123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158 |
- import numpy as np
- from numpy.testing import assert_equal, assert_allclose
- import pytest
- from scipy.stats import variation
- class TestVariation:
- """
- Test class for scipy.stats.variation
- """
- def test_ddof(self):
- x = np.arange(9.0)
- assert_allclose(variation(x, ddof=1), np.sqrt(60/8)/4)
- @pytest.mark.parametrize('sgn', [1, -1])
- def test_sign(self, sgn):
- x = np.array([1, 2, 3, 4, 5])
- v = variation(sgn*x)
- expected = sgn*np.sqrt(2)/3
- assert_allclose(v, expected, rtol=1e-10)
- def test_scalar(self):
- # A scalar is treated like a 1-d sequence with length 1.
- assert_equal(variation(4.0), 0.0)
- @pytest.mark.parametrize('nan_policy, expected',
- [('propagate', np.nan),
- ('omit', np.sqrt(20/3)/4)])
- def test_variation_nan(self, nan_policy, expected):
- x = np.arange(10.)
- x[9] = np.nan
- assert_allclose(variation(x, nan_policy=nan_policy), expected)
- def test_nan_policy_raise(self):
- x = np.array([1.0, 2.0, np.nan, 3.0])
- with pytest.raises(ValueError, match='input contains nan'):
- variation(x, nan_policy='raise')
- def test_bad_nan_policy(self):
- with pytest.raises(ValueError, match='must be one of'):
- variation([1, 2, 3], nan_policy='foobar')
- def test_keepdims(self):
- x = np.arange(10).reshape(2, 5)
- y = variation(x, axis=1, keepdims=True)
- expected = np.array([[np.sqrt(2)/2],
- [np.sqrt(2)/7]])
- assert_allclose(y, expected)
- @pytest.mark.parametrize('axis, expected',
- [(0, np.empty((1, 0))),
- (1, np.full((5, 1), fill_value=np.nan))])
- def test_keepdims_size0(self, axis, expected):
- x = np.zeros((5, 0))
- y = variation(x, axis=axis, keepdims=True)
- assert_equal(y, expected)
- @pytest.mark.parametrize('incr, expected_fill', [(0, np.inf), (1, np.nan)])
- def test_keepdims_and_ddof_eq_len_plus_incr(self, incr, expected_fill):
- x = np.array([[1, 1, 2, 2], [1, 2, 3, 3]])
- y = variation(x, axis=1, ddof=x.shape[1] + incr, keepdims=True)
- assert_equal(y, np.full((2, 1), fill_value=expected_fill))
- def test_propagate_nan(self):
- # Check that the shape of the result is the same for inputs
- # with and without nans, cf gh-5817
- a = np.arange(8).reshape(2, -1).astype(float)
- a[1, 0] = np.nan
- v = variation(a, axis=1, nan_policy="propagate")
- assert_allclose(v, [np.sqrt(5/4)/1.5, np.nan], atol=1e-15)
- def test_axis_none(self):
- # Check that `variation` computes the result on the flattened
- # input when axis is None.
- y = variation([[0, 1], [2, 3]], axis=None)
- assert_allclose(y, np.sqrt(5/4)/1.5)
- def test_bad_axis(self):
- # Check that an invalid axis raises np.AxisError.
- x = np.array([[1, 2, 3], [4, 5, 6]])
- with pytest.raises(np.AxisError):
- variation(x, axis=10)
- def test_mean_zero(self):
- # Check that `variation` returns inf for a sequence that is not
- # identically zero but whose mean is zero.
- x = np.array([10, -3, 1, -4, -4])
- y = variation(x)
- assert_equal(y, np.inf)
- x2 = np.array([x, -10*x])
- y2 = variation(x2, axis=1)
- assert_equal(y2, [np.inf, np.inf])
- @pytest.mark.parametrize('x', [np.zeros(5), [], [1, 2, np.inf, 9]])
- def test_return_nan(self, x):
- # Test some cases where `variation` returns nan.
- y = variation(x)
- assert_equal(y, np.nan)
- @pytest.mark.parametrize('axis, expected',
- [(0, []), (1, [np.nan]*3), (None, np.nan)])
- def test_2d_size_zero_with_axis(self, axis, expected):
- x = np.empty((3, 0))
- y = variation(x, axis=axis)
- assert_equal(y, expected)
- def test_neg_inf(self):
- # Edge case that produces -inf: ddof equals the number of non-nan
- # values, the values are not constant, and the mean is negative.
- x1 = np.array([-3, -5])
- assert_equal(variation(x1, ddof=2), -np.inf)
- x2 = np.array([[np.nan, 1, -10, np.nan],
- [-20, -3, np.nan, np.nan]])
- assert_equal(variation(x2, axis=1, ddof=2, nan_policy='omit'),
- [-np.inf, -np.inf])
- @pytest.mark.parametrize("nan_policy", ['propagate', 'omit'])
- def test_combined_edge_cases(self, nan_policy):
- x = np.array([[0, 10, np.nan, 1],
- [0, -5, np.nan, 2],
- [0, -5, np.nan, 3]])
- y = variation(x, axis=0, nan_policy=nan_policy)
- assert_allclose(y, [np.nan, np.inf, np.nan, np.sqrt(2/3)/2])
- @pytest.mark.parametrize(
- 'ddof, expected',
- [(0, [np.sqrt(1/6), np.sqrt(5/8), np.inf, 0, np.nan, 0.0, np.nan]),
- (1, [0.5, np.sqrt(5/6), np.inf, 0, np.nan, 0, np.nan]),
- (2, [np.sqrt(0.5), np.sqrt(5/4), np.inf, np.nan, np.nan, 0, np.nan])]
- )
- def test_more_nan_policy_omit_tests(self, ddof, expected):
- # The slightly strange formatting in the follow array is my attempt to
- # maintain a clean tabular arrangement of the data while satisfying
- # the demands of pycodestyle. Currently, E201 and E241 are not
- # disabled by the `# noqa` annotation.
- nan = np.nan
- x = np.array([[1.0, 2.0, nan, 3.0],
- [0.0, 4.0, 3.0, 1.0],
- [nan, -.5, 0.5, nan],
- [nan, 9.0, 9.0, nan],
- [nan, nan, nan, nan],
- [3.0, 3.0, 3.0, 3.0],
- [0.0, 0.0, 0.0, 0.0]])
- v = variation(x, axis=1, ddof=ddof, nan_policy='omit')
- assert_allclose(v, expected)
- def test_variation_ddof(self):
- # test variation with delta degrees of freedom
- # regression test for gh-13341
- a = np.array([1, 2, 3, 4, 5])
- nan_a = np.array([1, 2, 3, np.nan, 4, 5, np.nan])
- y = variation(a, ddof=1)
- nan_y = variation(nan_a, nan_policy="omit", ddof=1)
- assert_allclose(y, np.sqrt(5/2)/3)
- assert y == nan_y
|