123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- import pytest
- import numpy as np
- from numpy.testing import assert_array_equal, assert_equal
- from scipy.stats.contingency import crosstab
- @pytest.mark.parametrize('sparse', [False, True])
- def test_crosstab_basic(sparse):
- a = [0, 0, 9, 9, 0, 0, 9]
- b = [2, 1, 3, 1, 2, 3, 3]
- expected_avals = [0, 9]
- expected_bvals = [1, 2, 3]
- expected_count = np.array([[1, 2, 1],
- [1, 0, 2]])
- (avals, bvals), count = crosstab(a, b, sparse=sparse)
- assert_array_equal(avals, expected_avals)
- assert_array_equal(bvals, expected_bvals)
- if sparse:
- assert_array_equal(count.A, expected_count)
- else:
- assert_array_equal(count, expected_count)
- def test_crosstab_basic_1d():
- # Verify that a single input sequence works as expected.
- x = [1, 2, 3, 1, 2, 3, 3]
- expected_xvals = [1, 2, 3]
- expected_count = np.array([2, 2, 3])
- (xvals,), count = crosstab(x)
- assert_array_equal(xvals, expected_xvals)
- assert_array_equal(count, expected_count)
- def test_crosstab_basic_3d():
- # Verify the function for three input sequences.
- a = 'a'
- b = 'b'
- x = [0, 0, 9, 9, 0, 0, 9, 9]
- y = [a, a, a, a, b, b, b, a]
- z = [1, 2, 3, 1, 2, 3, 3, 1]
- expected_xvals = [0, 9]
- expected_yvals = [a, b]
- expected_zvals = [1, 2, 3]
- expected_count = np.array([[[1, 1, 0],
- [0, 1, 1]],
- [[2, 0, 1],
- [0, 0, 1]]])
- (xvals, yvals, zvals), count = crosstab(x, y, z)
- assert_array_equal(xvals, expected_xvals)
- assert_array_equal(yvals, expected_yvals)
- assert_array_equal(zvals, expected_zvals)
- assert_array_equal(count, expected_count)
- @pytest.mark.parametrize('sparse', [False, True])
- def test_crosstab_levels(sparse):
- a = [0, 0, 9, 9, 0, 0, 9]
- b = [1, 2, 3, 1, 2, 3, 3]
- expected_avals = [0, 9]
- expected_bvals = [0, 1, 2, 3]
- expected_count = np.array([[0, 1, 2, 1],
- [0, 1, 0, 2]])
- (avals, bvals), count = crosstab(a, b, levels=[None, [0, 1, 2, 3]],
- sparse=sparse)
- assert_array_equal(avals, expected_avals)
- assert_array_equal(bvals, expected_bvals)
- if sparse:
- assert_array_equal(count.A, expected_count)
- else:
- assert_array_equal(count, expected_count)
- @pytest.mark.parametrize('sparse', [False, True])
- def test_crosstab_extra_levels(sparse):
- # The pair of values (-1, 3) will be ignored, because we explicitly
- # request the counted `a` values to be [0, 9].
- a = [0, 0, 9, 9, 0, 0, 9, -1]
- b = [1, 2, 3, 1, 2, 3, 3, 3]
- expected_avals = [0, 9]
- expected_bvals = [0, 1, 2, 3]
- expected_count = np.array([[0, 1, 2, 1],
- [0, 1, 0, 2]])
- (avals, bvals), count = crosstab(a, b, levels=[[0, 9], [0, 1, 2, 3]],
- sparse=sparse)
- assert_array_equal(avals, expected_avals)
- assert_array_equal(bvals, expected_bvals)
- if sparse:
- assert_array_equal(count.A, expected_count)
- else:
- assert_array_equal(count, expected_count)
- def test_validation_at_least_one():
- with pytest.raises(TypeError, match='At least one'):
- crosstab()
- def test_validation_same_lengths():
- with pytest.raises(ValueError, match='must have the same length'):
- crosstab([1, 2], [1, 2, 3, 4])
- def test_validation_sparse_only_two_args():
- with pytest.raises(ValueError, match='only two input sequences'):
- crosstab([0, 1, 1], [8, 8, 9], [1, 3, 3], sparse=True)
- def test_validation_len_levels_matches_args():
- with pytest.raises(ValueError, match='number of input sequences'):
- crosstab([0, 1, 1], [8, 8, 9], levels=([0, 1, 2, 3],))
- def test_result():
- res = crosstab([0, 1], [1, 2])
- assert_equal((res.elements, res.count), res)
|