 8, 4], [11, 11, 4, 7],
- [5, 5, 12, 11], [7, 7, 10, 10], [8, 8, 9, 12], [13, 13, 11, 9],
- [12, 12, 13, 13]],
- [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
- , [9, 9, 6, 3], [10, 10, 3, 5], [7, 7, 8, 4], [11, 11, 4, 7],
- [5, 5, 9, 9], [6, 6, 11, 12], [8, 8, 12, 10], [13, 13, 10, 11],
- [12, 12, 13, 13]],
- [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
- , [9, 9, 6, 3], [10, 10, 3, 5], [7, 7, 8, 4], [11, 11, 4, 7],
- [5, 5, 12, 11], [6, 6, 10, 10], [8, 8, 9, 12], [13, 13, 11, 9],
- [12, 12, 13, 13]],
- [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
- , [9, 9, 6, 3], [10, 10, 3, 5], [11, 11, 8, 4], [12, 12, 4, 7],
- [5, 5, 9, 9], [6, 6, 12, 13], [7, 7, 11, 11], [8, 8, 13, 10],
- [13, 13, 10, 12]],
- [[1, 1, 0, 0], [0, 0, 2, 3], [4, 4, 3, 1], [5, 5, 1, 2], [2, 2, 4, 4]
- , [3, 3, 6, 7], [7, 7, 7, 5], [6, 6, 5, 6]]]
- for i in range(len(t2)):
- assert L[i].table == t2[i]
- f = FpGroup(F, [x**2, y**3, (x*y)**7])
- L = low_index_subgroups(f, 10, [x])
- t3 = [[[0, 0, 0, 0]],
- [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5], [4, 4, 5, 3],
- [6, 6, 3, 4], [5, 5, 6, 6]],
- [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5], [6, 6, 5, 3],
- [5, 5, 3, 4], [4, 4, 6, 6]],
- [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8],
- [6, 6, 6, 3], [5, 5, 3, 5], [8, 8, 8, 4], [7, 7, 4, 7]]]
- for i in range(len(t3)):
- assert L[i].table == t3[i]
- def test_subgroup_presentations():
- F, x, y = free_group("x, y")
- f = FpGroup(F, [x**3, y**5, (x*y)**2])
- H = [x*y, x**-1*y**-1*x*y*x]
- p1 = reidemeister_presentation(f, H)
- assert str(p1) == "((y_1, y_2), (y_1**2, y_2**3, y_2*y_1*y_2*y_1*y_2*y_1))"
- H = f.subgroup(H)
- assert (H.generators, H.relators) == p1
- f = FpGroup(F, [x**3, y**3, (x*y)**3])
- H = [x*y, x*y**-1]
- p2 = reidemeister_presentation(f, H)
- assert str(p2) == "((x_0, y_0), (x_0**3, y_0**3, x_0*y_0*x_0*y_0*x_0*y_0))"
- f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
- H = [x]
- p3 = reidemeister_presentation(f, H)
- assert str(p3) == "((x_0,), (x_0**4,))"
- f = FpGroup(F, [x**3*y**-3, (x*y)**3, (x*y**-1)**2])
- H = [x]
- p4 = reidemeister_presentation(f, H)
- assert str(p4) == "((x_0,), (x_0**6,))"
- # this presentation can be improved, the most simplified form
- # of presentation is <a, b | a^11, b^2, (a*b)^3, (a^4*b*a^-5*b)^2>
- # See [2] Pg 474 group PSL_2(11)
- # This is the group PSL_2(11)
- F, a, b, c = free_group("a, b, c")
- f = FpGroup(F, [a**11, b**5, c**4, (b*c**2)**2, (a*b*c)**3, (a**4*c**2)**3, b**2*c**-1*b**-1*c, a**4*b**-1*a**-1*b])
- H = [a, b, c**2]
- gens, rels = reidemeister_presentation(f, H)
- assert str(gens) == "(b_1, c_3)"
- assert len(rels) == 18
- @slow
- def test_order():
- F, x, y = free_group("x, y")
- f = FpGroup(F, [x**4, y**2, x*y*x**-1*y])
- assert f.order() == 8
- f = FpGroup(F, [x*y*x**-1*y**-1, y**2])
- assert f.order() is S.Infinity
- F, a, b, c = free_group("a, b, c")
- f = FpGroup(F, [a**250, b**2, c*b*c**-1*b, c**4, c**-1*a**-1*c*a, a**-1*b**-1*a*b])
- assert f.order() == 2000
- F, x = free_group("x")
- f = FpGroup(F, [])
- assert f.order() is S.Infinity
- f = FpGroup(free_group('')[0], [])
- assert f.order() == 1
- def test_fp_subgroup():
- def _test_subgroup(K, T, S):
- _gens = T(K.generators)
- assert all(elem in S for elem in _gens)
- assert T.is_injective()
- assert T.image().order() == S.order()
- F, x, y = free_group("x, y")
- f = FpGroup(F, [x**4, y**2, x*y*x**-1*y])
- S = FpSubgroup(f, [x*y])
- assert (x*y)**-3 in S
- K, T = f.subgroup([x*y], homomorphism=True)
- assert T(K.generators) == [y*x**-1]
- _test_subgroup(K, T, S)
- S = FpSubgroup(f, [x**-1*y*x])
- assert x**-1*y**4*x in S
- assert x**-1*y**4*x**2 not in S
- K, T = f.subgroup([x**-1*y*x], homomorphism=True)
- assert T(K.generators[0]**3) == y**3
- _test_subgroup(K, T, S)
- f = FpGroup(F, [x**3, y**5, (x*y)**2])
- H = [x*y, x**-1*y**-1*x*y*x]
- K, T = f.subgroup(H, homomorphism=True)
- S = FpSubgroup(f, H)
- _test_subgroup(K, T, S)
- def test_permutation_methods():
- F, x, y = free_group("x, y")
- # DihedralGroup(8)
- G = FpGroup(F, [x**2, y**8, x*y*x**-1*y])
- T = G._to_perm_group()[1]
- assert T.is_isomorphism()
- assert G.center() == [y**4]
- # DiheadralGroup(4)
- G = FpGroup(F, [x**2, y**4, x*y*x**-1*y])
- S = FpSubgroup(G, G.normal_closure([x]))
- assert x in S
- assert y**-1*x*y in S
- # Z_5xZ_4
- G = FpGroup(F, [x*y*x**-1*y**-1, y**5, x**4])
- assert G.is_abelian
- assert G.is_solvable
- # AlternatingGroup(5)
- G = FpGroup(F, [x**3, y**2, (x*y)**5])
- assert not G.is_solvable
- # AlternatingGroup(4)
- G = FpGroup(F, [x**3, y**2, (x*y)**3])
- assert len(G.derived_series()) == 3
- S = FpSubgroup(G, G.derived_subgroup())
- assert S.order() == 4
- def test_simplify_presentation():
- # ref #16083
- G = simplify_presentation(FpGroup(FreeGroup([]), []))
- assert not G.generators
- assert not G.relators
- def test_cyclic():
- F, x, y = free_group("x, y")
- f = FpGroup(F, [x*y, x**-1*y**-1*x*y*x])
- assert f.is_cyclic
- f = FpGroup(F, [x*y, x*y**-1])
- assert f.is_cyclic
- f = FpGroup(F, [x**4, y**2, x*y*x**-1*y])
- assert not f.is_cyclic
- def test_abelian_invariants():
- F, x, y = free_group("x, y")
- f = FpGroup(F, [x*y, x**-1*y**-1*x*y*x])
- assert f.abelian_invariants() == []
- f = FpGroup(F, [x*y, x*y**-1])
- assert f.abelian_invariants() == [2]
- f = FpGroup(F, [x**4, y**2, x*y*x**-1*y])
- assert f.abelian_invariants() == [2, 4]
|