123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- import pytest
- import numpy as np
- from numpy.testing import assert_allclose, assert_equal
- from scipy.stats.contingency import relative_risk
- # Test just the calculation of the relative risk, including edge
- # cases that result in a relative risk of 0, inf or nan.
- @pytest.mark.parametrize(
- 'exposed_cases, exposed_total, control_cases, control_total, expected_rr',
- [(1, 4, 3, 8, 0.25 / 0.375),
- (0, 10, 5, 20, 0),
- (0, 10, 0, 20, np.nan),
- (5, 15, 0, 20, np.inf)]
- )
- def test_relative_risk(exposed_cases, exposed_total,
- control_cases, control_total, expected_rr):
- result = relative_risk(exposed_cases, exposed_total,
- control_cases, control_total)
- assert_allclose(result.relative_risk, expected_rr, rtol=1e-13)
- def test_relative_risk_confidence_interval():
- result = relative_risk(exposed_cases=16, exposed_total=128,
- control_cases=24, control_total=256)
- rr = result.relative_risk
- ci = result.confidence_interval(confidence_level=0.95)
- # The corresponding calculation in R using the epitools package.
- #
- # > library(epitools)
- # > c <- matrix(c(232, 112, 24, 16), nrow=2)
- # > result <- riskratio(c)
- # > result$measure
- # risk ratio with 95% C.I.
- # Predictor estimate lower upper
- # Exposed1 1.000000 NA NA
- # Exposed2 1.333333 0.7347317 2.419628
- #
- # The last line is the result that we want.
- assert_allclose(rr, 4/3)
- assert_allclose((ci.low, ci.high), (0.7347317, 2.419628), rtol=5e-7)
- def test_relative_risk_ci_conflevel0():
- result = relative_risk(exposed_cases=4, exposed_total=12,
- control_cases=5, control_total=30)
- rr = result.relative_risk
- assert_allclose(rr, 2.0, rtol=1e-14)
- ci = result.confidence_interval(0)
- assert_allclose((ci.low, ci.high), (2.0, 2.0), rtol=1e-12)
- def test_relative_risk_ci_conflevel1():
- result = relative_risk(exposed_cases=4, exposed_total=12,
- control_cases=5, control_total=30)
- ci = result.confidence_interval(1)
- assert_equal((ci.low, ci.high), (0, np.inf))
- def test_relative_risk_ci_edge_cases_00():
- result = relative_risk(exposed_cases=0, exposed_total=12,
- control_cases=0, control_total=30)
- assert_equal(result.relative_risk, np.nan)
- ci = result.confidence_interval()
- assert_equal((ci.low, ci.high), (np.nan, np.nan))
- def test_relative_risk_ci_edge_cases_01():
- result = relative_risk(exposed_cases=0, exposed_total=12,
- control_cases=1, control_total=30)
- assert_equal(result.relative_risk, 0)
- ci = result.confidence_interval()
- assert_equal((ci.low, ci.high), (0.0, np.nan))
- def test_relative_risk_ci_edge_cases_10():
- result = relative_risk(exposed_cases=1, exposed_total=12,
- control_cases=0, control_total=30)
- assert_equal(result.relative_risk, np.inf)
- ci = result.confidence_interval()
- assert_equal((ci.low, ci.high), (np.nan, np.inf))
- @pytest.mark.parametrize('ec, et, cc, ct', [(0, 0, 10, 20),
- (-1, 10, 1, 5),
- (1, 10, 0, 0),
- (1, 10, -1, 4)])
- def test_relative_risk_bad_value(ec, et, cc, ct):
- with pytest.raises(ValueError, match="must be an integer not less than"):
- relative_risk(ec, et, cc, ct)
- def test_relative_risk_bad_type():
- with pytest.raises(TypeError, match="must be an integer"):
- relative_risk(1, 10, 2.0, 40)
|