1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905 |
- """
- Test functions for multivariate normal distributions.
- """
- import pickle
- from numpy.testing import (assert_allclose, assert_almost_equal,
- assert_array_almost_equal, assert_equal,
- assert_array_less, assert_)
- import pytest
- from pytest import raises as assert_raises
- from .test_continuous_basic import check_distribution_rvs
- import numpy
- import numpy as np
- import scipy.linalg
- from scipy.stats._multivariate import (_PSD,
- _lnB,
- _cho_inv_batch,
- multivariate_normal_frozen)
- from scipy.stats import (multivariate_normal, multivariate_hypergeom,
- matrix_normal, special_ortho_group, ortho_group,
- random_correlation, unitary_group, dirichlet,
- beta, wishart, multinomial, invwishart, chi2,
- invgamma, norm, uniform, ks_2samp, kstest, binom,
- hypergeom, multivariate_t, cauchy, normaltest,
- random_table, uniform_direction)
- from scipy.stats import _covariance, Covariance
- from scipy.integrate import romb
- from scipy.special import multigammaln
- from .common_tests import check_random_state_property
- from unittest.mock import patch
- def assert_close(res, ref, *args, **kwargs):
- res, ref = np.asarray(res), np.asarray(ref)
- assert_allclose(res, ref, *args, **kwargs)
- assert_equal(res.shape, ref.shape)
- class TestCovariance:
- def test_input_validation(self):
- message = "The input `precision` must be a square, two-dimensional..."
- with pytest.raises(ValueError, match=message):
- _covariance.CovViaPrecision(np.ones(2))
- message = "`precision.shape` must equal `covariance.shape`."
- with pytest.raises(ValueError, match=message):
- _covariance.CovViaPrecision(np.eye(3), covariance=np.eye(2))
- message = "The input `diagonal` must be a one-dimensional array..."
- with pytest.raises(ValueError, match=message):
- _covariance.CovViaDiagonal("alpaca")
- message = "The input `cholesky` must be a square, two-dimensional..."
- with pytest.raises(ValueError, match=message):
- _covariance.CovViaCholesky(np.ones(2))
- message = "The input `eigenvalues` must be a one-dimensional..."
- with pytest.raises(ValueError, match=message):
- _covariance.CovViaEigendecomposition(("alpaca", np.eye(2)))
- message = "The input `eigenvectors` must be a square..."
- with pytest.raises(ValueError, match=message):
- _covariance.CovViaEigendecomposition((np.ones(2), "alpaca"))
- message = "The shapes of `eigenvalues` and `eigenvectors` must be..."
- with pytest.raises(ValueError, match=message):
- _covariance.CovViaEigendecomposition(([1, 2, 3], np.eye(2)))
- _covariance_preprocessing = {"Diagonal": np.diag,
- "Precision": np.linalg.inv,
- "Cholesky": np.linalg.cholesky,
- "Eigendecomposition": np.linalg.eigh,
- "PSD": lambda x:
- _PSD(x, allow_singular=True)}
- _all_covariance_types = np.array(list(_covariance_preprocessing))
- _matrices = {"diagonal full rank": np.diag([1, 2, 3]),
- "general full rank": [[5, 1, 3], [1, 6, 4], [3, 4, 7]],
- "diagonal singular": np.diag([1, 0, 3]),
- "general singular": [[5, -1, 0], [-1, 5, 0], [0, 0, 0]]}
- _cov_types = {"diagonal full rank": _all_covariance_types,
- "general full rank": _all_covariance_types[1:],
- "diagonal singular": _all_covariance_types[[0, -2, -1]],
- "general singular": _all_covariance_types[-2:]}
- @pytest.mark.parametrize("cov_type_name", _all_covariance_types[:-1])
- def test_factories(self, cov_type_name):
- A = np.diag([1, 2, 3])
- x = [-4, 2, 5]
- cov_type = getattr(_covariance, f"CovVia{cov_type_name}")
- preprocessing = self._covariance_preprocessing[cov_type_name]
- factory = getattr(Covariance, f"from_{cov_type_name.lower()}")
- res = factory(preprocessing(A))
- ref = cov_type(preprocessing(A))
- assert type(res) == type(ref)
- assert_allclose(res.whiten(x), ref.whiten(x))
- @pytest.mark.parametrize("matrix_type", list(_matrices))
- @pytest.mark.parametrize("cov_type_name", _all_covariance_types)
- def test_covariance(self, matrix_type, cov_type_name):
- message = (f"CovVia{cov_type_name} does not support {matrix_type} "
- "matrices")
- if cov_type_name not in self._cov_types[matrix_type]:
- pytest.skip(message)
- A = self._matrices[matrix_type]
- cov_type = getattr(_covariance, f"CovVia{cov_type_name}")
- preprocessing = self._covariance_preprocessing[cov_type_name]
- psd = _PSD(A, allow_singular=True)
- # test properties
- cov_object = cov_type(preprocessing(A))
- assert_close(cov_object.log_pdet, psd.log_pdet)
- assert_equal(cov_object.rank, psd.rank)
- assert_equal(cov_object.shape, np.asarray(A).shape)
- assert_close(cov_object.covariance, np.asarray(A))
- # test whitening/coloring 1D x
- rng = np.random.default_rng(5292808890472453840)
- x = rng.random(size=3)
- res = cov_object.whiten(x)
- ref = x @ psd.U
- # res != ref in general; but res @ res == ref @ ref
- assert_close(res @ res, ref @ ref)
- if hasattr(cov_object, "_colorize") and "singular" not in matrix_type:
- # CovViaPSD does not have _colorize
- assert_close(cov_object.colorize(res), x)
- # test whitening/coloring 3D x
- x = rng.random(size=(2, 4, 3))
- res = cov_object.whiten(x)
- ref = x @ psd.U
- assert_close((res**2).sum(axis=-1), (ref**2).sum(axis=-1))
- if hasattr(cov_object, "_colorize") and "singular" not in matrix_type:
- assert_close(cov_object.colorize(res), x)
- @pytest.mark.parametrize("size", [None, tuple(), 1, (2, 4, 3)])
- @pytest.mark.parametrize("matrix_type", list(_matrices))
- @pytest.mark.parametrize("cov_type_name", _all_covariance_types)
- def test_mvn_with_covariance(self, size, matrix_type, cov_type_name):
- message = (f"CovVia{cov_type_name} does not support {matrix_type} "
- "matrices")
- if cov_type_name not in self._cov_types[matrix_type]:
- pytest.skip(message)
- A = self._matrices[matrix_type]
- cov_type = getattr(_covariance, f"CovVia{cov_type_name}")
- preprocessing = self._covariance_preprocessing[cov_type_name]
- mean = [0.1, 0.2, 0.3]
- cov_object = cov_type(preprocessing(A))
- mvn = multivariate_normal
- dist0 = multivariate_normal(mean, A, allow_singular=True)
- dist1 = multivariate_normal(mean, cov_object, allow_singular=True)
- rng = np.random.default_rng(5292808890472453840)
- x = rng.multivariate_normal(mean, A, size=size)
- rng = np.random.default_rng(5292808890472453840)
- x1 = mvn.rvs(mean, cov_object, size=size, random_state=rng)
- rng = np.random.default_rng(5292808890472453840)
- x2 = mvn(mean, cov_object, seed=rng).rvs(size=size)
- if isinstance(cov_object, _covariance.CovViaPSD):
- assert_close(x1, np.squeeze(x)) # for backward compatibility
- assert_close(x2, np.squeeze(x))
- else:
- assert_equal(x1.shape, x.shape)
- assert_equal(x2.shape, x.shape)
- assert_close(x2, x1)
- assert_close(mvn.pdf(x, mean, cov_object), dist0.pdf(x))
- assert_close(dist1.pdf(x), dist0.pdf(x))
- assert_close(mvn.logpdf(x, mean, cov_object), dist0.logpdf(x))
- assert_close(dist1.logpdf(x), dist0.logpdf(x))
- assert_close(mvn.entropy(mean, cov_object), dist0.entropy())
- assert_close(dist1.entropy(), dist0.entropy())
- @pytest.mark.parametrize("size", [tuple(), (2, 4, 3)])
- @pytest.mark.parametrize("cov_type_name", _all_covariance_types)
- def test_mvn_with_covariance_cdf(self, size, cov_type_name):
- # This is split from the test above because it's slow to be running
- # with all matrix types, and there's no need because _mvn.mvnun
- # does the calculation. All Covariance needs to do is pass is
- # provide the `covariance` attribute.
- matrix_type = "diagonal full rank"
- A = self._matrices[matrix_type]
- cov_type = getattr(_covariance, f"CovVia{cov_type_name}")
- preprocessing = self._covariance_preprocessing[cov_type_name]
- mean = [0.1, 0.2, 0.3]
- cov_object = cov_type(preprocessing(A))
- mvn = multivariate_normal
- dist0 = multivariate_normal(mean, A, allow_singular=True)
- dist1 = multivariate_normal(mean, cov_object, allow_singular=True)
- rng = np.random.default_rng(5292808890472453840)
- x = rng.multivariate_normal(mean, A, size=size)
- assert_close(mvn.cdf(x, mean, cov_object), dist0.cdf(x))
- assert_close(dist1.cdf(x), dist0.cdf(x))
- assert_close(mvn.logcdf(x, mean, cov_object), dist0.logcdf(x))
- assert_close(dist1.logcdf(x), dist0.logcdf(x))
- def test_covariance_instantiation(self):
- message = "The `Covariance` class cannot be instantiated directly."
- with pytest.raises(NotImplementedError, match=message):
- Covariance()
- @pytest.mark.filterwarnings("ignore::RuntimeWarning") # matrix not PSD
- def test_gh9942(self):
- # Originally there was a mistake in the `multivariate_normal_frozen`
- # `rvs` method that caused all covariance objects to be processed as
- # a `_CovViaPSD`. Ensure that this is resolved.
- A = np.diag([1, 2, -1e-8])
- n = A.shape[0]
- mean = np.zeros(n)
- # Error if the matrix is processed as a `_CovViaPSD`
- with pytest.raises(ValueError, match="The input matrix must be..."):
- multivariate_normal(mean, A).rvs()
- # No error if it is provided as a `CovViaEigendecomposition`
- seed = 3562050283508273023
- rng1 = np.random.default_rng(seed)
- rng2 = np.random.default_rng(seed)
- cov = Covariance.from_eigendecomposition(np.linalg.eigh(A))
- rv = multivariate_normal(mean, cov)
- res = rv.rvs(random_state=rng1)
- ref = multivariate_normal.rvs(mean, cov, random_state=rng2)
- assert_equal(res, ref)
- def _sample_orthonormal_matrix(n):
- M = np.random.randn(n, n)
- u, s, v = scipy.linalg.svd(M)
- return u
- class TestMultivariateNormal:
- def test_input_shape(self):
- mu = np.arange(3)
- cov = np.identity(2)
- assert_raises(ValueError, multivariate_normal.pdf, (0, 1), mu, cov)
- assert_raises(ValueError, multivariate_normal.pdf, (0, 1, 2), mu, cov)
- assert_raises(ValueError, multivariate_normal.cdf, (0, 1), mu, cov)
- assert_raises(ValueError, multivariate_normal.cdf, (0, 1, 2), mu, cov)
- def test_scalar_values(self):
- np.random.seed(1234)
- # When evaluated on scalar data, the pdf should return a scalar
- x, mean, cov = 1.5, 1.7, 2.5
- pdf = multivariate_normal.pdf(x, mean, cov)
- assert_equal(pdf.ndim, 0)
- # When evaluated on a single vector, the pdf should return a scalar
- x = np.random.randn(5)
- mean = np.random.randn(5)
- cov = np.abs(np.random.randn(5)) # Diagonal values for cov. matrix
- pdf = multivariate_normal.pdf(x, mean, cov)
- assert_equal(pdf.ndim, 0)
- # When evaluated on scalar data, the cdf should return a scalar
- x, mean, cov = 1.5, 1.7, 2.5
- cdf = multivariate_normal.cdf(x, mean, cov)
- assert_equal(cdf.ndim, 0)
- # When evaluated on a single vector, the cdf should return a scalar
- x = np.random.randn(5)
- mean = np.random.randn(5)
- cov = np.abs(np.random.randn(5)) # Diagonal values for cov. matrix
- cdf = multivariate_normal.cdf(x, mean, cov)
- assert_equal(cdf.ndim, 0)
- def test_logpdf(self):
- # Check that the log of the pdf is in fact the logpdf
- np.random.seed(1234)
- x = np.random.randn(5)
- mean = np.random.randn(5)
- cov = np.abs(np.random.randn(5))
- d1 = multivariate_normal.logpdf(x, mean, cov)
- d2 = multivariate_normal.pdf(x, mean, cov)
- assert_allclose(d1, np.log(d2))
- def test_logpdf_default_values(self):
- # Check that the log of the pdf is in fact the logpdf
- # with default parameters Mean=None and cov = 1
- np.random.seed(1234)
- x = np.random.randn(5)
- d1 = multivariate_normal.logpdf(x)
- d2 = multivariate_normal.pdf(x)
- # check whether default values are being used
- d3 = multivariate_normal.logpdf(x, None, 1)
- d4 = multivariate_normal.pdf(x, None, 1)
- assert_allclose(d1, np.log(d2))
- assert_allclose(d3, np.log(d4))
- def test_logcdf(self):
- # Check that the log of the cdf is in fact the logcdf
- np.random.seed(1234)
- x = np.random.randn(5)
- mean = np.random.randn(5)
- cov = np.abs(np.random.randn(5))
- d1 = multivariate_normal.logcdf(x, mean, cov)
- d2 = multivariate_normal.cdf(x, mean, cov)
- assert_allclose(d1, np.log(d2))
- def test_logcdf_default_values(self):
- # Check that the log of the cdf is in fact the logcdf
- # with default parameters Mean=None and cov = 1
- np.random.seed(1234)
- x = np.random.randn(5)
- d1 = multivariate_normal.logcdf(x)
- d2 = multivariate_normal.cdf(x)
- # check whether default values are being used
- d3 = multivariate_normal.logcdf(x, None, 1)
- d4 = multivariate_normal.cdf(x, None, 1)
- assert_allclose(d1, np.log(d2))
- assert_allclose(d3, np.log(d4))
- def test_rank(self):
- # Check that the rank is detected correctly.
- np.random.seed(1234)
- n = 4
- mean = np.random.randn(n)
- for expected_rank in range(1, n + 1):
- s = np.random.randn(n, expected_rank)
- cov = np.dot(s, s.T)
- distn = multivariate_normal(mean, cov, allow_singular=True)
- assert_equal(distn.cov_object.rank, expected_rank)
- def test_degenerate_distributions(self):
- for n in range(1, 5):
- z = np.random.randn(n)
- for k in range(1, n):
- # Sample a small covariance matrix.
- s = np.random.randn(k, k)
- cov_kk = np.dot(s, s.T)
- # Embed the small covariance matrix into a larger singular one.
- cov_nn = np.zeros((n, n))
- cov_nn[:k, :k] = cov_kk
- # Embed part of the vector in the same way
- x = np.zeros(n)
- x[:k] = z[:k]
- # Define a rotation of the larger low rank matrix.
- u = _sample_orthonormal_matrix(n)
- cov_rr = np.dot(u, np.dot(cov_nn, u.T))
- y = np.dot(u, x)
- # Check some identities.
- distn_kk = multivariate_normal(np.zeros(k), cov_kk,
- allow_singular=True)
- distn_nn = multivariate_normal(np.zeros(n), cov_nn,
- allow_singular=True)
- distn_rr = multivariate_normal(np.zeros(n), cov_rr,
- allow_singular=True)
- assert_equal(distn_kk.cov_object.rank, k)
- assert_equal(distn_nn.cov_object.rank, k)
- assert_equal(distn_rr.cov_object.rank, k)
- pdf_kk = distn_kk.pdf(x[:k])
- pdf_nn = distn_nn.pdf(x)
- pdf_rr = distn_rr.pdf(y)
- assert_allclose(pdf_kk, pdf_nn)
- assert_allclose(pdf_kk, pdf_rr)
- logpdf_kk = distn_kk.logpdf(x[:k])
- logpdf_nn = distn_nn.logpdf(x)
- logpdf_rr = distn_rr.logpdf(y)
- assert_allclose(logpdf_kk, logpdf_nn)
- assert_allclose(logpdf_kk, logpdf_rr)
- # Add an orthogonal component and find the density
- y_orth = y + u[:, -1]
- pdf_rr_orth = distn_rr.pdf(y_orth)
- logpdf_rr_orth = distn_rr.logpdf(y_orth)
- # Ensure that this has zero probability
- assert_equal(pdf_rr_orth, 0.0)
- assert_equal(logpdf_rr_orth, -np.inf)
- def test_degenerate_array(self):
- # Test that we can generate arrays of random variate from a degenerate
- # multivariate normal, and that the pdf for these samples is non-zero
- # (i.e. samples from the distribution lie on the subspace)
- k = 10
- for n in range(2, 6):
- for r in range(1, n):
- mn = np.zeros(n)
- u = _sample_orthonormal_matrix(n)[:, :r]
- vr = np.dot(u, u.T)
- X = multivariate_normal.rvs(mean=mn, cov=vr, size=k)
- pdf = multivariate_normal.pdf(X, mean=mn, cov=vr,
- allow_singular=True)
- assert_equal(pdf.size, k)
- assert np.all(pdf > 0.0)
- logpdf = multivariate_normal.logpdf(X, mean=mn, cov=vr,
- allow_singular=True)
- assert_equal(logpdf.size, k)
- assert np.all(logpdf > -np.inf)
- def test_large_pseudo_determinant(self):
- # Check that large pseudo-determinants are handled appropriately.
- # Construct a singular diagonal covariance matrix
- # whose pseudo determinant overflows double precision.
- large_total_log = 1000.0
- npos = 100
- nzero = 2
- large_entry = np.exp(large_total_log / npos)
- n = npos + nzero
- cov = np.zeros((n, n), dtype=float)
- np.fill_diagonal(cov, large_entry)
- cov[-nzero:, -nzero:] = 0
- # Check some determinants.
- assert_equal(scipy.linalg.det(cov), 0)
- assert_equal(scipy.linalg.det(cov[:npos, :npos]), np.inf)
- assert_allclose(np.linalg.slogdet(cov[:npos, :npos]),
- (1, large_total_log))
- # Check the pseudo-determinant.
- psd = _PSD(cov)
- assert_allclose(psd.log_pdet, large_total_log)
- def test_broadcasting(self):
- np.random.seed(1234)
- n = 4
- # Construct a random covariance matrix.
- data = np.random.randn(n, n)
- cov = np.dot(data, data.T)
- mean = np.random.randn(n)
- # Construct an ndarray which can be interpreted as
- # a 2x3 array whose elements are random data vectors.
- X = np.random.randn(2, 3, n)
- # Check that multiple data points can be evaluated at once.
- desired_pdf = multivariate_normal.pdf(X, mean, cov)
- desired_cdf = multivariate_normal.cdf(X, mean, cov)
- for i in range(2):
- for j in range(3):
- actual = multivariate_normal.pdf(X[i, j], mean, cov)
- assert_allclose(actual, desired_pdf[i,j])
- # Repeat for cdf
- actual = multivariate_normal.cdf(X[i, j], mean, cov)
- assert_allclose(actual, desired_cdf[i,j], rtol=1e-3)
- def test_normal_1D(self):
- # The probability density function for a 1D normal variable should
- # agree with the standard normal distribution in scipy.stats.distributions
- x = np.linspace(0, 2, 10)
- mean, cov = 1.2, 0.9
- scale = cov**0.5
- d1 = norm.pdf(x, mean, scale)
- d2 = multivariate_normal.pdf(x, mean, cov)
- assert_allclose(d1, d2)
- # The same should hold for the cumulative distribution function
- d1 = norm.cdf(x, mean, scale)
- d2 = multivariate_normal.cdf(x, mean, cov)
- assert_allclose(d1, d2)
- def test_marginalization(self):
- # Integrating out one of the variables of a 2D Gaussian should
- # yield a 1D Gaussian
- mean = np.array([2.5, 3.5])
- cov = np.array([[.5, 0.2], [0.2, .6]])
- n = 2 ** 8 + 1 # Number of samples
- delta = 6 / (n - 1) # Grid spacing
- v = np.linspace(0, 6, n)
- xv, yv = np.meshgrid(v, v)
- pos = np.empty((n, n, 2))
- pos[:, :, 0] = xv
- pos[:, :, 1] = yv
- pdf = multivariate_normal.pdf(pos, mean, cov)
- # Marginalize over x and y axis
- margin_x = romb(pdf, delta, axis=0)
- margin_y = romb(pdf, delta, axis=1)
- # Compare with standard normal distribution
- gauss_x = norm.pdf(v, loc=mean[0], scale=cov[0, 0] ** 0.5)
- gauss_y = norm.pdf(v, loc=mean[1], scale=cov[1, 1] ** 0.5)
- assert_allclose(margin_x, gauss_x, rtol=1e-2, atol=1e-2)
- assert_allclose(margin_y, gauss_y, rtol=1e-2, atol=1e-2)
- def test_frozen(self):
- # The frozen distribution should agree with the regular one
- np.random.seed(1234)
- x = np.random.randn(5)
- mean = np.random.randn(5)
- cov = np.abs(np.random.randn(5))
- norm_frozen = multivariate_normal(mean, cov)
- assert_allclose(norm_frozen.pdf(x), multivariate_normal.pdf(x, mean, cov))
- assert_allclose(norm_frozen.logpdf(x),
- multivariate_normal.logpdf(x, mean, cov))
- assert_allclose(norm_frozen.cdf(x), multivariate_normal.cdf(x, mean, cov))
- assert_allclose(norm_frozen.logcdf(x),
- multivariate_normal.logcdf(x, mean, cov))
-
- @pytest.mark.parametrize(
- 'covariance',
- [
- np.eye(2),
- Covariance.from_diagonal([1, 1]),
- ]
- )
- def test_frozen_multivariate_normal_exposes_attributes(self, covariance):
- mean = np.ones((2,))
- cov_should_be = np.eye(2)
- norm_frozen = multivariate_normal(mean, covariance)
- assert np.allclose(norm_frozen.mean, mean)
- assert np.allclose(norm_frozen.cov, cov_should_be)
- def test_pseudodet_pinv(self):
- # Make sure that pseudo-inverse and pseudo-det agree on cutoff
- # Assemble random covariance matrix with large and small eigenvalues
- np.random.seed(1234)
- n = 7
- x = np.random.randn(n, n)
- cov = np.dot(x, x.T)
- s, u = scipy.linalg.eigh(cov)
- s = np.full(n, 0.5)
- s[0] = 1.0
- s[-1] = 1e-7
- cov = np.dot(u, np.dot(np.diag(s), u.T))
- # Set cond so that the lowest eigenvalue is below the cutoff
- cond = 1e-5
- psd = _PSD(cov, cond=cond)
- psd_pinv = _PSD(psd.pinv, cond=cond)
- # Check that the log pseudo-determinant agrees with the sum
- # of the logs of all but the smallest eigenvalue
- assert_allclose(psd.log_pdet, np.sum(np.log(s[:-1])))
- # Check that the pseudo-determinant of the pseudo-inverse
- # agrees with 1 / pseudo-determinant
- assert_allclose(-psd.log_pdet, psd_pinv.log_pdet)
- def test_exception_nonsquare_cov(self):
- cov = [[1, 2, 3], [4, 5, 6]]
- assert_raises(ValueError, _PSD, cov)
- def test_exception_nonfinite_cov(self):
- cov_nan = [[1, 0], [0, np.nan]]
- assert_raises(ValueError, _PSD, cov_nan)
- cov_inf = [[1, 0], [0, np.inf]]
- assert_raises(ValueError, _PSD, cov_inf)
- def test_exception_non_psd_cov(self):
- cov = [[1, 0], [0, -1]]
- assert_raises(ValueError, _PSD, cov)
- def test_exception_singular_cov(self):
- np.random.seed(1234)
- x = np.random.randn(5)
- mean = np.random.randn(5)
- cov = np.ones((5, 5))
- e = np.linalg.LinAlgError
- assert_raises(e, multivariate_normal, mean, cov)
- assert_raises(e, multivariate_normal.pdf, x, mean, cov)
- assert_raises(e, multivariate_normal.logpdf, x, mean, cov)
- assert_raises(e, multivariate_normal.cdf, x, mean, cov)
- assert_raises(e, multivariate_normal.logcdf, x, mean, cov)
- # Message used to be "singular matrix", but this is more accurate.
- # See gh-15508
- cov = [[1., 0.], [1., 1.]]
- msg = "When `allow_singular is False`, the input matrix"
- with pytest.raises(np.linalg.LinAlgError, match=msg):
- multivariate_normal(cov=cov)
- def test_R_values(self):
- # Compare the multivariate pdf with some values precomputed
- # in R version 3.0.1 (2013-05-16) on Mac OS X 10.6.
- # The values below were generated by the following R-script:
- # > library(mnormt)
- # > x <- seq(0, 2, length=5)
- # > y <- 3*x - 2
- # > z <- x + cos(y)
- # > mu <- c(1, 3, 2)
- # > Sigma <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3)
- # > r_pdf <- dmnorm(cbind(x,y,z), mu, Sigma)
- r_pdf = np.array([0.0002214706, 0.0013819953, 0.0049138692,
- 0.0103803050, 0.0140250800])
- x = np.linspace(0, 2, 5)
- y = 3 * x - 2
- z = x + np.cos(y)
- r = np.array([x, y, z]).T
- mean = np.array([1, 3, 2], 'd')
- cov = np.array([[1, 2, 0], [2, 5, .5], [0, .5, 3]], 'd')
- pdf = multivariate_normal.pdf(r, mean, cov)
- assert_allclose(pdf, r_pdf, atol=1e-10)
- # Compare the multivariate cdf with some values precomputed
- # in R version 3.3.2 (2016-10-31) on Debian GNU/Linux.
- # The values below were generated by the following R-script:
- # > library(mnormt)
- # > x <- seq(0, 2, length=5)
- # > y <- 3*x - 2
- # > z <- x + cos(y)
- # > mu <- c(1, 3, 2)
- # > Sigma <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3)
- # > r_cdf <- pmnorm(cbind(x,y,z), mu, Sigma)
- r_cdf = np.array([0.0017866215, 0.0267142892, 0.0857098761,
- 0.1063242573, 0.2501068509])
- cdf = multivariate_normal.cdf(r, mean, cov)
- assert_allclose(cdf, r_cdf, atol=2e-5)
- # Also test bivariate cdf with some values precomputed
- # in R version 3.3.2 (2016-10-31) on Debian GNU/Linux.
- # The values below were generated by the following R-script:
- # > library(mnormt)
- # > x <- seq(0, 2, length=5)
- # > y <- 3*x - 2
- # > mu <- c(1, 3)
- # > Sigma <- matrix(c(1,2,2,5), 2, 2)
- # > r_cdf2 <- pmnorm(cbind(x,y), mu, Sigma)
- r_cdf2 = np.array([0.01262147, 0.05838989, 0.18389571,
- 0.40696599, 0.66470577])
- r2 = np.array([x, y]).T
- mean2 = np.array([1, 3], 'd')
- cov2 = np.array([[1, 2], [2, 5]], 'd')
- cdf2 = multivariate_normal.cdf(r2, mean2, cov2)
- assert_allclose(cdf2, r_cdf2, atol=1e-5)
- def test_multivariate_normal_rvs_zero_covariance(self):
- mean = np.zeros(2)
- covariance = np.zeros((2, 2))
- model = multivariate_normal(mean, covariance, allow_singular=True)
- sample = model.rvs()
- assert_equal(sample, [0, 0])
- def test_rvs_shape(self):
- # Check that rvs parses the mean and covariance correctly, and returns
- # an array of the right shape
- N = 300
- d = 4
- sample = multivariate_normal.rvs(mean=np.zeros(d), cov=1, size=N)
- assert_equal(sample.shape, (N, d))
- sample = multivariate_normal.rvs(mean=None,
- cov=np.array([[2, .1], [.1, 1]]),
- size=N)
- assert_equal(sample.shape, (N, 2))
- u = multivariate_normal(mean=0, cov=1)
- sample = u.rvs(N)
- assert_equal(sample.shape, (N, ))
- def test_large_sample(self):
- # Generate large sample and compare sample mean and sample covariance
- # with mean and covariance matrix.
- np.random.seed(2846)
- n = 3
- mean = np.random.randn(n)
- M = np.random.randn(n, n)
- cov = np.dot(M, M.T)
- size = 5000
- sample = multivariate_normal.rvs(mean, cov, size)
- assert_allclose(numpy.cov(sample.T), cov, rtol=1e-1)
- assert_allclose(sample.mean(0), mean, rtol=1e-1)
- def test_entropy(self):
- np.random.seed(2846)
- n = 3
- mean = np.random.randn(n)
- M = np.random.randn(n, n)
- cov = np.dot(M, M.T)
- rv = multivariate_normal(mean, cov)
- # Check that frozen distribution agrees with entropy function
- assert_almost_equal(rv.entropy(), multivariate_normal.entropy(mean, cov))
- # Compare entropy with manually computed expression involving
- # the sum of the logs of the eigenvalues of the covariance matrix
- eigs = np.linalg.eig(cov)[0]
- desired = 1 / 2 * (n * (np.log(2 * np.pi) + 1) + np.sum(np.log(eigs)))
- assert_almost_equal(desired, rv.entropy())
- def test_lnB(self):
- alpha = np.array([1, 1, 1])
- desired = .5 # e^lnB = 1/2 for [1, 1, 1]
- assert_almost_equal(np.exp(_lnB(alpha)), desired)
- def test_cdf_with_lower_limit_arrays(self):
- # test CDF with lower limit in several dimensions
- rng = np.random.default_rng(2408071309372769818)
- mean = [0, 0]
- cov = np.eye(2)
- a = rng.random((4, 3, 2))*6 - 3
- b = rng.random((4, 3, 2))*6 - 3
- cdf1 = multivariate_normal.cdf(b, mean, cov, lower_limit=a)
- cdf2a = multivariate_normal.cdf(b, mean, cov)
- cdf2b = multivariate_normal.cdf(a, mean, cov)
- ab1 = np.concatenate((a[..., 0:1], b[..., 1:2]), axis=-1)
- ab2 = np.concatenate((a[..., 1:2], b[..., 0:1]), axis=-1)
- cdf2ab1 = multivariate_normal.cdf(ab1, mean, cov)
- cdf2ab2 = multivariate_normal.cdf(ab2, mean, cov)
- cdf2 = cdf2a + cdf2b - cdf2ab1 - cdf2ab2
- assert_allclose(cdf1, cdf2)
- def test_cdf_with_lower_limit_consistency(self):
- # check that multivariate normal CDF functions are consistent
- rng = np.random.default_rng(2408071309372769818)
- mean = rng.random(3)
- cov = rng.random((3, 3))
- cov = cov @ cov.T
- a = rng.random((2, 3))*6 - 3
- b = rng.random((2, 3))*6 - 3
- cdf1 = multivariate_normal.cdf(b, mean, cov, lower_limit=a)
- cdf2 = multivariate_normal(mean, cov).cdf(b, lower_limit=a)
- cdf3 = np.exp(multivariate_normal.logcdf(b, mean, cov, lower_limit=a))
- cdf4 = np.exp(multivariate_normal(mean, cov).logcdf(b, lower_limit=a))
- assert_allclose(cdf2, cdf1, rtol=1e-4)
- assert_allclose(cdf3, cdf1, rtol=1e-4)
- assert_allclose(cdf4, cdf1, rtol=1e-4)
- def test_cdf_signs(self):
- # check that sign of output is correct when np.any(lower > x)
- mean = np.zeros(3)
- cov = np.eye(3)
- b = [[1, 1, 1], [0, 0, 0], [1, 0, 1], [0, 1, 0]]
- a = [[0, 0, 0], [1, 1, 1], [0, 1, 0], [1, 0, 1]]
- # when odd number of elements of b < a, output is negative
- expected_signs = np.array([1, -1, -1, 1])
- cdf = multivariate_normal.cdf(b, mean, cov, lower_limit=a)
- assert_allclose(cdf, cdf[0]*expected_signs)
- def test_mean_cov(self):
- # test the interaction between a Covariance object and mean
- P = np.diag(1 / np.array([1, 2, 3]))
- cov_object = _covariance.CovViaPrecision(P)
- message = "`cov` represents a covariance matrix in 3 dimensions..."
- with pytest.raises(ValueError, match=message):
- multivariate_normal.entropy([0, 0], cov_object)
- with pytest.raises(ValueError, match=message):
- multivariate_normal([0, 0], cov_object)
- x = [0.5, 0.5, 0.5]
- ref = multivariate_normal.pdf(x, [0, 0, 0], cov_object)
- assert_equal(multivariate_normal.pdf(x, cov=cov_object), ref)
- ref = multivariate_normal.pdf(x, [1, 1, 1], cov_object)
- assert_equal(multivariate_normal.pdf(x, 1, cov=cov_object), ref)
- class TestMatrixNormal:
- def test_bad_input(self):
- # Check that bad inputs raise errors
- num_rows = 4
- num_cols = 3
- M = np.full((num_rows,num_cols), 0.3)
- U = 0.5 * np.identity(num_rows) + np.full((num_rows, num_rows), 0.5)
- V = 0.7 * np.identity(num_cols) + np.full((num_cols, num_cols), 0.3)
- # Incorrect dimensions
- assert_raises(ValueError, matrix_normal, np.zeros((5,4,3)))
- assert_raises(ValueError, matrix_normal, M, np.zeros(10), V)
- assert_raises(ValueError, matrix_normal, M, U, np.zeros(10))
- assert_raises(ValueError, matrix_normal, M, U, U)
- assert_raises(ValueError, matrix_normal, M, V, V)
- assert_raises(ValueError, matrix_normal, M.T, U, V)
- e = np.linalg.LinAlgError
- # Singular covariance for the rvs method of a non-frozen instance
- assert_raises(e, matrix_normal.rvs,
- M, U, np.ones((num_cols, num_cols)))
- assert_raises(e, matrix_normal.rvs,
- M, np.ones((num_rows, num_rows)), V)
- # Singular covariance for a frozen instance
- assert_raises(e, matrix_normal, M, U, np.ones((num_cols, num_cols)))
- assert_raises(e, matrix_normal, M, np.ones((num_rows, num_rows)), V)
- def test_default_inputs(self):
- # Check that default argument handling works
- num_rows = 4
- num_cols = 3
- M = np.full((num_rows,num_cols), 0.3)
- U = 0.5 * np.identity(num_rows) + np.full((num_rows, num_rows), 0.5)
- V = 0.7 * np.identity(num_cols) + np.full((num_cols, num_cols), 0.3)
- Z = np.zeros((num_rows, num_cols))
- Zr = np.zeros((num_rows, 1))
- Zc = np.zeros((1, num_cols))
- Ir = np.identity(num_rows)
- Ic = np.identity(num_cols)
- I1 = np.identity(1)
- assert_equal(matrix_normal.rvs(mean=M, rowcov=U, colcov=V).shape,
- (num_rows, num_cols))
- assert_equal(matrix_normal.rvs(mean=M).shape,
- (num_rows, num_cols))
- assert_equal(matrix_normal.rvs(rowcov=U).shape,
- (num_rows, 1))
- assert_equal(matrix_normal.rvs(colcov=V).shape,
- (1, num_cols))
- assert_equal(matrix_normal.rvs(mean=M, colcov=V).shape,
- (num_rows, num_cols))
- assert_equal(matrix_normal.rvs(mean=M, rowcov=U).shape,
- (num_rows, num_cols))
- assert_equal(matrix_normal.rvs(rowcov=U, colcov=V).shape,
- (num_rows, num_cols))
- assert_equal(matrix_normal(mean=M).rowcov, Ir)
- assert_equal(matrix_normal(mean=M).colcov, Ic)
- assert_equal(matrix_normal(rowcov=U).mean, Zr)
- assert_equal(matrix_normal(rowcov=U).colcov, I1)
- assert_equal(matrix_normal(colcov=V).mean, Zc)
- assert_equal(matrix_normal(colcov=V).rowcov, I1)
- assert_equal(matrix_normal(mean=M, rowcov=U).colcov, Ic)
- assert_equal(matrix_normal(mean=M, colcov=V).rowcov, Ir)
- assert_equal(matrix_normal(rowcov=U, colcov=V).mean, Z)
- def test_covariance_expansion(self):
- # Check that covariance can be specified with scalar or vector
- num_rows = 4
- num_cols = 3
- M = np.full((num_rows, num_cols), 0.3)
- Uv = np.full(num_rows, 0.2)
- Us = 0.2
- Vv = np.full(num_cols, 0.1)
- Vs = 0.1
- Ir = np.identity(num_rows)
- Ic = np.identity(num_cols)
- assert_equal(matrix_normal(mean=M, rowcov=Uv, colcov=Vv).rowcov,
- 0.2*Ir)
- assert_equal(matrix_normal(mean=M, rowcov=Uv, colcov=Vv).colcov,
- 0.1*Ic)
- assert_equal(matrix_normal(mean=M, rowcov=Us, colcov=Vs).rowcov,
- 0.2*Ir)
- assert_equal(matrix_normal(mean=M, rowcov=Us, colcov=Vs).colcov,
- 0.1*Ic)
- def test_frozen_matrix_normal(self):
- for i in range(1,5):
- for j in range(1,5):
- M = np.full((i,j), 0.3)
- U = 0.5 * np.identity(i) + np.full((i,i), 0.5)
- V = 0.7 * np.identity(j) + np.full((j,j), 0.3)
- frozen = matrix_normal(mean=M, rowcov=U, colcov=V)
- rvs1 = frozen.rvs(random_state=1234)
- rvs2 = matrix_normal.rvs(mean=M, rowcov=U, colcov=V,
- random_state=1234)
- assert_equal(rvs1, rvs2)
- X = frozen.rvs(random_state=1234)
- pdf1 = frozen.pdf(X)
- pdf2 = matrix_normal.pdf(X, mean=M, rowcov=U, colcov=V)
- assert_equal(pdf1, pdf2)
- logpdf1 = frozen.logpdf(X)
- logpdf2 = matrix_normal.logpdf(X, mean=M, rowcov=U, colcov=V)
- assert_equal(logpdf1, logpdf2)
- def test_matches_multivariate(self):
- # Check that the pdfs match those obtained by vectorising and
- # treating as a multivariate normal.
- for i in range(1,5):
- for j in range(1,5):
- M = np.full((i,j), 0.3)
- U = 0.5 * np.identity(i) + np.full((i,i), 0.5)
- V = 0.7 * np.identity(j) + np.full((j,j), 0.3)
- frozen = matrix_normal(mean=M, rowcov=U, colcov=V)
- X = frozen.rvs(random_state=1234)
- pdf1 = frozen.pdf(X)
- logpdf1 = frozen.logpdf(X)
- vecX = X.T.flatten()
- vecM = M.T.flatten()
- cov = np.kron(V,U)
- pdf2 = multivariate_normal.pdf(vecX, mean=vecM, cov=cov)
- logpdf2 = multivariate_normal.logpdf(vecX, mean=vecM, cov=cov)
- assert_allclose(pdf1, pdf2, rtol=1E-10)
- assert_allclose(logpdf1, logpdf2, rtol=1E-10)
- def test_array_input(self):
- # Check array of inputs has the same output as the separate entries.
- num_rows = 4
- num_cols = 3
- M = np.full((num_rows,num_cols), 0.3)
- U = 0.5 * np.identity(num_rows) + np.full((num_rows, num_rows), 0.5)
- V = 0.7 * np.identity(num_cols) + np.full((num_cols, num_cols), 0.3)
- N = 10
- frozen = matrix_normal(mean=M, rowcov=U, colcov=V)
- X1 = frozen.rvs(size=N, random_state=1234)
- X2 = frozen.rvs(size=N, random_state=4321)
- X = np.concatenate((X1[np.newaxis,:,:,:],X2[np.newaxis,:,:,:]), axis=0)
- assert_equal(X.shape, (2, N, num_rows, num_cols))
- array_logpdf = frozen.logpdf(X)
- assert_equal(array_logpdf.shape, (2, N))
- for i in range(2):
- for j in range(N):
- separate_logpdf = matrix_normal.logpdf(X[i,j], mean=M,
- rowcov=U, colcov=V)
- assert_allclose(separate_logpdf, array_logpdf[i,j], 1E-10)
- def test_moments(self):
- # Check that the sample moments match the parameters
- num_rows = 4
- num_cols = 3
- M = np.full((num_rows,num_cols), 0.3)
- U = 0.5 * np.identity(num_rows) + np.full((num_rows, num_rows), 0.5)
- V = 0.7 * np.identity(num_cols) + np.full((num_cols, num_cols), 0.3)
- N = 1000
- frozen = matrix_normal(mean=M, rowcov=U, colcov=V)
- X = frozen.rvs(size=N, random_state=1234)
- sample_mean = np.mean(X,axis=0)
- assert_allclose(sample_mean, M, atol=0.1)
- sample_colcov = np.cov(X.reshape(N*num_rows,num_cols).T)
- assert_allclose(sample_colcov, V, atol=0.1)
- sample_rowcov = np.cov(np.swapaxes(X,1,2).reshape(
- N*num_cols,num_rows).T)
- assert_allclose(sample_rowcov, U, atol=0.1)
- def test_samples(self):
- # Regression test to ensure that we always generate the same stream of
- # random variates.
- actual = matrix_normal.rvs(
- mean=np.array([[1, 2], [3, 4]]),
- rowcov=np.array([[4, -1], [-1, 2]]),
- colcov=np.array([[5, 1], [1, 10]]),
- random_state=np.random.default_rng(0),
- size=2
- )
- expected = np.array(
- [[[1.56228264238181, -1.24136424071189],
- [2.46865788392114, 6.22964440489445]],
- [[3.86405716144353, 10.73714311429529],
- [2.59428444080606, 5.79987854490876]]]
- )
- assert_allclose(actual, expected)
- class TestDirichlet:
- def test_frozen_dirichlet(self):
- np.random.seed(2846)
- n = np.random.randint(1, 32)
- alpha = np.random.uniform(10e-10, 100, n)
- d = dirichlet(alpha)
- assert_equal(d.var(), dirichlet.var(alpha))
- assert_equal(d.mean(), dirichlet.mean(alpha))
- assert_equal(d.entropy(), dirichlet.entropy(alpha))
- num_tests = 10
- for i in range(num_tests):
- x = np.random.uniform(10e-10, 100, n)
- x /= np.sum(x)
- assert_equal(d.pdf(x[:-1]), dirichlet.pdf(x[:-1], alpha))
- assert_equal(d.logpdf(x[:-1]), dirichlet.logpdf(x[:-1], alpha))
- def test_numpy_rvs_shape_compatibility(self):
- np.random.seed(2846)
- alpha = np.array([1.0, 2.0, 3.0])
- x = np.random.dirichlet(alpha, size=7)
- assert_equal(x.shape, (7, 3))
- assert_raises(ValueError, dirichlet.pdf, x, alpha)
- assert_raises(ValueError, dirichlet.logpdf, x, alpha)
- dirichlet.pdf(x.T, alpha)
- dirichlet.pdf(x.T[:-1], alpha)
- dirichlet.logpdf(x.T, alpha)
- dirichlet.logpdf(x.T[:-1], alpha)
- def test_alpha_with_zeros(self):
- np.random.seed(2846)
- alpha = [1.0, 0.0, 3.0]
- # don't pass invalid alpha to np.random.dirichlet
- x = np.random.dirichlet(np.maximum(1e-9, alpha), size=7).T
- assert_raises(ValueError, dirichlet.pdf, x, alpha)
- assert_raises(ValueError, dirichlet.logpdf, x, alpha)
- def test_alpha_with_negative_entries(self):
- np.random.seed(2846)
- alpha = [1.0, -2.0, 3.0]
- # don't pass invalid alpha to np.random.dirichlet
- x = np.random.dirichlet(np.maximum(1e-9, alpha), size=7).T
- assert_raises(ValueError, dirichlet.pdf, x, alpha)
- assert_raises(ValueError, dirichlet.logpdf, x, alpha)
- def test_data_with_zeros(self):
- alpha = np.array([1.0, 2.0, 3.0, 4.0])
- x = np.array([0.1, 0.0, 0.2, 0.7])
- dirichlet.pdf(x, alpha)
- dirichlet.logpdf(x, alpha)
- alpha = np.array([1.0, 1.0, 1.0, 1.0])
- assert_almost_equal(dirichlet.pdf(x, alpha), 6)
- assert_almost_equal(dirichlet.logpdf(x, alpha), np.log(6))
- def test_data_with_zeros_and_small_alpha(self):
- alpha = np.array([1.0, 0.5, 3.0, 4.0])
- x = np.array([0.1, 0.0, 0.2, 0.7])
- assert_raises(ValueError, dirichlet.pdf, x, alpha)
- assert_raises(ValueError, dirichlet.logpdf, x, alpha)
- def test_data_with_negative_entries(self):
- alpha = np.array([1.0, 2.0, 3.0, 4.0])
- x = np.array([0.1, -0.1, 0.3, 0.7])
- assert_raises(ValueError, dirichlet.pdf, x, alpha)
- assert_raises(ValueError, dirichlet.logpdf, x, alpha)
- def test_data_with_too_large_entries(self):
- alpha = np.array([1.0, 2.0, 3.0, 4.0])
- x = np.array([0.1, 1.1, 0.3, 0.7])
- assert_raises(ValueError, dirichlet.pdf, x, alpha)
- assert_raises(ValueError, dirichlet.logpdf, x, alpha)
- def test_data_too_deep_c(self):
- alpha = np.array([1.0, 2.0, 3.0])
- x = np.full((2, 7, 7), 1 / 14)
- assert_raises(ValueError, dirichlet.pdf, x, alpha)
- assert_raises(ValueError, dirichlet.logpdf, x, alpha)
- def test_alpha_too_deep(self):
- alpha = np.array([[1.0, 2.0], [3.0, 4.0]])
- x = np.full((2, 2, 7), 1 / 4)
- assert_raises(ValueError, dirichlet.pdf, x, alpha)
- assert_raises(ValueError, dirichlet.logpdf, x, alpha)
- def test_alpha_correct_depth(self):
- alpha = np.array([1.0, 2.0, 3.0])
- x = np.full((3, 7), 1 / 3)
- dirichlet.pdf(x, alpha)
- dirichlet.logpdf(x, alpha)
- def test_non_simplex_data(self):
- alpha = np.array([1.0, 2.0, 3.0])
- x = np.full((3, 7), 1 / 2)
- assert_raises(ValueError, dirichlet.pdf, x, alpha)
- assert_raises(ValueError, dirichlet.logpdf, x, alpha)
- def test_data_vector_too_short(self):
- alpha = np.array([1.0, 2.0, 3.0, 4.0])
- x = np.full((2, 7), 1 / 2)
- assert_raises(ValueError, dirichlet.pdf, x, alpha)
- assert_raises(ValueError, dirichlet.logpdf, x, alpha)
- def test_data_vector_too_long(self):
- alpha = np.array([1.0, 2.0, 3.0, 4.0])
- x = np.full((5, 7), 1 / 5)
- assert_raises(ValueError, dirichlet.pdf, x, alpha)
- assert_raises(ValueError, dirichlet.logpdf, x, alpha)
- def test_mean_and_var(self):
- alpha = np.array([1., 0.8, 0.2])
- d = dirichlet(alpha)
- expected_var = [1. / 12., 0.08, 0.03]
- expected_mean = [0.5, 0.4, 0.1]
- assert_array_almost_equal(d.var(), expected_var)
- assert_array_almost_equal(d.mean(), expected_mean)
- def test_scalar_values(self):
- alpha = np.array([0.2])
- d = dirichlet(alpha)
- # For alpha of length 1, mean and var should be scalar instead of array
- assert_equal(d.mean().ndim, 0)
- assert_equal(d.var().ndim, 0)
- assert_equal(d.pdf([1.]).ndim, 0)
- assert_equal(d.logpdf([1.]).ndim, 0)
- def test_K_and_K_minus_1_calls_equal(self):
- # Test that calls with K and K-1 entries yield the same results.
- np.random.seed(2846)
- n = np.random.randint(1, 32)
- alpha = np.random.uniform(10e-10, 100, n)
- d = dirichlet(alpha)
- num_tests = 10
- for i in range(num_tests):
- x = np.random.uniform(10e-10, 100, n)
- x /= np.sum(x)
- assert_almost_equal(d.pdf(x[:-1]), d.pdf(x))
- def test_multiple_entry_calls(self):
- # Test that calls with multiple x vectors as matrix work
- np.random.seed(2846)
- n = np.random.randint(1, 32)
- alpha = np.random.uniform(10e-10, 100, n)
- d = dirichlet(alpha)
- num_tests = 10
- num_multiple = 5
- xm = None
- for i in range(num_tests):
- for m in range(num_multiple):
- x = np.random.uniform(10e-10, 100, n)
- x /= np.sum(x)
- if xm is not None:
- xm = np.vstack((xm, x))
- else:
- xm = x
- rm = d.pdf(xm.T)
- rs = None
- for xs in xm:
- r = d.pdf(xs)
- if rs is not None:
- rs = np.append(rs, r)
- else:
- rs = r
- assert_array_almost_equal(rm, rs)
- def test_2D_dirichlet_is_beta(self):
- np.random.seed(2846)
- alpha = np.random.uniform(10e-10, 100, 2)
- d = dirichlet(alpha)
- b = beta(alpha[0], alpha[1])
- num_tests = 10
- for i in range(num_tests):
- x = np.random.uniform(10e-10, 100, 2)
- x /= np.sum(x)
- assert_almost_equal(b.pdf(x), d.pdf([x]))
- assert_almost_equal(b.mean(), d.mean()[0])
- assert_almost_equal(b.var(), d.var()[0])
- def test_multivariate_normal_dimensions_mismatch():
- # Regression test for GH #3493. Check that setting up a PDF with a mean of
- # length M and a covariance matrix of size (N, N), where M != N, raises a
- # ValueError with an informative error message.
- mu = np.array([0.0, 0.0])
- sigma = np.array([[1.0]])
- assert_raises(ValueError, multivariate_normal, mu, sigma)
- # A simple check that the right error message was passed along. Checking
- # that the entire message is there, word for word, would be somewhat
- # fragile, so we just check for the leading part.
- try:
- multivariate_normal(mu, sigma)
- except ValueError as e:
- msg = "Dimension mismatch"
- assert_equal(str(e)[:len(msg)], msg)
- class TestWishart:
- def test_scale_dimensions(self):
- # Test that we can call the Wishart with various scale dimensions
- # Test case: dim=1, scale=1
- true_scale = np.array(1, ndmin=2)
- scales = [
- 1, # scalar
- [1], # iterable
- np.array(1), # 0-dim
- np.r_[1], # 1-dim
- np.array(1, ndmin=2) # 2-dim
- ]
- for scale in scales:
- w = wishart(1, scale)
- assert_equal(w.scale, true_scale)
- assert_equal(w.scale.shape, true_scale.shape)
- # Test case: dim=2, scale=[[1,0]
- # [0,2]
- true_scale = np.array([[1,0],
- [0,2]])
- scales = [
- [1,2], # iterable
- np.r_[1,2], # 1-dim
- np.array([[1,0], # 2-dim
- [0,2]])
- ]
- for scale in scales:
- w = wishart(2, scale)
- assert_equal(w.scale, true_scale)
- assert_equal(w.scale.shape, true_scale.shape)
- # We cannot call with a df < dim - 1
- assert_raises(ValueError, wishart, 1, np.eye(2))
- # But we can call with dim - 1 < df < dim
- wishart(1.1, np.eye(2)) # no error
- # see gh-5562
- # We cannot call with a 3-dimension array
- scale = np.array(1, ndmin=3)
- assert_raises(ValueError, wishart, 1, scale)
- def test_quantile_dimensions(self):
- # Test that we can call the Wishart rvs with various quantile dimensions
- # If dim == 1, consider x.shape = [1,1,1]
- X = [
- 1, # scalar
- [1], # iterable
- np.array(1), # 0-dim
- np.r_[1], # 1-dim
- np.array(1, ndmin=2), # 2-dim
- np.array([1], ndmin=3) # 3-dim
- ]
- w = wishart(1,1)
- density = w.pdf(np.array(1, ndmin=3))
- for x in X:
- assert_equal(w.pdf(x), density)
- # If dim == 1, consider x.shape = [1,1,*]
- X = [
- [1,2,3], # iterable
- np.r_[1,2,3], # 1-dim
- np.array([1,2,3], ndmin=3) # 3-dim
- ]
- w = wishart(1,1)
- density = w.pdf(np.array([1,2,3], ndmin=3))
- for x in X:
- assert_equal(w.pdf(x), density)
- # If dim == 2, consider x.shape = [2,2,1]
- # where x[:,:,*] = np.eye(1)*2
- X = [
- 2, # scalar
- [2,2], # iterable
- np.array(2), # 0-dim
- np.r_[2,2], # 1-dim
- np.array([[2,0],
- [0,2]]), # 2-dim
- np.array([[2,0],
- [0,2]])[:,:,np.newaxis] # 3-dim
- ]
- w = wishart(2,np.eye(2))
- density = w.pdf(np.array([[2,0],
- [0,2]])[:,:,np.newaxis])
- for x in X:
- assert_equal(w.pdf(x), density)
- def test_frozen(self):
- # Test that the frozen and non-frozen Wishart gives the same answers
- # Construct an arbitrary positive definite scale matrix
- dim = 4
- scale = np.diag(np.arange(dim)+1)
- scale[np.tril_indices(dim, k=-1)] = np.arange(dim * (dim-1) // 2)
- scale = np.dot(scale.T, scale)
- # Construct a collection of positive definite matrices to test the PDF
- X = []
- for i in range(5):
- x = np.diag(np.arange(dim)+(i+1)**2)
- x[np.tril_indices(dim, k=-1)] = np.arange(dim * (dim-1) // 2)
- x = np.dot(x.T, x)
- X.append(x)
- X = np.array(X).T
- # Construct a 1D and 2D set of parameters
- parameters = [
- (10, 1, np.linspace(0.1, 10, 5)), # 1D case
- (10, scale, X)
- ]
- for (df, scale, x) in parameters:
- w = wishart(df, scale)
- assert_equal(w.var(), wishart.var(df, scale))
- assert_equal(w.mean(), wishart.mean(df, scale))
- assert_equal(w.mode(), wishart.mode(df, scale))
- assert_equal(w.entropy(), wishart.entropy(df, scale))
- assert_equal(w.pdf(x), wishart.pdf(x, df, scale))
- def test_1D_is_chisquared(self):
- # The 1-dimensional Wishart with an identity scale matrix is just a
- # chi-squared distribution.
- # Test variance, mean, entropy, pdf
- # Kolgomorov-Smirnov test for rvs
- np.random.seed(482974)
- sn = 500
- dim = 1
- scale = np.eye(dim)
- df_range = np.arange(1, 10, 2, dtype=float)
- X = np.linspace(0.1,10,num=10)
- for df in df_range:
- w = wishart(df, scale)
- c = chi2(df)
- # Statistics
- assert_allclose(w.var(), c.var())
- assert_allclose(w.mean(), c.mean())
- assert_allclose(w.entropy(), c.entropy())
- # PDF
- assert_allclose(w.pdf(X), c.pdf(X))
- # rvs
- rvs = w.rvs(size=sn)
- args = (df,)
- alpha = 0.01
- check_distribution_rvs('chi2', args, alpha, rvs)
- def test_is_scaled_chisquared(self):
- # The 2-dimensional Wishart with an arbitrary scale matrix can be
- # transformed to a scaled chi-squared distribution.
- # For :math:`S \sim W_p(V,n)` and :math:`\lambda \in \mathbb{R}^p` we have
- # :math:`\lambda' S \lambda \sim \lambda' V \lambda \times \chi^2(n)`
- np.random.seed(482974)
- sn = 500
- df = 10
- dim = 4
- # Construct an arbitrary positive definite matrix
- scale = np.diag(np.arange(4)+1)
- scale[np.tril_indices(4, k=-1)] = np.arange(6)
- scale = np.dot(scale.T, scale)
- # Use :math:`\lambda = [1, \dots, 1]'`
- lamda = np.ones((dim,1))
- sigma_lamda = lamda.T.dot(scale).dot(lamda).squeeze()
- w = wishart(df, sigma_lamda)
- c = chi2(df, scale=sigma_lamda)
- # Statistics
- assert_allclose(w.var(), c.var())
- assert_allclose(w.mean(), c.mean())
- assert_allclose(w.entropy(), c.entropy())
- # PDF
- X = np.linspace(0.1,10,num=10)
- assert_allclose(w.pdf(X), c.pdf(X))
- # rvs
- rvs = w.rvs(size=sn)
- args = (df,0,sigma_lamda)
- alpha = 0.01
- check_distribution_rvs('chi2', args, alpha, rvs)
- class TestMultinomial:
- def test_logpmf(self):
- vals1 = multinomial.logpmf((3,4), 7, (0.3, 0.7))
- assert_allclose(vals1, -1.483270127243324, rtol=1e-8)
- vals2 = multinomial.logpmf([3, 4], 0, [.3, .7])
- assert_allclose(vals2, np.NAN, rtol=1e-8)
- vals3 = multinomial.logpmf([3, 4], 0, [-2, 3])
- assert_allclose(vals3, np.NAN, rtol=1e-8)
- def test_reduces_binomial(self):
- # test that the multinomial pmf reduces to the binomial pmf in the 2d
- # case
- val1 = multinomial.logpmf((3, 4), 7, (0.3, 0.7))
- val2 = binom.logpmf(3, 7, 0.3)
- assert_allclose(val1, val2, rtol=1e-8)
- val1 = multinomial.pmf((6, 8), 14, (0.1, 0.9))
- val2 = binom.pmf(6, 14, 0.1)
- assert_allclose(val1, val2, rtol=1e-8)
- def test_R(self):
- # test against the values produced by this R code
- # (https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Multinom.html)
- # X <- t(as.matrix(expand.grid(0:3, 0:3))); X <- X[, colSums(X) <= 3]
- # X <- rbind(X, 3:3 - colSums(X)); dimnames(X) <- list(letters[1:3], NULL)
- # X
- # apply(X, 2, function(x) dmultinom(x, prob = c(1,2,5)))
- n, p = 3, [1./8, 2./8, 5./8]
- r_vals = {(0, 0, 3): 0.244140625, (1, 0, 2): 0.146484375,
- (2, 0, 1): 0.029296875, (3, 0, 0): 0.001953125,
- (0, 1, 2): 0.292968750, (1, 1, 1): 0.117187500,
- (2, 1, 0): 0.011718750, (0, 2, 1): 0.117187500,
- (1, 2, 0): 0.023437500, (0, 3, 0): 0.015625000}
- for x in r_vals:
- assert_allclose(multinomial.pmf(x, n, p), r_vals[x], atol=1e-14)
- def test_rvs_np(self):
- # test that .rvs agrees w/numpy
- sc_rvs = multinomial.rvs(3, [1/4.]*3, size=7, random_state=123)
- rndm = np.random.RandomState(123)
- np_rvs = rndm.multinomial(3, [1/4.]*3, size=7)
- assert_equal(sc_rvs, np_rvs)
- def test_pmf(self):
- vals0 = multinomial.pmf((5,), 5, (1,))
- assert_allclose(vals0, 1, rtol=1e-8)
- vals1 = multinomial.pmf((3,4), 7, (.3, .7))
- assert_allclose(vals1, .22689449999999994, rtol=1e-8)
- vals2 = multinomial.pmf([[[3,5],[0,8]], [[-1, 9], [1, 1]]], 8,
- (.1, .9))
- assert_allclose(vals2, [[.03306744, .43046721], [0, 0]], rtol=1e-8)
- x = np.empty((0,2), dtype=np.float64)
- vals3 = multinomial.pmf(x, 4, (.3, .7))
- assert_equal(vals3, np.empty([], dtype=np.float64))
- vals4 = multinomial.pmf([1,2], 4, (.3, .7))
- assert_allclose(vals4, 0, rtol=1e-8)
- vals5 = multinomial.pmf([3, 3, 0], 6, [2/3.0, 1/3.0, 0])
- assert_allclose(vals5, 0.219478737997, rtol=1e-8)
- def test_pmf_broadcasting(self):
- vals0 = multinomial.pmf([1, 2], 3, [[.1, .9], [.2, .8]])
- assert_allclose(vals0, [.243, .384], rtol=1e-8)
- vals1 = multinomial.pmf([1, 2], [3, 4], [.1, .9])
- assert_allclose(vals1, [.243, 0], rtol=1e-8)
- vals2 = multinomial.pmf([[[1, 2], [1, 1]]], 3, [.1, .9])
- assert_allclose(vals2, [[.243, 0]], rtol=1e-8)
- vals3 = multinomial.pmf([1, 2], [[[3], [4]]], [.1, .9])
- assert_allclose(vals3, [[[.243], [0]]], rtol=1e-8)
- vals4 = multinomial.pmf([[1, 2], [1,1]], [[[[3]]]], [.1, .9])
- assert_allclose(vals4, [[[[.243, 0]]]], rtol=1e-8)
- def test_cov(self):
- cov1 = multinomial.cov(5, (.2, .3, .5))
- cov2 = [[5*.2*.8, -5*.2*.3, -5*.2*.5],
- [-5*.3*.2, 5*.3*.7, -5*.3*.5],
- [-5*.5*.2, -5*.5*.3, 5*.5*.5]]
- assert_allclose(cov1, cov2, rtol=1e-8)
- def test_cov_broadcasting(self):
- cov1 = multinomial.cov(5, [[.1, .9], [.2, .8]])
- cov2 = [[[.45, -.45],[-.45, .45]], [[.8, -.8], [-.8, .8]]]
- assert_allclose(cov1, cov2, rtol=1e-8)
- cov3 = multinomial.cov([4, 5], [.1, .9])
- cov4 = [[[.36, -.36], [-.36, .36]], [[.45, -.45], [-.45, .45]]]
- assert_allclose(cov3, cov4, rtol=1e-8)
- cov5 = multinomial.cov([4, 5], [[.3, .7], [.4, .6]])
- cov6 = [[[4*.3*.7, -4*.3*.7], [-4*.3*.7, 4*.3*.7]],
- [[5*.4*.6, -5*.4*.6], [-5*.4*.6, 5*.4*.6]]]
- assert_allclose(cov5, cov6, rtol=1e-8)
- def test_entropy(self):
- # this is equivalent to a binomial distribution with n=2, so the
- # entropy .77899774929 is easily computed "by hand"
- ent0 = multinomial.entropy(2, [.2, .8])
- assert_allclose(ent0, binom.entropy(2, .2), rtol=1e-8)
- def test_entropy_broadcasting(self):
- ent0 = multinomial.entropy([2, 3], [.2, .3])
- assert_allclose(ent0, [binom.entropy(2, .2), binom.entropy(3, .2)],
- rtol=1e-8)
- ent1 = multinomial.entropy([7, 8], [[.3, .7], [.4, .6]])
- assert_allclose(ent1, [binom.entropy(7, .3), binom.entropy(8, .4)],
- rtol=1e-8)
- ent2 = multinomial.entropy([[7], [8]], [[.3, .7], [.4, .6]])
- assert_allclose(ent2,
- [[binom.entropy(7, .3), binom.entropy(7, .4)],
- [binom.entropy(8, .3), binom.entropy(8, .4)]],
- rtol=1e-8)
- def test_mean(self):
- mean1 = multinomial.mean(5, [.2, .8])
- assert_allclose(mean1, [5*.2, 5*.8], rtol=1e-8)
- def test_mean_broadcasting(self):
- mean1 = multinomial.mean([5, 6], [.2, .8])
- assert_allclose(mean1, [[5*.2, 5*.8], [6*.2, 6*.8]], rtol=1e-8)
- def test_frozen(self):
- # The frozen distribution should agree with the regular one
- np.random.seed(1234)
- n = 12
- pvals = (.1, .2, .3, .4)
- x = [[0,0,0,12],[0,0,1,11],[0,1,1,10],[1,1,1,9],[1,1,2,8]]
- x = np.asarray(x, dtype=np.float64)
- mn_frozen = multinomial(n, pvals)
- assert_allclose(mn_frozen.pmf(x), multinomial.pmf(x, n, pvals))
- assert_allclose(mn_frozen.logpmf(x), multinomial.logpmf(x, n, pvals))
- assert_allclose(mn_frozen.entropy(), multinomial.entropy(n, pvals))
- def test_gh_11860(self):
- # gh-11860 reported cases in which the adjustments made by multinomial
- # to the last element of `p` can cause `nan`s even when the input is
- # essentially valid. Check that a pathological case returns a finite,
- # nonzero result. (This would fail in main before the PR.)
- n = 88
- rng = np.random.default_rng(8879715917488330089)
- p = rng.random(n)
- p[-1] = 1e-30
- p /= np.sum(p)
- x = np.ones(n)
- logpmf = multinomial.logpmf(x, n, p)
- assert np.isfinite(logpmf)
- class TestInvwishart:
- def test_frozen(self):
- # Test that the frozen and non-frozen inverse Wishart gives the same
- # answers
- # Construct an arbitrary positive definite scale matrix
- dim = 4
- scale = np.diag(np.arange(dim)+1)
- scale[np.tril_indices(dim, k=-1)] = np.arange(dim*(dim-1)/2)
- scale = np.dot(scale.T, scale)
- # Construct a collection of positive definite matrices to test the PDF
- X = []
- for i in range(5):
- x = np.diag(np.arange(dim)+(i+1)**2)
- x[np.tril_indices(dim, k=-1)] = np.arange(dim*(dim-1)/2)
- x = np.dot(x.T, x)
- X.append(x)
- X = np.array(X).T
- # Construct a 1D and 2D set of parameters
- parameters = [
- (10, 1, np.linspace(0.1, 10, 5)), # 1D case
- (10, scale, X)
- ]
- for (df, scale, x) in parameters:
- iw = invwishart(df, scale)
- assert_equal(iw.var(), invwishart.var(df, scale))
- assert_equal(iw.mean(), invwishart.mean(df, scale))
- assert_equal(iw.mode(), invwishart.mode(df, scale))
- assert_allclose(iw.pdf(x), invwishart.pdf(x, df, scale))
- def test_1D_is_invgamma(self):
- # The 1-dimensional inverse Wishart with an identity scale matrix is
- # just an inverse gamma distribution.
- # Test variance, mean, pdf
- # Kolgomorov-Smirnov test for rvs
- np.random.seed(482974)
- sn = 500
- dim = 1
- scale = np.eye(dim)
- df_range = np.arange(5, 20, 2, dtype=float)
- X = np.linspace(0.1,10,num=10)
- for df in df_range:
- iw = invwishart(df, scale)
- ig = invgamma(df/2, scale=1./2)
- # Statistics
- assert_allclose(iw.var(), ig.var())
- assert_allclose(iw.mean(), ig.mean())
- # PDF
- assert_allclose(iw.pdf(X), ig.pdf(X))
- # rvs
- rvs = iw.rvs(size=sn)
- args = (df/2, 0, 1./2)
- alpha = 0.01
- check_distribution_rvs('invgamma', args, alpha, rvs)
- def test_wishart_invwishart_2D_rvs(self):
- dim = 3
- df = 10
- # Construct a simple non-diagonal positive definite matrix
- scale = np.eye(dim)
- scale[0,1] = 0.5
- scale[1,0] = 0.5
- # Construct frozen Wishart and inverse Wishart random variables
- w = wishart(df, scale)
- iw = invwishart(df, scale)
- # Get the generated random variables from a known seed
- np.random.seed(248042)
- w_rvs = wishart.rvs(df, scale)
- np.random.seed(248042)
- frozen_w_rvs = w.rvs()
- np.random.seed(248042)
- iw_rvs = invwishart.rvs(df, scale)
- np.random.seed(248042)
- frozen_iw_rvs = iw.rvs()
- # Manually calculate what it should be, based on the Bartlett (1933)
- # decomposition of a Wishart into D A A' D', where D is the Cholesky
- # factorization of the scale matrix and A is the lower triangular matrix
- # with the square root of chi^2 variates on the diagonal and N(0,1)
- # variates in the lower triangle.
- np.random.seed(248042)
- covariances = np.random.normal(size=3)
- variances = np.r_[
- np.random.chisquare(df),
- np.random.chisquare(df-1),
- np.random.chisquare(df-2),
- ]**0.5
- # Construct the lower-triangular A matrix
- A = np.diag(variances)
- A[np.tril_indices(dim, k=-1)] = covariances
- # Wishart random variate
- D = np.linalg.cholesky(scale)
- DA = D.dot(A)
- manual_w_rvs = np.dot(DA, DA.T)
- # inverse Wishart random variate
- # Supposing that the inverse wishart has scale matrix `scale`, then the
- # random variate is the inverse of a random variate drawn from a Wishart
- # distribution with scale matrix `inv_scale = np.linalg.inv(scale)`
- iD = np.linalg.cholesky(np.linalg.inv(scale))
- iDA = iD.dot(A)
- manual_iw_rvs = np.linalg.inv(np.dot(iDA, iDA.T))
- # Test for equality
- assert_allclose(w_rvs, manual_w_rvs)
- assert_allclose(frozen_w_rvs, manual_w_rvs)
- assert_allclose(iw_rvs, manual_iw_rvs)
- assert_allclose(frozen_iw_rvs, manual_iw_rvs)
- def test_cho_inv_batch(self):
- """Regression test for gh-8844."""
- a0 = np.array([[2, 1, 0, 0.5],
- [1, 2, 0.5, 0.5],
- [0, 0.5, 3, 1],
- [0.5, 0.5, 1, 2]])
- a1 = np.array([[2, -1, 0, 0.5],
- [-1, 2, 0.5, 0.5],
- [0, 0.5, 3, 1],
- [0.5, 0.5, 1, 4]])
- a = np.array([a0, a1])
- ainv = a.copy()
- _cho_inv_batch(ainv)
- ident = np.eye(4)
- assert_allclose(a[0].dot(ainv[0]), ident, atol=1e-15)
- assert_allclose(a[1].dot(ainv[1]), ident, atol=1e-15)
- def test_logpdf_4x4(self):
- """Regression test for gh-8844."""
- X = np.array([[2, 1, 0, 0.5],
- [1, 2, 0.5, 0.5],
- [0, 0.5, 3, 1],
- [0.5, 0.5, 1, 2]])
- Psi = np.array([[9, 7, 3, 1],
- [7, 9, 5, 1],
- [3, 5, 8, 2],
- [1, 1, 2, 9]])
- nu = 6
- prob = invwishart.logpdf(X, nu, Psi)
- # Explicit calculation from the formula on wikipedia.
- p = X.shape[0]
- sig, logdetX = np.linalg.slogdet(X)
- sig, logdetPsi = np.linalg.slogdet(Psi)
- M = np.linalg.solve(X, Psi)
- expected = ((nu/2)*logdetPsi
- - (nu*p/2)*np.log(2)
- - multigammaln(nu/2, p)
- - (nu + p + 1)/2*logdetX
- - 0.5*M.trace())
- assert_allclose(prob, expected)
- class TestSpecialOrthoGroup:
- def test_reproducibility(self):
- np.random.seed(514)
- x = special_ortho_group.rvs(3)
- expected = np.array([[-0.99394515, -0.04527879, 0.10011432],
- [0.04821555, -0.99846897, 0.02711042],
- [0.09873351, 0.03177334, 0.99460653]])
- assert_array_almost_equal(x, expected)
- random_state = np.random.RandomState(seed=514)
- x = special_ortho_group.rvs(3, random_state=random_state)
- assert_array_almost_equal(x, expected)
- def test_invalid_dim(self):
- assert_raises(ValueError, special_ortho_group.rvs, None)
- assert_raises(ValueError, special_ortho_group.rvs, (2, 2))
- assert_raises(ValueError, special_ortho_group.rvs, 1)
- assert_raises(ValueError, special_ortho_group.rvs, 2.5)
- def test_frozen_matrix(self):
- dim = 7
- frozen = special_ortho_group(dim)
- rvs1 = frozen.rvs(random_state=1234)
- rvs2 = special_ortho_group.rvs(dim, random_state=1234)
- assert_equal(rvs1, rvs2)
- def test_det_and_ortho(self):
- xs = [special_ortho_group.rvs(dim)
- for dim in range(2,12)
- for i in range(3)]
- # Test that determinants are always +1
- dets = [np.linalg.det(x) for x in xs]
- assert_allclose(dets, [1.]*30, rtol=1e-13)
- # Test that these are orthogonal matrices
- for x in xs:
- assert_array_almost_equal(np.dot(x, x.T),
- np.eye(x.shape[0]))
- def test_haar(self):
- # Test that the distribution is constant under rotation
- # Every column should have the same distribution
- # Additionally, the distribution should be invariant under another rotation
- # Generate samples
- dim = 5
- samples = 1000 # Not too many, or the test takes too long
- ks_prob = .05
- np.random.seed(514)
- xs = special_ortho_group.rvs(dim, size=samples)
- # Dot a few rows (0, 1, 2) with unit vectors (0, 2, 4, 3),
- # effectively picking off entries in the matrices of xs.
- # These projections should all have the same disribution,
- # establishing rotational invariance. We use the two-sided
- # KS test to confirm this.
- # We could instead test that angles between random vectors
- # are uniformly distributed, but the below is sufficient.
- # It is not feasible to consider all pairs, so pick a few.
- els = ((0,0), (0,2), (1,4), (2,3))
- #proj = {(er, ec): [x[er][ec] for x in xs] for er, ec in els}
- proj = dict(((er, ec), sorted([x[er][ec] for x in xs])) for er, ec in els)
- pairs = [(e0, e1) for e0 in els for e1 in els if e0 > e1]
- ks_tests = [ks_2samp(proj[p0], proj[p1])[1] for (p0, p1) in pairs]
- assert_array_less([ks_prob]*len(pairs), ks_tests)
- class TestOrthoGroup:
- def test_reproducibility(self):
- seed = 514
- np.random.seed(seed)
- x = ortho_group.rvs(3)
- x2 = ortho_group.rvs(3, random_state=seed)
- # Note this matrix has det -1, distinguishing O(N) from SO(N)
- assert_almost_equal(np.linalg.det(x), -1)
- expected = np.array([[0.381686, -0.090374, 0.919863],
- [0.905794, -0.161537, -0.391718],
- [-0.183993, -0.98272, -0.020204]])
- assert_array_almost_equal(x, expected)
- assert_array_almost_equal(x2, expected)
- def test_invalid_dim(self):
- assert_raises(ValueError, ortho_group.rvs, None)
- assert_raises(ValueError, ortho_group.rvs, (2, 2))
- assert_raises(ValueError, ortho_group.rvs, 1)
- assert_raises(ValueError, ortho_group.rvs, 2.5)
- def test_frozen_matrix(self):
- dim = 7
- frozen = ortho_group(dim)
- frozen_seed = ortho_group(dim, seed=1234)
- rvs1 = frozen.rvs(random_state=1234)
- rvs2 = ortho_group.rvs(dim, random_state=1234)
- rvs3 = frozen_seed.rvs(size=1)
- assert_equal(rvs1, rvs2)
- assert_equal(rvs1, rvs3)
- def test_det_and_ortho(self):
- xs = [[ortho_group.rvs(dim)
- for i in range(10)]
- for dim in range(2,12)]
- # Test that abs determinants are always +1
- dets = np.array([[np.linalg.det(x) for x in xx] for xx in xs])
- assert_allclose(np.fabs(dets), np.ones(dets.shape), rtol=1e-13)
- # Test that we get both positive and negative determinants
- # Check that we have at least one and less than 10 negative dets in a sample of 10. The rest are positive by the previous test.
- # Test each dimension separately
- assert_array_less([0]*10, [np.nonzero(d < 0)[0].shape[0] for d in dets])
- assert_array_less([np.nonzero(d < 0)[0].shape[0] for d in dets], [10]*10)
- # Test that these are orthogonal matrices
- for xx in xs:
- for x in xx:
- assert_array_almost_equal(np.dot(x, x.T),
- np.eye(x.shape[0]))
- def test_haar(self):
- # Test that the distribution is constant under rotation
- # Every column should have the same distribution
- # Additionally, the distribution should be invariant under another rotation
- # Generate samples
- dim = 5
- samples = 1000 # Not too many, or the test takes too long
- ks_prob = .05
- np.random.seed(518) # Note that the test is sensitive to seed too
- xs = ortho_group.rvs(dim, size=samples)
- # Dot a few rows (0, 1, 2) with unit vectors (0, 2, 4, 3),
- # effectively picking off entries in the matrices of xs.
- # These projections should all have the same disribution,
- # establishing rotational invariance. We use the two-sided
- # KS test to confirm this.
- # We could instead test that angles between random vectors
- # are uniformly distributed, but the below is sufficient.
- # It is not feasible to consider all pairs, so pick a few.
- els = ((0,0), (0,2), (1,4), (2,3))
- #proj = {(er, ec): [x[er][ec] for x in xs] for er, ec in els}
- proj = dict(((er, ec), sorted([x[er][ec] for x in xs])) for er, ec in els)
- pairs = [(e0, e1) for e0 in els for e1 in els if e0 > e1]
- ks_tests = [ks_2samp(proj[p0], proj[p1])[1] for (p0, p1) in pairs]
- assert_array_less([ks_prob]*len(pairs), ks_tests)
- @pytest.mark.slow
- def test_pairwise_distances(self):
- # Test that the distribution of pairwise distances is close to correct.
- np.random.seed(514)
- def random_ortho(dim):
- u, _s, v = np.linalg.svd(np.random.normal(size=(dim, dim)))
- return np.dot(u, v)
- for dim in range(2, 6):
- def generate_test_statistics(rvs, N=1000, eps=1e-10):
- stats = np.array([
- np.sum((rvs(dim=dim) - rvs(dim=dim))**2)
- for _ in range(N)
- ])
- # Add a bit of noise to account for numeric accuracy.
- stats += np.random.uniform(-eps, eps, size=stats.shape)
- return stats
- expected = generate_test_statistics(random_ortho)
- actual = generate_test_statistics(scipy.stats.ortho_group.rvs)
- _D, p = scipy.stats.ks_2samp(expected, actual)
- assert_array_less(.05, p)
- class TestRandomCorrelation:
- def test_reproducibility(self):
- np.random.seed(514)
- eigs = (.5, .8, 1.2, 1.5)
- x = random_correlation.rvs(eigs)
- x2 = random_correlation.rvs(eigs, random_state=514)
- expected = np.array([[1., -0.184851, 0.109017, -0.227494],
- [-0.184851, 1., 0.231236, 0.326669],
- [0.109017, 0.231236, 1., -0.178912],
- [-0.227494, 0.326669, -0.178912, 1.]])
- assert_array_almost_equal(x, expected)
- assert_array_almost_equal(x2, expected)
- def test_invalid_eigs(self):
- assert_raises(ValueError, random_correlation.rvs, None)
- assert_raises(ValueError, random_correlation.rvs, 'test')
- assert_raises(ValueError, random_correlation.rvs, 2.5)
- assert_raises(ValueError, random_correlation.rvs, [2.5])
- assert_raises(ValueError, random_correlation.rvs, [[1,2],[3,4]])
- assert_raises(ValueError, random_correlation.rvs, [2.5, -.5])
- assert_raises(ValueError, random_correlation.rvs, [1, 2, .1])
- def test_frozen_matrix(self):
- eigs = (.5, .8, 1.2, 1.5)
- frozen = random_correlation(eigs)
- frozen_seed = random_correlation(eigs, seed=514)
- rvs1 = random_correlation.rvs(eigs, random_state=514)
- rvs2 = frozen.rvs(random_state=514)
- rvs3 = frozen_seed.rvs()
- assert_equal(rvs1, rvs2)
- assert_equal(rvs1, rvs3)
- def test_definition(self):
- # Test the definition of a correlation matrix in several dimensions:
- #
- # 1. Det is product of eigenvalues (and positive by construction
- # in examples)
- # 2. 1's on diagonal
- # 3. Matrix is symmetric
- def norm(i, e):
- return i*e/sum(e)
- np.random.seed(123)
- eigs = [norm(i, np.random.uniform(size=i)) for i in range(2, 6)]
- eigs.append([4,0,0,0])
- ones = [[1.]*len(e) for e in eigs]
- xs = [random_correlation.rvs(e) for e in eigs]
- # Test that determinants are products of eigenvalues
- # These are positive by construction
- # Could also test that the eigenvalues themselves are correct,
- # but this seems sufficient.
- dets = [np.fabs(np.linalg.det(x)) for x in xs]
- dets_known = [np.prod(e) for e in eigs]
- assert_allclose(dets, dets_known, rtol=1e-13, atol=1e-13)
- # Test for 1's on the diagonal
- diags = [np.diag(x) for x in xs]
- for a, b in zip(diags, ones):
- assert_allclose(a, b, rtol=1e-13)
- # Correlation matrices are symmetric
- for x in xs:
- assert_allclose(x, x.T, rtol=1e-13)
- def test_to_corr(self):
- # Check some corner cases in to_corr
- # ajj == 1
- m = np.array([[0.1, 0], [0, 1]], dtype=float)
- m = random_correlation._to_corr(m)
- assert_allclose(m, np.array([[1, 0], [0, 0.1]]))
- # Floating point overflow; fails to compute the correct
- # rotation, but should still produce some valid rotation
- # rather than infs/nans
- with np.errstate(over='ignore'):
- g = np.array([[0, 1], [-1, 0]])
- m0 = np.array([[1e300, 0], [0, np.nextafter(1, 0)]], dtype=float)
- m = random_correlation._to_corr(m0.copy())
- assert_allclose(m, g.T.dot(m0).dot(g))
- m0 = np.array([[0.9, 1e300], [1e300, 1.1]], dtype=float)
- m = random_correlation._to_corr(m0.copy())
- assert_allclose(m, g.T.dot(m0).dot(g))
- # Zero discriminant; should set the first diag entry to 1
- m0 = np.array([[2, 1], [1, 2]], dtype=float)
- m = random_correlation._to_corr(m0.copy())
- assert_allclose(m[0,0], 1)
- # Slightly negative discriminant; should be approx correct still
- m0 = np.array([[2 + 1e-7, 1], [1, 2]], dtype=float)
- m = random_correlation._to_corr(m0.copy())
- assert_allclose(m[0,0], 1)
- class TestUniformDirection:
- @pytest.mark.parametrize("dim", [1, 3])
- @pytest.mark.parametrize("size", [None, 1, 5, (5, 4)])
- def test_samples(self, dim, size):
- # test that samples have correct shape and norm 1
- rng = np.random.default_rng(2777937887058094419)
- uniform_direction_dist = uniform_direction(dim, seed=rng)
- samples = uniform_direction_dist.rvs(size)
- mean, cov = np.zeros(dim), np.eye(dim)
- expected_shape = rng.multivariate_normal(mean, cov, size=size).shape
- assert samples.shape == expected_shape
- norms = np.linalg.norm(samples, axis=-1)
- assert_allclose(norms, 1.)
- @pytest.mark.parametrize("dim", [None, 0, (2, 2), 2.5])
- def test_invalid_dim(self, dim):
- message = ("Dimension of vector must be specified, "
- "and must be an integer greater than 0.")
- with pytest.raises(ValueError, match=message):
- uniform_direction.rvs(dim)
- def test_frozen_distribution(self):
- dim = 5
- frozen = uniform_direction(dim)
- frozen_seed = uniform_direction(dim, seed=514)
- rvs1 = frozen.rvs(random_state=514)
- rvs2 = uniform_direction.rvs(dim, random_state=514)
- rvs3 = frozen_seed.rvs()
- assert_equal(rvs1, rvs2)
- assert_equal(rvs1, rvs3)
- @pytest.mark.parametrize("dim", [2, 5, 8])
- def test_uniform(self, dim):
- rng = np.random.default_rng(1036978481269651776)
- spherical_dist = uniform_direction(dim, seed=rng)
- # generate random, orthogonal vectors
- v1, v2 = spherical_dist.rvs(size=2)
- v2 -= v1 @ v2 * v1
- v2 /= np.linalg.norm(v2)
- assert_allclose(v1 @ v2, 0, atol=1e-14) # orthogonal
- # generate data and project onto orthogonal vectors
- samples = spherical_dist.rvs(size=10000)
- s1 = samples @ v1
- s2 = samples @ v2
- angles = np.arctan2(s1, s2)
- # test that angles follow a uniform distribution
- # normalize angles to range [0, 1]
- angles += np.pi
- angles /= 2*np.pi
- # perform KS test
- uniform_dist = uniform()
- kstest_result = kstest(angles, uniform_dist.cdf)
- assert kstest_result.pvalue > 0.05
- class TestUnitaryGroup:
- def test_reproducibility(self):
- np.random.seed(514)
- x = unitary_group.rvs(3)
- x2 = unitary_group.rvs(3, random_state=514)
- expected = np.array([[0.308771+0.360312j, 0.044021+0.622082j, 0.160327+0.600173j],
- [0.732757+0.297107j, 0.076692-0.4614j, -0.394349+0.022613j],
- [-0.148844+0.357037j, -0.284602-0.557949j, 0.607051+0.299257j]])
- assert_array_almost_equal(x, expected)
- assert_array_almost_equal(x2, expected)
- def test_invalid_dim(self):
- assert_raises(ValueError, unitary_group.rvs, None)
- assert_raises(ValueError, unitary_group.rvs, (2, 2))
- assert_raises(ValueError, unitary_group.rvs, 1)
- assert_raises(ValueError, unitary_group.rvs, 2.5)
- def test_frozen_matrix(self):
- dim = 7
- frozen = unitary_group(dim)
- frozen_seed = unitary_group(dim, seed=514)
- rvs1 = frozen.rvs(random_state=514)
- rvs2 = unitary_group.rvs(dim, random_state=514)
- rvs3 = frozen_seed.rvs(size=1)
- assert_equal(rvs1, rvs2)
- assert_equal(rvs1, rvs3)
- def test_unitarity(self):
- xs = [unitary_group.rvs(dim)
- for dim in range(2,12)
- for i in range(3)]
- # Test that these are unitary matrices
- for x in xs:
- assert_allclose(np.dot(x, x.conj().T), np.eye(x.shape[0]), atol=1e-15)
- def test_haar(self):
- # Test that the eigenvalues, which lie on the unit circle in
- # the complex plane, are uncorrelated.
- # Generate samples
- dim = 5
- samples = 1000 # Not too many, or the test takes too long
- np.random.seed(514) # Note that the test is sensitive to seed too
- xs = unitary_group.rvs(dim, size=samples)
- # The angles "x" of the eigenvalues should be uniformly distributed
- # Overall this seems to be a necessary but weak test of the distribution.
- eigs = np.vstack([scipy.linalg.eigvals(x) for x in xs])
- x = np.arctan2(eigs.imag, eigs.real)
- res = kstest(x.ravel(), uniform(-np.pi, 2*np.pi).cdf)
- assert_(res.pvalue > 0.05)
- class TestMultivariateT:
- # These tests were created by running vpa(mvtpdf(...)) in MATLAB. The
- # function takes no `mu` parameter. The tests were run as
- #
- # >> ans = vpa(mvtpdf(x - mu, shape, df));
- #
- PDF_TESTS = [(
- # x
- [
- [1, 2],
- [4, 1],
- [2, 1],
- [2, 4],
- [1, 4],
- [4, 1],
- [3, 2],
- [3, 3],
- [4, 4],
- [5, 1],
- ],
- # loc
- [0, 0],
- # shape
- [
- [1, 0],
- [0, 1]
- ],
- # df
- 4,
- # ans
- [
- 0.013972450422333741737457302178882,
- 0.0010998721906793330026219646100571,
- 0.013972450422333741737457302178882,
- 0.00073682844024025606101402363634634,
- 0.0010998721906793330026219646100571,
- 0.0010998721906793330026219646100571,
- 0.0020732579600816823488240725481546,
- 0.00095660371505271429414668515889275,
- 0.00021831953784896498569831346792114,
- 0.00037725616140301147447000396084604
- ]
- ), (
- # x
- [
- [0.9718, 0.1298, 0.8134],
- [0.4922, 0.5522, 0.7185],
- [0.3010, 0.1491, 0.5008],
- [0.5971, 0.2585, 0.8940],
- [0.5434, 0.5287, 0.9507],
- ],
- # loc
- [-1, 1, 50],
- # shape
- [
- [1.0000, 0.5000, 0.2500],
- [0.5000, 1.0000, -0.1000],
- [0.2500, -0.1000, 1.0000],
- ],
- # df
- 8,
- # ans
- [
- 0.00000000000000069609279697467772867405511133763,
- 0.00000000000000073700739052207366474839369535934,
- 0.00000000000000069522909962669171512174435447027,
- 0.00000000000000074212293557998314091880208889767,
- 0.00000000000000077039675154022118593323030449058,
- ]
- )]
- @pytest.mark.parametrize("x, loc, shape, df, ans", PDF_TESTS)
- def test_pdf_correctness(self, x, loc, shape, df, ans):
- dist = multivariate_t(loc, shape, df, seed=0)
- val = dist.pdf(x)
- assert_array_almost_equal(val, ans)
- @pytest.mark.parametrize("x, loc, shape, df, ans", PDF_TESTS)
- def test_logpdf_correct(self, x, loc, shape, df, ans):
- dist = multivariate_t(loc, shape, df, seed=0)
- val1 = dist.pdf(x)
- val2 = dist.logpdf(x)
- assert_array_almost_equal(np.log(val1), val2)
- # https://github.com/scipy/scipy/issues/10042#issuecomment-576795195
- def test_mvt_with_df_one_is_cauchy(self):
- x = [9, 7, 4, 1, -3, 9, 0, -3, -1, 3]
- val = multivariate_t.pdf(x, df=1)
- ans = cauchy.pdf(x)
- assert_array_almost_equal(val, ans)
- def test_mvt_with_high_df_is_approx_normal(self):
- # `normaltest` returns the chi-squared statistic and the associated
- # p-value. The null hypothesis is that `x` came from a normal
- # distribution, so a low p-value represents rejecting the null, i.e.
- # that it is unlikely that `x` came a normal distribution.
- P_VAL_MIN = 0.1
- dist = multivariate_t(0, 1, df=100000, seed=1)
- samples = dist.rvs(size=100000)
- _, p = normaltest(samples)
- assert (p > P_VAL_MIN)
- dist = multivariate_t([-2, 3], [[10, -1], [-1, 10]], df=100000,
- seed=42)
- samples = dist.rvs(size=100000)
- _, p = normaltest(samples)
- assert ((p > P_VAL_MIN).all())
- @patch('scipy.stats.multivariate_normal._logpdf')
- def test_mvt_with_inf_df_calls_normal(self, mock):
- dist = multivariate_t(0, 1, df=np.inf, seed=7)
- assert isinstance(dist, multivariate_normal_frozen)
- multivariate_t.pdf(0, df=np.inf)
- assert mock.call_count == 1
- multivariate_t.logpdf(0, df=np.inf)
- assert mock.call_count == 2
- def test_shape_correctness(self):
- # pdf and logpdf should return scalar when the
- # number of samples in x is one.
- dim = 4
- loc = np.zeros(dim)
- shape = np.eye(dim)
- df = 4.5
- x = np.zeros(dim)
- res = multivariate_t(loc, shape, df).pdf(x)
- assert np.isscalar(res)
- res = multivariate_t(loc, shape, df).logpdf(x)
- assert np.isscalar(res)
- # pdf() and logpdf() should return probabilities of shape
- # (n_samples,) when x has n_samples.
- n_samples = 7
- x = np.random.random((n_samples, dim))
- res = multivariate_t(loc, shape, df).pdf(x)
- assert (res.shape == (n_samples,))
- res = multivariate_t(loc, shape, df).logpdf(x)
- assert (res.shape == (n_samples,))
- # rvs() should return scalar unless a size argument is applied.
- res = multivariate_t(np.zeros(1), np.eye(1), 1).rvs()
- assert np.isscalar(res)
- # rvs() should return vector of shape (size,) if size argument
- # is applied.
- size = 7
- res = multivariate_t(np.zeros(1), np.eye(1), 1).rvs(size=size)
- assert (res.shape == (size,))
- def test_default_arguments(self):
- dist = multivariate_t()
- assert_equal(dist.loc, [0])
- assert_equal(dist.shape, [[1]])
- assert (dist.df == 1)
- DEFAULT_ARGS_TESTS = [
- (None, None, None, 0, 1, 1),
- (None, None, 7, 0, 1, 7),
- (None, [[7, 0], [0, 7]], None, [0, 0], [[7, 0], [0, 7]], 1),
- (None, [[7, 0], [0, 7]], 7, [0, 0], [[7, 0], [0, 7]], 7),
- ([7, 7], None, None, [7, 7], [[1, 0], [0, 1]], 1),
- ([7, 7], None, 7, [7, 7], [[1, 0], [0, 1]], 7),
- ([7, 7], [[7, 0], [0, 7]], None, [7, 7], [[7, 0], [0, 7]], 1),
- ([7, 7], [[7, 0], [0, 7]], 7, [7, 7], [[7, 0], [0, 7]], 7)
- ]
- @pytest.mark.parametrize("loc, shape, df, loc_ans, shape_ans, df_ans", DEFAULT_ARGS_TESTS)
- def test_default_args(self, loc, shape, df, loc_ans, shape_ans, df_ans):
- dist = multivariate_t(loc=loc, shape=shape, df=df)
- assert_equal(dist.loc, loc_ans)
- assert_equal(dist.shape, shape_ans)
- assert (dist.df == df_ans)
- ARGS_SHAPES_TESTS = [
- (-1, 2, 3, [-1], [[2]], 3),
- ([-1], [2], 3, [-1], [[2]], 3),
- (np.array([-1]), np.array([2]), 3, [-1], [[2]], 3)
- ]
- @pytest.mark.parametrize("loc, shape, df, loc_ans, shape_ans, df_ans", ARGS_SHAPES_TESTS)
- def test_scalar_list_and_ndarray_arguments(self, loc, shape, df, loc_ans, shape_ans, df_ans):
- dist = multivariate_t(loc, shape, df)
- assert_equal(dist.loc, loc_ans)
- assert_equal(dist.shape, shape_ans)
- assert_equal(dist.df, df_ans)
- def test_argument_error_handling(self):
- # `loc` should be a one-dimensional vector.
- loc = [[1, 1]]
- assert_raises(ValueError,
- multivariate_t,
- **dict(loc=loc))
- # `shape` should be scalar or square matrix.
- shape = [[1, 1], [2, 2], [3, 3]]
- assert_raises(ValueError,
- multivariate_t,
- **dict(loc=loc, shape=shape))
- # `df` should be greater than zero.
- loc = np.zeros(2)
- shape = np.eye(2)
- df = -1
- assert_raises(ValueError,
- multivariate_t,
- **dict(loc=loc, shape=shape, df=df))
- df = 0
- assert_raises(ValueError,
- multivariate_t,
- **dict(loc=loc, shape=shape, df=df))
- def test_reproducibility(self):
- rng = np.random.RandomState(4)
- loc = rng.uniform(size=3)
- shape = np.eye(3)
- dist1 = multivariate_t(loc, shape, df=3, seed=2)
- dist2 = multivariate_t(loc, shape, df=3, seed=2)
- samples1 = dist1.rvs(size=10)
- samples2 = dist2.rvs(size=10)
- assert_equal(samples1, samples2)
- def test_allow_singular(self):
- # Make shape singular and verify error was raised.
- args = dict(loc=[0,0], shape=[[0,0],[0,1]], df=1, allow_singular=False)
- assert_raises(np.linalg.LinAlgError, multivariate_t, **args)
- @pytest.mark.parametrize("size", [(10, 3), (5, 6, 4, 3)])
- @pytest.mark.parametrize("dim", [2, 3, 4, 5])
- @pytest.mark.parametrize("df", [1., 2., np.inf])
- def test_rvs(self, size, dim, df):
- dist = multivariate_t(np.zeros(dim), np.eye(dim), df)
- rvs = dist.rvs(size=size)
- assert rvs.shape == size + (dim, )
- class TestMultivariateHypergeom:
- @pytest.mark.parametrize(
- "x, m, n, expected",
- [
- # Ground truth value from R dmvhyper
- ([3, 4], [5, 10], 7, -1.119814),
- # test for `n=0`
- ([3, 4], [5, 10], 0, np.NINF),
- # test for `x < 0`
- ([-3, 4], [5, 10], 7, np.NINF),
- # test for `m < 0` (RuntimeWarning issue)
- ([3, 4], [-5, 10], 7, np.nan),
- # test for all `m < 0` and `x.sum() != n`
- ([[1, 2], [3, 4]], [[-4, -6], [-5, -10]],
- [3, 7], [np.nan, np.nan]),
- # test for `x < 0` and `m < 0` (RuntimeWarning issue)
- ([-3, 4], [-5, 10], 1, np.nan),
- # test for `x > m`
- ([1, 11], [10, 1], 12, np.nan),
- # test for `m < 0` (RuntimeWarning issue)
- ([1, 11], [10, -1], 12, np.nan),
- # test for `n < 0`
- ([3, 4], [5, 10], -7, np.nan),
- # test for `x.sum() != n`
- ([3, 3], [5, 10], 7, np.NINF)
- ]
- )
- def test_logpmf(self, x, m, n, expected):
- vals = multivariate_hypergeom.logpmf(x, m, n)
- assert_allclose(vals, expected, rtol=1e-6)
- def test_reduces_hypergeom(self):
- # test that the multivariate_hypergeom pmf reduces to the
- # hypergeom pmf in the 2d case.
- val1 = multivariate_hypergeom.pmf(x=[3, 1], m=[10, 5], n=4)
- val2 = hypergeom.pmf(k=3, M=15, n=4, N=10)
- assert_allclose(val1, val2, rtol=1e-8)
- val1 = multivariate_hypergeom.pmf(x=[7, 3], m=[15, 10], n=10)
- val2 = hypergeom.pmf(k=7, M=25, n=10, N=15)
- assert_allclose(val1, val2, rtol=1e-8)
- def test_rvs(self):
- # test if `rvs` is unbiased and large sample size converges
- # to the true mean.
- rv = multivariate_hypergeom(m=[3, 5], n=4)
- rvs = rv.rvs(size=1000, random_state=123)
- assert_allclose(rvs.mean(0), rv.mean(), rtol=1e-2)
- def test_rvs_broadcasting(self):
- rv = multivariate_hypergeom(m=[[3, 5], [5, 10]], n=[4, 9])
- rvs = rv.rvs(size=(1000, 2), random_state=123)
- assert_allclose(rvs.mean(0), rv.mean(), rtol=1e-2)
- @pytest.mark.parametrize('m, n', (
- ([0, 0, 20, 0, 0], 5), ([0, 0, 0, 0, 0], 0),
- ([0, 0], 0), ([0], 0)
- ))
- def test_rvs_gh16171(self, m, n):
- res = multivariate_hypergeom.rvs(m, n)
- m = np.asarray(m)
- res_ex = m.copy()
- res_ex[m != 0] = n
- assert_equal(res, res_ex)
- @pytest.mark.parametrize(
- "x, m, n, expected",
- [
- ([5], [5], 5, 1),
- ([3, 4], [5, 10], 7, 0.3263403),
- # Ground truth value from R dmvhyper
- ([[[3, 5], [0, 8]], [[-1, 9], [1, 1]]],
- [5, 10], [[8, 8], [8, 2]],
- [[0.3916084, 0.006993007], [0, 0.4761905]]),
- # test with empty arrays.
- (np.array([], np.int_), np.array([], np.int_), 0, []),
- ([1, 2], [4, 5], 5, 0),
- # Ground truth value from R dmvhyper
- ([3, 3, 0], [5, 6, 7], 6, 0.01077354)
- ]
- )
- def test_pmf(self, x, m, n, expected):
- vals = multivariate_hypergeom.pmf(x, m, n)
- assert_allclose(vals, expected, rtol=1e-7)
- @pytest.mark.parametrize(
- "x, m, n, expected",
- [
- ([3, 4], [[5, 10], [10, 15]], 7, [0.3263403, 0.3407531]),
- ([[1], [2]], [[3], [4]], [1, 3], [1., 0.]),
- ([[[1], [2]]], [[3], [4]], [1, 3], [[1., 0.]]),
- ([[1], [2]], [[[[3]]]], [1, 3], [[[1., 0.]]])
- ]
- )
- def test_pmf_broadcasting(self, x, m, n, expected):
- vals = multivariate_hypergeom.pmf(x, m, n)
- assert_allclose(vals, expected, rtol=1e-7)
- def test_cov(self):
- cov1 = multivariate_hypergeom.cov(m=[3, 7, 10], n=12)
- cov2 = [[0.64421053, -0.26526316, -0.37894737],
- [-0.26526316, 1.14947368, -0.88421053],
- [-0.37894737, -0.88421053, 1.26315789]]
- assert_allclose(cov1, cov2, rtol=1e-8)
- def test_cov_broadcasting(self):
- cov1 = multivariate_hypergeom.cov(m=[[7, 9], [10, 15]], n=[8, 12])
- cov2 = [[[1.05, -1.05], [-1.05, 1.05]],
- [[1.56, -1.56], [-1.56, 1.56]]]
- assert_allclose(cov1, cov2, rtol=1e-8)
- cov3 = multivariate_hypergeom.cov(m=[[4], [5]], n=[4, 5])
- cov4 = [[[0.]], [[0.]]]
- assert_allclose(cov3, cov4, rtol=1e-8)
- cov5 = multivariate_hypergeom.cov(m=[7, 9], n=[8, 12])
- cov6 = [[[1.05, -1.05], [-1.05, 1.05]],
- [[0.7875, -0.7875], [-0.7875, 0.7875]]]
- assert_allclose(cov5, cov6, rtol=1e-8)
- def test_var(self):
- # test with hypergeom
- var0 = multivariate_hypergeom.var(m=[10, 5], n=4)
- var1 = hypergeom.var(M=15, n=4, N=10)
- assert_allclose(var0, var1, rtol=1e-8)
- def test_var_broadcasting(self):
- var0 = multivariate_hypergeom.var(m=[10, 5], n=[4, 8])
- var1 = multivariate_hypergeom.var(m=[10, 5], n=4)
- var2 = multivariate_hypergeom.var(m=[10, 5], n=8)
- assert_allclose(var0[0], var1, rtol=1e-8)
- assert_allclose(var0[1], var2, rtol=1e-8)
- var3 = multivariate_hypergeom.var(m=[[10, 5], [10, 14]], n=[4, 8])
- var4 = [[0.6984127, 0.6984127], [1.352657, 1.352657]]
- assert_allclose(var3, var4, rtol=1e-8)
- var5 = multivariate_hypergeom.var(m=[[5], [10]], n=[5, 10])
- var6 = [[0.], [0.]]
- assert_allclose(var5, var6, rtol=1e-8)
- def test_mean(self):
- # test with hypergeom
- mean0 = multivariate_hypergeom.mean(m=[10, 5], n=4)
- mean1 = hypergeom.mean(M=15, n=4, N=10)
- assert_allclose(mean0[0], mean1, rtol=1e-8)
- mean2 = multivariate_hypergeom.mean(m=[12, 8], n=10)
- mean3 = [12.*10./20., 8.*10./20.]
- assert_allclose(mean2, mean3, rtol=1e-8)
- def test_mean_broadcasting(self):
- mean0 = multivariate_hypergeom.mean(m=[[3, 5], [10, 5]], n=[4, 8])
- mean1 = [[3.*4./8., 5.*4./8.], [10.*8./15., 5.*8./15.]]
- assert_allclose(mean0, mean1, rtol=1e-8)
- def test_mean_edge_cases(self):
- mean0 = multivariate_hypergeom.mean(m=[0, 0, 0], n=0)
- assert_equal(mean0, [0., 0., 0.])
- mean1 = multivariate_hypergeom.mean(m=[1, 0, 0], n=2)
- assert_equal(mean1, [np.nan, np.nan, np.nan])
- mean2 = multivariate_hypergeom.mean(m=[[1, 0, 0], [1, 0, 1]], n=2)
- assert_allclose(mean2, [[np.nan, np.nan, np.nan], [1., 0., 1.]],
- rtol=1e-17)
- mean3 = multivariate_hypergeom.mean(m=np.array([], np.int_), n=0)
- assert_equal(mean3, [])
- assert_(mean3.shape == (0, ))
- def test_var_edge_cases(self):
- var0 = multivariate_hypergeom.var(m=[0, 0, 0], n=0)
- assert_allclose(var0, [0., 0., 0.], rtol=1e-16)
- var1 = multivariate_hypergeom.var(m=[1, 0, 0], n=2)
- assert_equal(var1, [np.nan, np.nan, np.nan])
- var2 = multivariate_hypergeom.var(m=[[1, 0, 0], [1, 0, 1]], n=2)
- assert_allclose(var2, [[np.nan, np.nan, np.nan], [0., 0., 0.]],
- rtol=1e-17)
- var3 = multivariate_hypergeom.var(m=np.array([], np.int_), n=0)
- assert_equal(var3, [])
- assert_(var3.shape == (0, ))
- def test_cov_edge_cases(self):
- cov0 = multivariate_hypergeom.cov(m=[1, 0, 0], n=1)
- cov1 = [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]
- assert_allclose(cov0, cov1, rtol=1e-17)
- cov3 = multivariate_hypergeom.cov(m=[0, 0, 0], n=0)
- cov4 = [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]
- assert_equal(cov3, cov4)
- cov5 = multivariate_hypergeom.cov(m=np.array([], np.int_), n=0)
- cov6 = np.array([], dtype=np.float_).reshape(0, 0)
- assert_allclose(cov5, cov6, rtol=1e-17)
- assert_(cov5.shape == (0, 0))
- def test_frozen(self):
- # The frozen distribution should agree with the regular one
- np.random.seed(1234)
- n = 12
- m = [7, 9, 11, 13]
- x = [[0, 0, 0, 12], [0, 0, 1, 11], [0, 1, 1, 10],
- [1, 1, 1, 9], [1, 1, 2, 8]]
- x = np.asarray(x, dtype=np.int_)
- mhg_frozen = multivariate_hypergeom(m, n)
- assert_allclose(mhg_frozen.pmf(x),
- multivariate_hypergeom.pmf(x, m, n))
- assert_allclose(mhg_frozen.logpmf(x),
- multivariate_hypergeom.logpmf(x, m, n))
- assert_allclose(mhg_frozen.var(), multivariate_hypergeom.var(m, n))
- assert_allclose(mhg_frozen.cov(), multivariate_hypergeom.cov(m, n))
- def test_invalid_params(self):
- assert_raises(ValueError, multivariate_hypergeom.pmf, 5, 10, 5)
- assert_raises(ValueError, multivariate_hypergeom.pmf, 5, [10], 5)
- assert_raises(ValueError, multivariate_hypergeom.pmf, [5, 4], [10], 5)
- assert_raises(TypeError, multivariate_hypergeom.pmf, [5.5, 4.5],
- [10, 15], 5)
- assert_raises(TypeError, multivariate_hypergeom.pmf, [5, 4],
- [10.5, 15.5], 5)
- assert_raises(TypeError, multivariate_hypergeom.pmf, [5, 4],
- [10, 15], 5.5)
- class TestRandomTable:
- def get_rng(self):
- return np.random.default_rng(628174795866951638)
- def test_process_parameters(self):
- message = "`row` must be one-dimensional"
- with pytest.raises(ValueError, match=message):
- random_table([[1, 2]], [1, 2])
- message = "`col` must be one-dimensional"
- with pytest.raises(ValueError, match=message):
- random_table([1, 2], [[1, 2]])
- message = "each element of `row` must be non-negative"
- with pytest.raises(ValueError, match=message):
- random_table([1, -1], [1, 2])
- message = "each element of `col` must be non-negative"
- with pytest.raises(ValueError, match=message):
- random_table([1, 2], [1, -2])
- message = "sums over `row` and `col` must be equal"
- with pytest.raises(ValueError, match=message):
- random_table([1, 2], [1, 0])
- message = "each element of `row` must be an integer"
- with pytest.raises(ValueError, match=message):
- random_table([2.1, 2.1], [1, 1, 2])
- message = "each element of `col` must be an integer"
- with pytest.raises(ValueError, match=message):
- random_table([1, 2], [1.1, 1.1, 1])
- row = [1, 3]
- col = [2, 1, 1]
- r, c, n = random_table._process_parameters([1, 3], [2, 1, 1])
- assert_equal(row, r)
- assert_equal(col, c)
- assert n == np.sum(row)
- @pytest.mark.parametrize("scale,method",
- ((1, "boyett"), (100, "patefield")))
- def test_process_rvs_method_on_None(self, scale, method):
- row = np.array([1, 3]) * scale
- col = np.array([2, 1, 1]) * scale
- ct = random_table
- expected = ct.rvs(row, col, method=method, random_state=1)
- got = ct.rvs(row, col, method=None, random_state=1)
- assert_equal(expected, got)
- def test_process_rvs_method_bad_argument(self):
- row = [1, 3]
- col = [2, 1, 1]
- # order of items in set is random, so cannot check that
- message = "'foo' not recognized, must be one of"
- with pytest.raises(ValueError, match=message):
- random_table.rvs(row, col, method="foo")
- @pytest.mark.parametrize('frozen', (True, False))
- @pytest.mark.parametrize('log', (True, False))
- def test_pmf_logpmf(self, frozen, log):
- # The pmf is tested through random sample generation
- # with Boyett's algorithm, whose implementation is simple
- # enough to verify manually for correctness.
- rng = self.get_rng()
- row = [2, 6]
- col = [1, 3, 4]
- rvs = random_table.rvs(row, col, size=1000,
- method="boyett", random_state=rng)
- obj = random_table(row, col) if frozen else random_table
- method = getattr(obj, "logpmf" if log else "pmf")
- if not frozen:
- original_method = method
- def method(x):
- return original_method(x, row, col)
- pmf = (lambda x: np.exp(method(x))) if log else method
- unique_rvs, counts = np.unique(rvs, axis=0, return_counts=True)
- # rough accuracy check
- p = pmf(unique_rvs)
- assert_allclose(p * len(rvs), counts, rtol=0.1)
- # accept any iterable
- p2 = pmf(list(unique_rvs[0]))
- assert_equal(p2, p[0])
- # accept high-dimensional input and 2d input
- rvs_nd = rvs.reshape((10, 100) + rvs.shape[1:])
- p = pmf(rvs_nd)
- assert p.shape == (10, 100)
- for i in range(p.shape[0]):
- for j in range(p.shape[1]):
- pij = p[i, j]
- rvij = rvs_nd[i, j]
- qij = pmf(rvij)
- assert_equal(pij, qij)
- # probability is zero if column marginal does not match
- x = [[0, 1, 1], [2, 1, 3]]
- assert_equal(np.sum(x, axis=-1), row)
- p = pmf(x)
- assert p == 0
- # probability is zero if row marginal does not match
- x = [[0, 1, 2], [1, 2, 2]]
- assert_equal(np.sum(x, axis=-2), col)
- p = pmf(x)
- assert p == 0
- # response to invalid inputs
- message = "`x` must be at least two-dimensional"
- with pytest.raises(ValueError, match=message):
- pmf([1])
- message = "`x` must contain only integral values"
- with pytest.raises(ValueError, match=message):
- pmf([[1.1]])
- message = "`x` must contain only integral values"
- with pytest.raises(ValueError, match=message):
- pmf([[np.nan]])
- message = "`x` must contain only non-negative values"
- with pytest.raises(ValueError, match=message):
- pmf([[-1]])
- message = "shape of `x` must agree with `row`"
- with pytest.raises(ValueError, match=message):
- pmf([[1, 2, 3]])
- message = "shape of `x` must agree with `col`"
- with pytest.raises(ValueError, match=message):
- pmf([[1, 2],
- [3, 4]])
- @pytest.mark.parametrize("method", ("boyett", "patefield"))
- def test_rvs_mean(self, method):
- # test if `rvs` is unbiased and large sample size converges
- # to the true mean.
- rng = self.get_rng()
- row = [2, 6]
- col = [1, 3, 4]
- rvs = random_table.rvs(row, col, size=1000, method=method,
- random_state=rng)
- mean = random_table.mean(row, col)
- assert_equal(np.sum(mean), np.sum(row))
- assert_allclose(rvs.mean(0), mean, atol=0.05)
- assert_equal(rvs.sum(axis=-1), np.broadcast_to(row, (1000, 2)))
- assert_equal(rvs.sum(axis=-2), np.broadcast_to(col, (1000, 3)))
- def test_rvs_cov(self):
- # test if `rvs` generated with patefield and boyett algorithms
- # produce approximately the same covariance matrix
- rng = self.get_rng()
- row = [2, 6]
- col = [1, 3, 4]
- rvs1 = random_table.rvs(row, col, size=10000, method="boyett",
- random_state=rng)
- rvs2 = random_table.rvs(row, col, size=10000, method="patefield",
- random_state=rng)
- cov1 = np.var(rvs1, axis=0)
- cov2 = np.var(rvs2, axis=0)
- assert_allclose(cov1, cov2, atol=0.02)
- @pytest.mark.parametrize("method", ("boyett", "patefield"))
- def test_rvs_size(self, method):
- row = [2, 6]
- col = [1, 3, 4]
- # test size `None`
- rv = random_table.rvs(row, col, method=method,
- random_state=self.get_rng())
- assert rv.shape == (2, 3)
- # test size 1
- rv2 = random_table.rvs(row, col, size=1, method=method,
- random_state=self.get_rng())
- assert rv2.shape == (1, 2, 3)
- assert_equal(rv, rv2[0])
- # test size 0
- rv3 = random_table.rvs(row, col, size=0, method=method,
- random_state=self.get_rng())
- assert rv3.shape == (0, 2, 3)
- # test other valid size
- rv4 = random_table.rvs(row, col, size=20, method=method,
- random_state=self.get_rng())
- assert rv4.shape == (20, 2, 3)
- rv5 = random_table.rvs(row, col, size=(4, 5), method=method,
- random_state=self.get_rng())
- assert rv5.shape == (4, 5, 2, 3)
- assert_allclose(rv5.reshape(20, 2, 3), rv4, rtol=1e-15)
- # test invalid size
- message = "`size` must be a non-negative integer or `None`"
- with pytest.raises(ValueError, match=message):
- random_table.rvs(row, col, size=-1, method=method,
- random_state=self.get_rng())
- with pytest.raises(ValueError, match=message):
- random_table.rvs(row, col, size=np.nan, method=method,
- random_state=self.get_rng())
- @pytest.mark.parametrize("method", ("boyett", "patefield"))
- def test_rvs_method(self, method):
- # This test assumes that pmf is correct and checks that random samples
- # follow this probability distribution. This seems like a circular
- # argument, since pmf is checked in test_pmf_logpmf with random samples
- # generated with the rvs method. This test is not redundant, because
- # test_pmf_logpmf intentionally uses rvs generation with Boyett only,
- # but here we test both Boyett and Patefield.
- row = [2, 6]
- col = [1, 3, 4]
- ct = random_table
- rvs = ct.rvs(row, col, size=100000, method=method,
- random_state=self.get_rng())
- unique_rvs, counts = np.unique(rvs, axis=0, return_counts=True)
- # generated frequencies should match expected frequencies
- p = ct.pmf(unique_rvs, row, col)
- assert_allclose(p * len(rvs), counts, rtol=0.02)
- @pytest.mark.parametrize("method", ("boyett", "patefield"))
- def test_rvs_with_zeros_in_col_row(self, method):
- row = [0, 1, 0]
- col = [1, 0, 0, 0]
- d = random_table(row, col)
- rv = d.rvs(1000, method=method, random_state=self.get_rng())
- expected = np.zeros((1000, len(row), len(col)))
- expected[...] = [[0, 0, 0, 0],
- [1, 0, 0, 0],
- [0, 0, 0, 0]]
- assert_equal(rv, expected)
- @pytest.mark.parametrize("method", (None, "boyett", "patefield"))
- @pytest.mark.parametrize("col", ([], [0]))
- @pytest.mark.parametrize("row", ([], [0]))
- def test_rvs_with_edge_cases(self, method, row, col):
- d = random_table(row, col)
- rv = d.rvs(10, method=method, random_state=self.get_rng())
- expected = np.zeros((10, len(row), len(col)))
- assert_equal(rv, expected)
- @pytest.mark.parametrize('v', (1, 2))
- def test_rvs_rcont(self, v):
- # This test checks the internal low-level interface.
- # It is implicitly also checked by the other test_rvs* calls.
- import scipy.stats._rcont as _rcont
- row = np.array([1, 3], dtype=np.int64)
- col = np.array([2, 1, 1], dtype=np.int64)
- rvs = getattr(_rcont, f"rvs_rcont{v}")
- ntot = np.sum(row)
- result = rvs(row, col, ntot, 1, self.get_rng())
- assert result.shape == (1, len(row), len(col))
- assert np.sum(result) == ntot
- def test_frozen(self):
- row = [2, 6]
- col = [1, 3, 4]
- d = random_table(row, col, seed=self.get_rng())
- sample = d.rvs()
- expected = random_table.mean(row, col)
- assert_equal(expected, d.mean())
- expected = random_table.pmf(sample, row, col)
- assert_equal(expected, d.pmf(sample))
- expected = random_table.logpmf(sample, row, col)
- assert_equal(expected, d.logpmf(sample))
- @pytest.mark.parametrize("method", ("boyett", "patefield"))
- def test_rvs_frozen(self, method):
- row = [2, 6]
- col = [1, 3, 4]
- d = random_table(row, col, seed=self.get_rng())
- expected = random_table.rvs(row, col, size=10, method=method,
- random_state=self.get_rng())
- got = d.rvs(size=10, method=method)
- assert_equal(expected, got)
- def check_pickling(distfn, args):
- # check that a distribution instance pickles and unpickles
- # pay special attention to the random_state property
- # save the random_state (restore later)
- rndm = distfn.random_state
- distfn.random_state = 1234
- distfn.rvs(*args, size=8)
- s = pickle.dumps(distfn)
- r0 = distfn.rvs(*args, size=8)
- unpickled = pickle.loads(s)
- r1 = unpickled.rvs(*args, size=8)
- assert_equal(r0, r1)
- # restore the random_state
- distfn.random_state = rndm
- def test_random_state_property():
- scale = np.eye(3)
- scale[0, 1] = 0.5
- scale[1, 0] = 0.5
- dists = [
- [multivariate_normal, ()],
- [dirichlet, (np.array([1.]), )],
- [wishart, (10, scale)],
- [invwishart, (10, scale)],
- [multinomial, (5, [0.5, 0.4, 0.1])],
- [ortho_group, (2,)],
- [special_ortho_group, (2,)]
- ]
- for distfn, args in dists:
- check_random_state_property(distfn, args)
- check_pickling(distfn, args)
|