12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662 |
- # Copyright 2002 Gary Strangman. All rights reserved
- # Copyright 2002-2016 The SciPy Developers
- #
- # The original code from Gary Strangman was heavily adapted for
- # use in SciPy by Travis Oliphant. The original code came with the
- # following disclaimer:
- #
- # This software is provided "as-is". There are no expressed or implied
- # warranties of any kind, including, but not limited to, the warranties
- # of merchantability and fitness for a given application. In no event
- # shall Gary Strangman be liable for any direct, indirect, incidental,
- # special, exemplary or consequential damages (including, but not limited
- # to, loss of use, data or profits, or business interruption) however
- # caused and on any theory of liability, whether in contract, strict
- # liability or tort (including negligence or otherwise) arising in any way
- # out of the use of this software, even if advised of the possibility of
- # such damage.
- """
- A collection of basic statistical functions for Python.
- References
- ----------
- .. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
- Probability and Statistics Tables and Formulae. Chapman & Hall: New
- York. 2000.
- """
- import warnings
- import math
- from math import gcd
- from collections import namedtuple, Counter
- import numpy as np
- from numpy import array, asarray, ma
- from numpy.lib import NumpyVersion
- from numpy.testing import suppress_warnings
- from scipy.spatial.distance import cdist
- from scipy.ndimage import _measurements
- from scipy._lib._util import (check_random_state, MapWrapper,
- rng_integers, _rename_parameter, _contains_nan)
- import scipy.special as special
- from scipy import linalg
- from . import distributions
- from . import _mstats_basic as mstats_basic
- from ._stats_mstats_common import (_find_repeats, linregress, theilslopes,
- siegelslopes)
- from ._stats import (_kendall_dis, _toint64, _weightedrankedtau,
- _local_correlations)
- from dataclasses import make_dataclass
- from ._hypotests import _all_partitions
- from ._stats_pythran import _compute_outer_prob_inside_method
- from ._resampling import _batch_generator
- from ._axis_nan_policy import (_axis_nan_policy_factory,
- _broadcast_concatenate)
- from ._binomtest import _binary_search_for_binom_tst as _binary_search
- from scipy._lib._bunch import _make_tuple_bunch
- from scipy import stats
- from scipy.optimize import root_scalar
- # Functions/classes in other files should be added in `__init__.py`, not here
- __all__ = ['find_repeats', 'gmean', 'hmean', 'pmean', 'mode', 'tmean', 'tvar',
- 'tmin', 'tmax', 'tstd', 'tsem', 'moment',
- 'skew', 'kurtosis', 'describe', 'skewtest', 'kurtosistest',
- 'normaltest', 'jarque_bera',
- 'scoreatpercentile', 'percentileofscore',
- 'cumfreq', 'relfreq', 'obrientransform',
- 'sem', 'zmap', 'zscore', 'gzscore', 'iqr', 'gstd',
- 'median_abs_deviation',
- 'sigmaclip', 'trimboth', 'trim1', 'trim_mean',
- 'f_oneway', 'pearsonr', 'fisher_exact',
- 'spearmanr', 'pointbiserialr',
- 'kendalltau', 'weightedtau', 'multiscale_graphcorr',
- 'linregress', 'siegelslopes', 'theilslopes', 'ttest_1samp',
- 'ttest_ind', 'ttest_ind_from_stats', 'ttest_rel',
- 'kstest', 'ks_1samp', 'ks_2samp',
- 'chisquare', 'power_divergence',
- 'tiecorrect', 'ranksums', 'kruskal', 'friedmanchisquare',
- 'rankdata',
- 'combine_pvalues', 'wasserstein_distance', 'energy_distance',
- 'brunnermunzel', 'alexandergovern',
- 'expectile', ]
- def _chk_asarray(a, axis):
- if axis is None:
- a = np.ravel(a)
- outaxis = 0
- else:
- a = np.asarray(a)
- outaxis = axis
- if a.ndim == 0:
- a = np.atleast_1d(a)
- return a, outaxis
- def _chk2_asarray(a, b, axis):
- if axis is None:
- a = np.ravel(a)
- b = np.ravel(b)
- outaxis = 0
- else:
- a = np.asarray(a)
- b = np.asarray(b)
- outaxis = axis
- if a.ndim == 0:
- a = np.atleast_1d(a)
- if b.ndim == 0:
- b = np.atleast_1d(b)
- return a, b, outaxis
- def _shape_with_dropped_axis(a, axis):
- """
- Given an array `a` and an integer `axis`, return the shape
- of `a` with the `axis` dimension removed.
- Examples
- --------
- >>> a = np.zeros((3, 5, 2))
- >>> _shape_with_dropped_axis(a, 1)
- (3, 2)
- """
- shp = list(a.shape)
- try:
- del shp[axis]
- except IndexError:
- raise np.AxisError(axis, a.ndim) from None
- return tuple(shp)
- def _broadcast_shapes(shape1, shape2):
- """
- Given two shapes (i.e. tuples of integers), return the shape
- that would result from broadcasting two arrays with the given
- shapes.
- Examples
- --------
- >>> _broadcast_shapes((2, 1), (4, 1, 3))
- (4, 2, 3)
- """
- d = len(shape1) - len(shape2)
- if d <= 0:
- shp1 = (1,)*(-d) + shape1
- shp2 = shape2
- else:
- shp1 = shape1
- shp2 = (1,)*d + shape2
- shape = []
- for n1, n2 in zip(shp1, shp2):
- if n1 == 1:
- n = n2
- elif n2 == 1 or n1 == n2:
- n = n1
- else:
- raise ValueError(f'shapes {shape1} and {shape2} could not be '
- 'broadcast together')
- shape.append(n)
- return tuple(shape)
- def _broadcast_shapes_with_dropped_axis(a, b, axis):
- """
- Given two arrays `a` and `b` and an integer `axis`, find the
- shape of the broadcast result after dropping `axis` from the
- shapes of `a` and `b`.
- Examples
- --------
- >>> a = np.zeros((5, 2, 1))
- >>> b = np.zeros((1, 9, 3))
- >>> _broadcast_shapes_with_dropped_axis(a, b, 1)
- (5, 3)
- """
- shp1 = _shape_with_dropped_axis(a, axis)
- shp2 = _shape_with_dropped_axis(b, axis)
- try:
- shp = _broadcast_shapes(shp1, shp2)
- except ValueError:
- raise ValueError(f'non-axis shapes {shp1} and {shp2} could not be '
- 'broadcast together') from None
- return shp
- SignificanceResult = _make_tuple_bunch('SignificanceResult',
- ['statistic', 'pvalue'], [])
- # note that `weights` are paired with `x`
- @_axis_nan_policy_factory(
- lambda x: x, n_samples=1, n_outputs=1, too_small=0, paired=True,
- result_to_tuple=lambda x: (x,), kwd_samples=['weights'])
- def gmean(a, axis=0, dtype=None, weights=None):
- r"""Compute the weighted geometric mean along the specified axis.
- The weighted geometric mean of the array :math:`a_i` associated to weights
- :math:`w_i` is:
- .. math::
- \exp \left( \frac{ \sum_{i=1}^n w_i \ln a_i }{ \sum_{i=1}^n w_i }
- \right) \, ,
- and, with equal weights, it gives:
- .. math::
- \sqrt[n]{ \prod_{i=1}^n a_i } \, .
- Parameters
- ----------
- a : array_like
- Input array or object that can be converted to an array.
- axis : int or None, optional
- Axis along which the geometric mean is computed. Default is 0.
- If None, compute over the whole array `a`.
- dtype : dtype, optional
- Type to which the input arrays are cast before the calculation is
- performed.
- weights : array_like, optional
- The `weights` array must be broadcastable to the same shape as `a`.
- Default is None, which gives each value a weight of 1.0.
- Returns
- -------
- gmean : ndarray
- See `dtype` parameter above.
- See Also
- --------
- numpy.mean : Arithmetic average
- numpy.average : Weighted average
- hmean : Harmonic mean
- References
- ----------
- .. [1] "Weighted Geometric Mean", *Wikipedia*,
- https://en.wikipedia.org/wiki/Weighted_geometric_mean.
- Examples
- --------
- >>> from scipy.stats import gmean
- >>> gmean([1, 4])
- 2.0
- >>> gmean([1, 2, 3, 4, 5, 6, 7])
- 3.3800151591412964
- >>> gmean([1, 4, 7], weights=[3, 1, 3])
- 2.80668351922014
- """
- a = np.asarray(a, dtype=dtype)
- if weights is not None:
- weights = np.asarray(weights, dtype=dtype)
- with np.errstate(divide='ignore'):
- log_a = np.log(a)
- return np.exp(np.average(log_a, axis=axis, weights=weights))
- @_axis_nan_policy_factory(
- lambda x: x, n_samples=1, n_outputs=1, too_small=0, paired=True,
- result_to_tuple=lambda x: (x,), kwd_samples=['weights'])
- def hmean(a, axis=0, dtype=None, *, weights=None):
- r"""Calculate the weighted harmonic mean along the specified axis.
- The weighted harmonic mean of the array :math:`a_i` associated to weights
- :math:`w_i` is:
- .. math::
- \frac{ \sum_{i=1}^n w_i }{ \sum_{i=1}^n \frac{w_i}{a_i} } \, ,
- and, with equal weights, it gives:
- .. math::
- \frac{ n }{ \sum_{i=1}^n \frac{1}{a_i} } \, .
- Parameters
- ----------
- a : array_like
- Input array, masked array or object that can be converted to an array.
- axis : int or None, optional
- Axis along which the harmonic mean is computed. Default is 0.
- If None, compute over the whole array `a`.
- dtype : dtype, optional
- Type of the returned array and of the accumulator in which the
- elements are summed. If `dtype` is not specified, it defaults to the
- dtype of `a`, unless `a` has an integer `dtype` with a precision less
- than that of the default platform integer. In that case, the default
- platform integer is used.
- weights : array_like, optional
- The weights array can either be 1-D (in which case its length must be
- the size of `a` along the given `axis`) or of the same shape as `a`.
- Default is None, which gives each value a weight of 1.0.
- .. versionadded:: 1.9
- Returns
- -------
- hmean : ndarray
- See `dtype` parameter above.
- See Also
- --------
- numpy.mean : Arithmetic average
- numpy.average : Weighted average
- gmean : Geometric mean
- Notes
- -----
- The harmonic mean is computed over a single dimension of the input
- array, axis=0 by default, or all values in the array if axis=None.
- float64 intermediate and return values are used for integer inputs.
- References
- ----------
- .. [1] "Weighted Harmonic Mean", *Wikipedia*,
- https://en.wikipedia.org/wiki/Harmonic_mean#Weighted_harmonic_mean
- .. [2] Ferger, F., "The nature and use of the harmonic mean", Journal of
- the American Statistical Association, vol. 26, pp. 36-40, 1931
- Examples
- --------
- >>> from scipy.stats import hmean
- >>> hmean([1, 4])
- 1.6000000000000001
- >>> hmean([1, 2, 3, 4, 5, 6, 7])
- 2.6997245179063363
- >>> hmean([1, 4, 7], weights=[3, 1, 3])
- 1.9029126213592233
- """
- if not isinstance(a, np.ndarray):
- a = np.array(a, dtype=dtype)
- elif dtype:
- # Must change the default dtype allowing array type
- if isinstance(a, np.ma.MaskedArray):
- a = np.ma.asarray(a, dtype=dtype)
- else:
- a = np.asarray(a, dtype=dtype)
- if np.all(a >= 0):
- # Harmonic mean only defined if greater than or equal to zero.
- if weights is not None:
- weights = np.asanyarray(weights, dtype=dtype)
- with np.errstate(divide='ignore'):
- return 1.0 / np.average(1.0 / a, axis=axis, weights=weights)
- else:
- raise ValueError("Harmonic mean only defined if all elements greater "
- "than or equal to zero")
- @_axis_nan_policy_factory(
- lambda x: x, n_samples=1, n_outputs=1, too_small=0, paired=True,
- result_to_tuple=lambda x: (x,), kwd_samples=['weights'])
- def pmean(a, p, *, axis=0, dtype=None, weights=None):
- r"""Calculate the weighted power mean along the specified axis.
- The weighted power mean of the array :math:`a_i` associated to weights
- :math:`w_i` is:
- .. math::
- \left( \frac{ \sum_{i=1}^n w_i a_i^p }{ \sum_{i=1}^n w_i }
- \right)^{ 1 / p } \, ,
- and, with equal weights, it gives:
- .. math::
- \left( \frac{ 1 }{ n } \sum_{i=1}^n a_i^p \right)^{ 1 / p } \, .
- This mean is also called generalized mean or Hölder mean, and must not be
- confused with the Kolmogorov generalized mean, also called
- quasi-arithmetic mean or generalized f-mean [3]_.
- Parameters
- ----------
- a : array_like
- Input array, masked array or object that can be converted to an array.
- p : int or float
- Exponent.
- axis : int or None, optional
- Axis along which the power mean is computed. Default is 0.
- If None, compute over the whole array `a`.
- dtype : dtype, optional
- Type of the returned array and of the accumulator in which the
- elements are summed. If `dtype` is not specified, it defaults to the
- dtype of `a`, unless `a` has an integer `dtype` with a precision less
- than that of the default platform integer. In that case, the default
- platform integer is used.
- weights : array_like, optional
- The weights array can either be 1-D (in which case its length must be
- the size of `a` along the given `axis`) or of the same shape as `a`.
- Default is None, which gives each value a weight of 1.0.
- Returns
- -------
- pmean : ndarray, see `dtype` parameter above.
- Output array containing the power mean values.
- See Also
- --------
- numpy.average : Weighted average
- gmean : Geometric mean
- hmean : Harmonic mean
- Notes
- -----
- The power mean is computed over a single dimension of the input
- array, ``axis=0`` by default, or all values in the array if ``axis=None``.
- float64 intermediate and return values are used for integer inputs.
- .. versionadded:: 1.9
- References
- ----------
- .. [1] "Generalized Mean", *Wikipedia*,
- https://en.wikipedia.org/wiki/Generalized_mean
- .. [2] Norris, N., "Convexity properties of generalized mean value
- functions", The Annals of Mathematical Statistics, vol. 8,
- pp. 118-120, 1937
- .. [3] Bullen, P.S., Handbook of Means and Their Inequalities, 2003
- Examples
- --------
- >>> from scipy.stats import pmean, hmean, gmean
- >>> pmean([1, 4], 1.3)
- 2.639372938300652
- >>> pmean([1, 2, 3, 4, 5, 6, 7], 1.3)
- 4.157111214492084
- >>> pmean([1, 4, 7], -2, weights=[3, 1, 3])
- 1.4969684896631954
- For p=-1, power mean is equal to harmonic mean:
- >>> pmean([1, 4, 7], -1, weights=[3, 1, 3])
- 1.9029126213592233
- >>> hmean([1, 4, 7], weights=[3, 1, 3])
- 1.9029126213592233
- For p=0, power mean is defined as the geometric mean:
- >>> pmean([1, 4, 7], 0, weights=[3, 1, 3])
- 2.80668351922014
- >>> gmean([1, 4, 7], weights=[3, 1, 3])
- 2.80668351922014
- """
- if not isinstance(p, (int, float)):
- raise ValueError("Power mean only defined for exponent of type int or "
- "float.")
- if p == 0:
- return gmean(a, axis=axis, dtype=dtype, weights=weights)
- if not isinstance(a, np.ndarray):
- a = np.array(a, dtype=dtype)
- elif dtype:
- # Must change the default dtype allowing array type
- if isinstance(a, np.ma.MaskedArray):
- a = np.ma.asarray(a, dtype=dtype)
- else:
- a = np.asarray(a, dtype=dtype)
- if np.all(a >= 0):
- # Power mean only defined if greater than or equal to zero
- if weights is not None:
- weights = np.asanyarray(weights, dtype=dtype)
- with np.errstate(divide='ignore'):
- return np.float_power(
- np.average(np.float_power(a, p), axis=axis, weights=weights),
- 1/p)
- else:
- raise ValueError("Power mean only defined if all elements greater "
- "than or equal to zero")
- ModeResult = namedtuple('ModeResult', ('mode', 'count'))
- def mode(a, axis=0, nan_policy='propagate', keepdims=None):
- r"""Return an array of the modal (most common) value in the passed array.
- If there is more than one such value, only one is returned.
- The bin-count for the modal bins is also returned.
- Parameters
- ----------
- a : array_like
- n-dimensional array of which to find mode(s).
- axis : int or None, optional
- Axis along which to operate. Default is 0. If None, compute over
- the whole array `a`.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': treats nan as it would treat any other value
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- keepdims : bool, optional
- If set to ``False``, the `axis` over which the statistic is taken
- is consumed (eliminated from the output array) like other reduction
- functions (e.g. `skew`, `kurtosis`). If set to ``True``, the `axis` is
- retained with size one, and the result will broadcast correctly
- against the input array. The default, ``None``, is undefined legacy
- behavior retained for backward compatibility.
- .. warning::
- Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
- default behavior of `mode` usually retains the axis it acts
- along. In SciPy 1.11.0, this behavior will change: the default
- value of `keepdims` will become ``False``, the `axis` over which
- the statistic is taken will be eliminated, and the value ``None``
- will no longer be accepted.
- .. versionadded:: 1.9.0
- Returns
- -------
- mode : ndarray
- Array of modal values.
- count : ndarray
- Array of counts for each mode.
- Notes
- -----
- The mode of object arrays is calculated using `collections.Counter`, which
- treats NaNs with different binary representations as distinct.
- .. deprecated:: 1.9.0
- Support for non-numeric arrays has been deprecated as of SciPy 1.9.0
- and will be removed in 1.11.0. `pandas.DataFrame.mode`_ can
- be used instead.
- .. _pandas.DataFrame.mode: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.mode.html
- The mode of arrays with other dtypes is calculated using `numpy.unique`.
- In NumPy versions 1.21 and after, all NaNs - even those with different
- binary representations - are treated as equivalent and counted as separate
- instances of the same value.
- Examples
- --------
- >>> import numpy as np
- >>> a = np.array([[3, 0, 3, 7],
- ... [3, 2, 6, 2],
- ... [1, 7, 2, 8],
- ... [3, 0, 6, 1],
- ... [3, 2, 5, 5]])
- >>> from scipy import stats
- >>> stats.mode(a, keepdims=True)
- ModeResult(mode=array([[3, 0, 6, 1]]), count=array([[4, 2, 2, 1]]))
- To get mode of whole array, specify ``axis=None``:
- >>> stats.mode(a, axis=None, keepdims=True)
- ModeResult(mode=[3], count=[5])
- >>> stats.mode(a, axis=None, keepdims=False)
- ModeResult(mode=3, count=5)
- """ # noqa: E501
- if keepdims is None:
- message = ("Unlike other reduction functions (e.g. `skew`, "
- "`kurtosis`), the default behavior of `mode` typically "
- "preserves the axis it acts along. In SciPy 1.11.0, "
- "this behavior will change: the default value of "
- "`keepdims` will become False, the `axis` over which "
- "the statistic is taken will be eliminated, and the value "
- "None will no longer be accepted. "
- "Set `keepdims` to True or False to avoid this warning.")
- warnings.warn(message, FutureWarning, stacklevel=2)
- a = np.asarray(a)
- if a.size == 0:
- if keepdims is None:
- return ModeResult(np.array([]), np.array([]))
- else:
- # this is tricky to get right; let np.mean do it
- out = np.mean(a, axis=axis, keepdims=keepdims)
- return ModeResult(out, out.copy())
- a, axis = _chk_asarray(a, axis)
- contains_nan, nan_policy = _contains_nan(a, nan_policy)
- if contains_nan and nan_policy == 'omit':
- a = ma.masked_invalid(a)
- return mstats_basic._mode(a, axis, keepdims=keepdims)
- if not np.issubdtype(a.dtype, np.number):
- warnings.warn("Support for non-numeric arrays has been deprecated "
- "as of SciPy 1.9.0 and will be removed in "
- "1.11.0. `pandas.DataFrame.mode` can be used instead, "
- "see https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.mode.html.", # noqa: E501
- DeprecationWarning, stacklevel=2)
- if a.dtype == object:
- def _mode1D(a):
- cntr = Counter(a)
- mode = max(cntr, key=lambda x: cntr[x])
- return mode, cntr[mode]
- else:
- def _mode1D(a):
- vals, cnts = np.unique(a, return_counts=True)
- return vals[cnts.argmax()], cnts.max()
- # np.apply_along_axis will convert the _mode1D tuples to a numpy array,
- # casting types in the process.
- # This recreates the results without that issue
- # View of a, rotated so the requested axis is last
- a_view = np.moveaxis(a, axis, -1)
- inds = np.ndindex(a_view.shape[:-1])
- modes = np.empty(a_view.shape[:-1], dtype=a.dtype)
- counts = np.empty(a_view.shape[:-1], dtype=np.int_)
- for ind in inds:
- modes[ind], counts[ind] = _mode1D(a_view[ind])
- if keepdims is None or keepdims:
- newshape = list(a.shape)
- newshape[axis] = 1
- return ModeResult(modes.reshape(newshape), counts.reshape(newshape))
- else:
- return ModeResult(modes[()], counts[()])
- def _mask_to_limits(a, limits, inclusive):
- """Mask an array for values outside of given limits.
- This is primarily a utility function.
- Parameters
- ----------
- a : array
- limits : (float or None, float or None)
- A tuple consisting of the (lower limit, upper limit). Values in the
- input array less than the lower limit or greater than the upper limit
- will be masked out. None implies no limit.
- inclusive : (bool, bool)
- A tuple consisting of the (lower flag, upper flag). These flags
- determine whether values exactly equal to lower or upper are allowed.
- Returns
- -------
- A MaskedArray.
- Raises
- ------
- A ValueError if there are no values within the given limits.
- """
- lower_limit, upper_limit = limits
- lower_include, upper_include = inclusive
- am = ma.MaskedArray(a)
- if lower_limit is not None:
- if lower_include:
- am = ma.masked_less(am, lower_limit)
- else:
- am = ma.masked_less_equal(am, lower_limit)
- if upper_limit is not None:
- if upper_include:
- am = ma.masked_greater(am, upper_limit)
- else:
- am = ma.masked_greater_equal(am, upper_limit)
- if am.count() == 0:
- raise ValueError("No array values within given limits")
- return am
- def tmean(a, limits=None, inclusive=(True, True), axis=None):
- """Compute the trimmed mean.
- This function finds the arithmetic mean of given values, ignoring values
- outside the given `limits`.
- Parameters
- ----------
- a : array_like
- Array of values.
- limits : None or (lower limit, upper limit), optional
- Values in the input array less than the lower limit or greater than the
- upper limit will be ignored. When limits is None (default), then all
- values are used. Either of the limit values in the tuple can also be
- None representing a half-open interval.
- inclusive : (bool, bool), optional
- A tuple consisting of the (lower flag, upper flag). These flags
- determine whether values exactly equal to the lower or upper limits
- are included. The default value is (True, True).
- axis : int or None, optional
- Axis along which to compute test. Default is None.
- Returns
- -------
- tmean : ndarray
- Trimmed mean.
- See Also
- --------
- trim_mean : Returns mean after trimming a proportion from both tails.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy import stats
- >>> x = np.arange(20)
- >>> stats.tmean(x)
- 9.5
- >>> stats.tmean(x, (3,17))
- 10.0
- """
- a = asarray(a)
- if limits is None:
- return np.mean(a, axis)
- am = _mask_to_limits(a, limits, inclusive)
- mean = np.ma.filled(am.mean(axis=axis), fill_value=np.nan)
- return mean if mean.ndim > 0 else mean.item()
- def tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
- """Compute the trimmed variance.
- This function computes the sample variance of an array of values,
- while ignoring values which are outside of given `limits`.
- Parameters
- ----------
- a : array_like
- Array of values.
- limits : None or (lower limit, upper limit), optional
- Values in the input array less than the lower limit or greater than the
- upper limit will be ignored. When limits is None, then all values are
- used. Either of the limit values in the tuple can also be None
- representing a half-open interval. The default value is None.
- inclusive : (bool, bool), optional
- A tuple consisting of the (lower flag, upper flag). These flags
- determine whether values exactly equal to the lower or upper limits
- are included. The default value is (True, True).
- axis : int or None, optional
- Axis along which to operate. Default is 0. If None, compute over the
- whole array `a`.
- ddof : int, optional
- Delta degrees of freedom. Default is 1.
- Returns
- -------
- tvar : float
- Trimmed variance.
- Notes
- -----
- `tvar` computes the unbiased sample variance, i.e. it uses a correction
- factor ``n / (n - 1)``.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy import stats
- >>> x = np.arange(20)
- >>> stats.tvar(x)
- 35.0
- >>> stats.tvar(x, (3,17))
- 20.0
- """
- a = asarray(a)
- a = a.astype(float)
- if limits is None:
- return a.var(ddof=ddof, axis=axis)
- am = _mask_to_limits(a, limits, inclusive)
- amnan = am.filled(fill_value=np.nan)
- return np.nanvar(amnan, ddof=ddof, axis=axis)
- def tmin(a, lowerlimit=None, axis=0, inclusive=True, nan_policy='propagate'):
- """Compute the trimmed minimum.
- This function finds the miminum value of an array `a` along the
- specified axis, but only considering values greater than a specified
- lower limit.
- Parameters
- ----------
- a : array_like
- Array of values.
- lowerlimit : None or float, optional
- Values in the input array less than the given limit will be ignored.
- When lowerlimit is None, then all values are used. The default value
- is None.
- axis : int or None, optional
- Axis along which to operate. Default is 0. If None, compute over the
- whole array `a`.
- inclusive : {True, False}, optional
- This flag determines whether values exactly equal to the lower limit
- are included. The default value is True.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': returns nan
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- Returns
- -------
- tmin : float, int or ndarray
- Trimmed minimum.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy import stats
- >>> x = np.arange(20)
- >>> stats.tmin(x)
- 0
- >>> stats.tmin(x, 13)
- 13
- >>> stats.tmin(x, 13, inclusive=False)
- 14
- """
- a, axis = _chk_asarray(a, axis)
- am = _mask_to_limits(a, (lowerlimit, None), (inclusive, False))
- contains_nan, nan_policy = _contains_nan(am, nan_policy)
- if contains_nan and nan_policy == 'omit':
- am = ma.masked_invalid(am)
- res = ma.minimum.reduce(am, axis).data
- if res.ndim == 0:
- return res[()]
- return res
- def tmax(a, upperlimit=None, axis=0, inclusive=True, nan_policy='propagate'):
- """Compute the trimmed maximum.
- This function computes the maximum value of an array along a given axis,
- while ignoring values larger than a specified upper limit.
- Parameters
- ----------
- a : array_like
- Array of values.
- upperlimit : None or float, optional
- Values in the input array greater than the given limit will be ignored.
- When upperlimit is None, then all values are used. The default value
- is None.
- axis : int or None, optional
- Axis along which to operate. Default is 0. If None, compute over the
- whole array `a`.
- inclusive : {True, False}, optional
- This flag determines whether values exactly equal to the upper limit
- are included. The default value is True.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': returns nan
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- Returns
- -------
- tmax : float, int or ndarray
- Trimmed maximum.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy import stats
- >>> x = np.arange(20)
- >>> stats.tmax(x)
- 19
- >>> stats.tmax(x, 13)
- 13
- >>> stats.tmax(x, 13, inclusive=False)
- 12
- """
- a, axis = _chk_asarray(a, axis)
- am = _mask_to_limits(a, (None, upperlimit), (False, inclusive))
- contains_nan, nan_policy = _contains_nan(am, nan_policy)
- if contains_nan and nan_policy == 'omit':
- am = ma.masked_invalid(am)
- res = ma.maximum.reduce(am, axis).data
- if res.ndim == 0:
- return res[()]
- return res
- def tstd(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
- """Compute the trimmed sample standard deviation.
- This function finds the sample standard deviation of given values,
- ignoring values outside the given `limits`.
- Parameters
- ----------
- a : array_like
- Array of values.
- limits : None or (lower limit, upper limit), optional
- Values in the input array less than the lower limit or greater than the
- upper limit will be ignored. When limits is None, then all values are
- used. Either of the limit values in the tuple can also be None
- representing a half-open interval. The default value is None.
- inclusive : (bool, bool), optional
- A tuple consisting of the (lower flag, upper flag). These flags
- determine whether values exactly equal to the lower or upper limits
- are included. The default value is (True, True).
- axis : int or None, optional
- Axis along which to operate. Default is 0. If None, compute over the
- whole array `a`.
- ddof : int, optional
- Delta degrees of freedom. Default is 1.
- Returns
- -------
- tstd : float
- Trimmed sample standard deviation.
- Notes
- -----
- `tstd` computes the unbiased sample standard deviation, i.e. it uses a
- correction factor ``n / (n - 1)``.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy import stats
- >>> x = np.arange(20)
- >>> stats.tstd(x)
- 5.9160797830996161
- >>> stats.tstd(x, (3,17))
- 4.4721359549995796
- """
- return np.sqrt(tvar(a, limits, inclusive, axis, ddof))
- def tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
- """Compute the trimmed standard error of the mean.
- This function finds the standard error of the mean for given
- values, ignoring values outside the given `limits`.
- Parameters
- ----------
- a : array_like
- Array of values.
- limits : None or (lower limit, upper limit), optional
- Values in the input array less than the lower limit or greater than the
- upper limit will be ignored. When limits is None, then all values are
- used. Either of the limit values in the tuple can also be None
- representing a half-open interval. The default value is None.
- inclusive : (bool, bool), optional
- A tuple consisting of the (lower flag, upper flag). These flags
- determine whether values exactly equal to the lower or upper limits
- are included. The default value is (True, True).
- axis : int or None, optional
- Axis along which to operate. Default is 0. If None, compute over the
- whole array `a`.
- ddof : int, optional
- Delta degrees of freedom. Default is 1.
- Returns
- -------
- tsem : float
- Trimmed standard error of the mean.
- Notes
- -----
- `tsem` uses unbiased sample standard deviation, i.e. it uses a
- correction factor ``n / (n - 1)``.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy import stats
- >>> x = np.arange(20)
- >>> stats.tsem(x)
- 1.3228756555322954
- >>> stats.tsem(x, (3,17))
- 1.1547005383792515
- """
- a = np.asarray(a).ravel()
- if limits is None:
- return a.std(ddof=ddof) / np.sqrt(a.size)
- am = _mask_to_limits(a, limits, inclusive)
- sd = np.sqrt(np.ma.var(am, ddof=ddof, axis=axis))
- return sd / np.sqrt(am.count())
- #####################################
- # MOMENTS #
- #####################################
- def _moment_outputs(kwds):
- moment = np.atleast_1d(kwds.get('moment', 1))
- if moment.size == 0:
- raise ValueError("'moment' must be a scalar or a non-empty 1D "
- "list/array.")
- return len(moment)
- def _moment_result_object(*args):
- if len(args) == 1:
- return args[0]
- return np.asarray(args)
- # `moment` fits into the `_axis_nan_policy` pattern, but it is a bit unusual
- # because the number of outputs is variable. Specifically,
- # `result_to_tuple=lambda x: (x,)` may be surprising for a function that
- # can produce more than one output, but it is intended here.
- # When `moment is called to produce the output:
- # - `result_to_tuple` packs the returned array into a single-element tuple,
- # - `_moment_result_object` extracts and returns that single element.
- # However, when the input array is empty, `moment` is never called. Instead,
- # - `_check_empty_inputs` is used to produce an empty array with the
- # appropriate dimensions.
- # - A list comprehension creates the appropriate number of copies of this
- # array, depending on `n_outputs`.
- # - This list - which may have multiple elements - is passed into
- # `_moment_result_object`.
- # - If there is a single output, `_moment_result_object` extracts and returns
- # the single output from the list.
- # - If there are multiple outputs, and therefore multiple elements in the list,
- # `_moment_result_object` converts the list of arrays to a single array and
- # returns it.
- # Currently this leads to a slight inconsistency: when the input array is
- # empty, there is no distinction between the `moment` function being called
- # with parameter `moments=1` and `moments=[1]`; the latter *should* produce
- # the same as the former but with a singleton zeroth dimension.
- @_axis_nan_policy_factory( # noqa: E302
- _moment_result_object, n_samples=1, result_to_tuple=lambda x: (x,),
- n_outputs=_moment_outputs
- )
- def moment(a, moment=1, axis=0, nan_policy='propagate'):
- r"""Calculate the nth moment about the mean for a sample.
- A moment is a specific quantitative measure of the shape of a set of
- points. It is often used to calculate coefficients of skewness and kurtosis
- due to its close relationship with them.
- Parameters
- ----------
- a : array_like
- Input array.
- moment : int or array_like of ints, optional
- Order of central moment that is returned. Default is 1.
- axis : int or None, optional
- Axis along which the central moment is computed. Default is 0.
- If None, compute over the whole array `a`.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': returns nan
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- Returns
- -------
- n-th central moment : ndarray or float
- The appropriate moment along the given axis or over all values if axis
- is None. The denominator for the moment calculation is the number of
- observations, no degrees of freedom correction is done.
- See Also
- --------
- kurtosis, skew, describe
- Notes
- -----
- The k-th central moment of a data sample is:
- .. math::
- m_k = \frac{1}{n} \sum_{i = 1}^n (x_i - \bar{x})^k
- Where n is the number of samples and x-bar is the mean. This function uses
- exponentiation by squares [1]_ for efficiency.
- Note that, if `a` is an empty array (``a.size == 0``), array `moment` with
- one element (`moment.size == 1`) is treated the same as scalar `moment`
- (``np.isscalar(moment)``). This might produce arrays of unexpected shape.
- References
- ----------
- .. [1] https://eli.thegreenplace.net/2009/03/21/efficient-integer-exponentiation-algorithms
- Examples
- --------
- >>> from scipy.stats import moment
- >>> moment([1, 2, 3, 4, 5], moment=1)
- 0.0
- >>> moment([1, 2, 3, 4, 5], moment=2)
- 2.0
- """
- a, axis = _chk_asarray(a, axis)
- contains_nan, nan_policy = _contains_nan(a, nan_policy)
- if contains_nan and nan_policy == 'omit':
- a = ma.masked_invalid(a)
- return mstats_basic.moment(a, moment, axis)
- # for array_like moment input, return a value for each.
- if not np.isscalar(moment):
- mean = a.mean(axis, keepdims=True)
- mmnt = [_moment(a, i, axis, mean=mean) for i in moment]
- return np.array(mmnt)
- else:
- return _moment(a, moment, axis)
- # Moment with optional pre-computed mean, equal to a.mean(axis, keepdims=True)
- def _moment(a, moment, axis, *, mean=None):
- if np.abs(moment - np.round(moment)) > 0:
- raise ValueError("All moment parameters must be integers")
- # moment of empty array is the same regardless of order
- if a.size == 0:
- return np.mean(a, axis=axis)
- if moment == 0 or moment == 1:
- # By definition the zeroth moment about the mean is 1, and the first
- # moment is 0.
- shape = list(a.shape)
- del shape[axis]
- dtype = a.dtype.type if a.dtype.kind in 'fc' else np.float64
- if len(shape) == 0:
- return dtype(1.0 if moment == 0 else 0.0)
- else:
- return (np.ones(shape, dtype=dtype) if moment == 0
- else np.zeros(shape, dtype=dtype))
- else:
- # Exponentiation by squares: form exponent sequence
- n_list = [moment]
- current_n = moment
- while current_n > 2:
- if current_n % 2:
- current_n = (current_n - 1) / 2
- else:
- current_n /= 2
- n_list.append(current_n)
- # Starting point for exponentiation by squares
- mean = a.mean(axis, keepdims=True) if mean is None else mean
- a_zero_mean = a - mean
- eps = np.finfo(a_zero_mean.dtype).resolution * 10
- with np.errstate(divide='ignore', invalid='ignore'):
- rel_diff = np.max(np.abs(a_zero_mean), axis=axis,
- keepdims=True) / np.abs(mean)
- with np.errstate(invalid='ignore'):
- precision_loss = np.any(rel_diff < eps)
- if precision_loss:
- message = ("Precision loss occurred in moment calculation due to "
- "catastrophic cancellation. This occurs when the data "
- "are nearly identical. Results may be unreliable.")
- warnings.warn(message, RuntimeWarning, stacklevel=4)
- if n_list[-1] == 1:
- s = a_zero_mean.copy()
- else:
- s = a_zero_mean**2
- # Perform multiplications
- for n in n_list[-2::-1]:
- s = s**2
- if n % 2:
- s *= a_zero_mean
- return np.mean(s, axis)
- def _var(x, axis=0, ddof=0, mean=None):
- # Calculate variance of sample, warning if precision is lost
- var = _moment(x, 2, axis, mean=mean)
- if ddof != 0:
- n = x.shape[axis] if axis is not None else x.size
- var *= np.divide(n, n-ddof) # to avoid error on division by zero
- return var
- @_axis_nan_policy_factory(
- lambda x: x, result_to_tuple=lambda x: (x,), n_outputs=1
- )
- def skew(a, axis=0, bias=True, nan_policy='propagate'):
- r"""Compute the sample skewness of a data set.
- For normally distributed data, the skewness should be about zero. For
- unimodal continuous distributions, a skewness value greater than zero means
- that there is more weight in the right tail of the distribution. The
- function `skewtest` can be used to determine if the skewness value
- is close enough to zero, statistically speaking.
- Parameters
- ----------
- a : ndarray
- Input array.
- axis : int or None, optional
- Axis along which skewness is calculated. Default is 0.
- If None, compute over the whole array `a`.
- bias : bool, optional
- If False, then the calculations are corrected for statistical bias.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': returns nan
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- Returns
- -------
- skewness : ndarray
- The skewness of values along an axis, returning NaN where all values
- are equal.
- Notes
- -----
- The sample skewness is computed as the Fisher-Pearson coefficient
- of skewness, i.e.
- .. math::
- g_1=\frac{m_3}{m_2^{3/2}}
- where
- .. math::
- m_i=\frac{1}{N}\sum_{n=1}^N(x[n]-\bar{x})^i
- is the biased sample :math:`i\texttt{th}` central moment, and
- :math:`\bar{x}` is
- the sample mean. If ``bias`` is False, the calculations are
- corrected for bias and the value computed is the adjusted
- Fisher-Pearson standardized moment coefficient, i.e.
- .. math::
- G_1=\frac{k_3}{k_2^{3/2}}=
- \frac{\sqrt{N(N-1)}}{N-2}\frac{m_3}{m_2^{3/2}}.
- References
- ----------
- .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
- Probability and Statistics Tables and Formulae. Chapman & Hall: New
- York. 2000.
- Section 2.2.24.1
- Examples
- --------
- >>> from scipy.stats import skew
- >>> skew([1, 2, 3, 4, 5])
- 0.0
- >>> skew([2, 8, 0, 4, 1, 9, 9, 0])
- 0.2650554122698573
- """
- a, axis = _chk_asarray(a, axis)
- n = a.shape[axis]
- contains_nan, nan_policy = _contains_nan(a, nan_policy)
- if contains_nan and nan_policy == 'omit':
- a = ma.masked_invalid(a)
- return mstats_basic.skew(a, axis, bias)
- mean = a.mean(axis, keepdims=True)
- m2 = _moment(a, 2, axis, mean=mean)
- m3 = _moment(a, 3, axis, mean=mean)
- with np.errstate(all='ignore'):
- zero = (m2 <= (np.finfo(m2.dtype).resolution * mean.squeeze(axis))**2)
- vals = np.where(zero, np.nan, m3 / m2**1.5)
- if not bias:
- can_correct = ~zero & (n > 2)
- if can_correct.any():
- m2 = np.extract(can_correct, m2)
- m3 = np.extract(can_correct, m3)
- nval = np.sqrt((n - 1.0) * n) / (n - 2.0) * m3 / m2**1.5
- np.place(vals, can_correct, nval)
- if vals.ndim == 0:
- return vals.item()
- return vals
- @_axis_nan_policy_factory(
- lambda x: x, result_to_tuple=lambda x: (x,), n_outputs=1
- )
- def kurtosis(a, axis=0, fisher=True, bias=True, nan_policy='propagate'):
- """Compute the kurtosis (Fisher or Pearson) of a dataset.
- Kurtosis is the fourth central moment divided by the square of the
- variance. If Fisher's definition is used, then 3.0 is subtracted from
- the result to give 0.0 for a normal distribution.
- If bias is False then the kurtosis is calculated using k statistics to
- eliminate bias coming from biased moment estimators
- Use `kurtosistest` to see if result is close enough to normal.
- Parameters
- ----------
- a : array
- Data for which the kurtosis is calculated.
- axis : int or None, optional
- Axis along which the kurtosis is calculated. Default is 0.
- If None, compute over the whole array `a`.
- fisher : bool, optional
- If True, Fisher's definition is used (normal ==> 0.0). If False,
- Pearson's definition is used (normal ==> 3.0).
- bias : bool, optional
- If False, then the calculations are corrected for statistical bias.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan. 'propagate' returns nan,
- 'raise' throws an error, 'omit' performs the calculations ignoring nan
- values. Default is 'propagate'.
- Returns
- -------
- kurtosis : array
- The kurtosis of values along an axis, returning NaN where all values
- are equal.
- References
- ----------
- .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
- Probability and Statistics Tables and Formulae. Chapman & Hall: New
- York. 2000.
- Examples
- --------
- In Fisher's definiton, the kurtosis of the normal distribution is zero.
- In the following example, the kurtosis is close to zero, because it was
- calculated from the dataset, not from the continuous distribution.
- >>> import numpy as np
- >>> from scipy.stats import norm, kurtosis
- >>> data = norm.rvs(size=1000, random_state=3)
- >>> kurtosis(data)
- -0.06928694200380558
- The distribution with a higher kurtosis has a heavier tail.
- The zero valued kurtosis of the normal distribution in Fisher's definition
- can serve as a reference point.
- >>> import matplotlib.pyplot as plt
- >>> import scipy.stats as stats
- >>> from scipy.stats import kurtosis
- >>> x = np.linspace(-5, 5, 100)
- >>> ax = plt.subplot()
- >>> distnames = ['laplace', 'norm', 'uniform']
- >>> for distname in distnames:
- ... if distname == 'uniform':
- ... dist = getattr(stats, distname)(loc=-2, scale=4)
- ... else:
- ... dist = getattr(stats, distname)
- ... data = dist.rvs(size=1000)
- ... kur = kurtosis(data, fisher=True)
- ... y = dist.pdf(x)
- ... ax.plot(x, y, label="{}, {}".format(distname, round(kur, 3)))
- ... ax.legend()
- The Laplace distribution has a heavier tail than the normal distribution.
- The uniform distribution (which has negative kurtosis) has the thinnest
- tail.
- """
- a, axis = _chk_asarray(a, axis)
- contains_nan, nan_policy = _contains_nan(a, nan_policy)
- if contains_nan and nan_policy == 'omit':
- a = ma.masked_invalid(a)
- return mstats_basic.kurtosis(a, axis, fisher, bias)
- n = a.shape[axis]
- mean = a.mean(axis, keepdims=True)
- m2 = _moment(a, 2, axis, mean=mean)
- m4 = _moment(a, 4, axis, mean=mean)
- with np.errstate(all='ignore'):
- zero = (m2 <= (np.finfo(m2.dtype).resolution * mean.squeeze(axis))**2)
- vals = np.where(zero, np.nan, m4 / m2**2.0)
- if not bias:
- can_correct = ~zero & (n > 3)
- if can_correct.any():
- m2 = np.extract(can_correct, m2)
- m4 = np.extract(can_correct, m4)
- nval = 1.0/(n-2)/(n-3) * ((n**2-1.0)*m4/m2**2.0 - 3*(n-1)**2.0)
- np.place(vals, can_correct, nval + 3.0)
- if vals.ndim == 0:
- vals = vals.item() # array scalar
- return vals - 3 if fisher else vals
- DescribeResult = namedtuple('DescribeResult',
- ('nobs', 'minmax', 'mean', 'variance', 'skewness',
- 'kurtosis'))
- def describe(a, axis=0, ddof=1, bias=True, nan_policy='propagate'):
- """Compute several descriptive statistics of the passed array.
- Parameters
- ----------
- a : array_like
- Input data.
- axis : int or None, optional
- Axis along which statistics are calculated. Default is 0.
- If None, compute over the whole array `a`.
- ddof : int, optional
- Delta degrees of freedom (only for variance). Default is 1.
- bias : bool, optional
- If False, then the skewness and kurtosis calculations are corrected
- for statistical bias.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': returns nan
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- Returns
- -------
- nobs : int or ndarray of ints
- Number of observations (length of data along `axis`).
- When 'omit' is chosen as nan_policy, the length along each axis
- slice is counted separately.
- minmax: tuple of ndarrays or floats
- Minimum and maximum value of `a` along the given axis.
- mean : ndarray or float
- Arithmetic mean of `a` along the given axis.
- variance : ndarray or float
- Unbiased variance of `a` along the given axis; denominator is number
- of observations minus one.
- skewness : ndarray or float
- Skewness of `a` along the given axis, based on moment calculations
- with denominator equal to the number of observations, i.e. no degrees
- of freedom correction.
- kurtosis : ndarray or float
- Kurtosis (Fisher) of `a` along the given axis. The kurtosis is
- normalized so that it is zero for the normal distribution. No
- degrees of freedom are used.
- See Also
- --------
- skew, kurtosis
- Examples
- --------
- >>> import numpy as np
- >>> from scipy import stats
- >>> a = np.arange(10)
- >>> stats.describe(a)
- DescribeResult(nobs=10, minmax=(0, 9), mean=4.5,
- variance=9.166666666666666, skewness=0.0,
- kurtosis=-1.2242424242424244)
- >>> b = [[1, 2], [3, 4]]
- >>> stats.describe(b)
- DescribeResult(nobs=2, minmax=(array([1, 2]), array([3, 4])),
- mean=array([2., 3.]), variance=array([2., 2.]),
- skewness=array([0., 0.]), kurtosis=array([-2., -2.]))
- """
- a, axis = _chk_asarray(a, axis)
- contains_nan, nan_policy = _contains_nan(a, nan_policy)
- if contains_nan and nan_policy == 'omit':
- a = ma.masked_invalid(a)
- return mstats_basic.describe(a, axis, ddof, bias)
- if a.size == 0:
- raise ValueError("The input must not be empty.")
- n = a.shape[axis]
- mm = (np.min(a, axis=axis), np.max(a, axis=axis))
- m = np.mean(a, axis=axis)
- v = _var(a, axis=axis, ddof=ddof)
- sk = skew(a, axis, bias=bias)
- kurt = kurtosis(a, axis, bias=bias)
- return DescribeResult(n, mm, m, v, sk, kurt)
- #####################################
- # NORMALITY TESTS #
- #####################################
- def _normtest_finish(z, alternative):
- """Common code between all the normality-test functions."""
- if alternative == 'less':
- prob = distributions.norm.cdf(z)
- elif alternative == 'greater':
- prob = distributions.norm.sf(z)
- elif alternative == 'two-sided':
- prob = 2 * distributions.norm.sf(np.abs(z))
- else:
- raise ValueError("alternative must be "
- "'less', 'greater' or 'two-sided'")
- if z.ndim == 0:
- z = z[()]
- return z, prob
- SkewtestResult = namedtuple('SkewtestResult', ('statistic', 'pvalue'))
- def skewtest(a, axis=0, nan_policy='propagate', alternative='two-sided'):
- """Test whether the skew is different from the normal distribution.
- This function tests the null hypothesis that the skewness of
- the population that the sample was drawn from is the same
- as that of a corresponding normal distribution.
- Parameters
- ----------
- a : array
- The data to be tested.
- axis : int or None, optional
- Axis along which statistics are calculated. Default is 0.
- If None, compute over the whole array `a`.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': returns nan
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- alternative : {'two-sided', 'less', 'greater'}, optional
- Defines the alternative hypothesis. Default is 'two-sided'.
- The following options are available:
- * 'two-sided': the skewness of the distribution underlying the sample
- is different from that of the normal distribution (i.e. 0)
- * 'less': the skewness of the distribution underlying the sample
- is less than that of the normal distribution
- * 'greater': the skewness of the distribution underlying the sample
- is greater than that of the normal distribution
- .. versionadded:: 1.7.0
- Returns
- -------
- statistic : float
- The computed z-score for this test.
- pvalue : float
- The p-value for the hypothesis test.
- Notes
- -----
- The sample size must be at least 8.
- References
- ----------
- .. [1] R. B. D'Agostino, A. J. Belanger and R. B. D'Agostino Jr.,
- "A suggestion for using powerful and informative tests of
- normality", American Statistician 44, pp. 316-321, 1990.
- Examples
- --------
- >>> from scipy.stats import skewtest
- >>> skewtest([1, 2, 3, 4, 5, 6, 7, 8])
- SkewtestResult(statistic=1.0108048609177787, pvalue=0.3121098361421897)
- >>> skewtest([2, 8, 0, 4, 1, 9, 9, 0])
- SkewtestResult(statistic=0.44626385374196975, pvalue=0.6554066631275459)
- >>> skewtest([1, 2, 3, 4, 5, 6, 7, 8000])
- SkewtestResult(statistic=3.571773510360407, pvalue=0.0003545719905823133)
- >>> skewtest([100, 100, 100, 100, 100, 100, 100, 101])
- SkewtestResult(statistic=3.5717766638478072, pvalue=0.000354567720281634)
- >>> skewtest([1, 2, 3, 4, 5, 6, 7, 8], alternative='less')
- SkewtestResult(statistic=1.0108048609177787, pvalue=0.8439450819289052)
- >>> skewtest([1, 2, 3, 4, 5, 6, 7, 8], alternative='greater')
- SkewtestResult(statistic=1.0108048609177787, pvalue=0.15605491807109484)
- """
- a, axis = _chk_asarray(a, axis)
- contains_nan, nan_policy = _contains_nan(a, nan_policy)
- if contains_nan and nan_policy == 'omit':
- a = ma.masked_invalid(a)
- return mstats_basic.skewtest(a, axis, alternative)
- if axis is None:
- a = np.ravel(a)
- axis = 0
- b2 = skew(a, axis)
- n = a.shape[axis]
- if n < 8:
- raise ValueError(
- "skewtest is not valid with less than 8 samples; %i samples"
- " were given." % int(n))
- y = b2 * math.sqrt(((n + 1) * (n + 3)) / (6.0 * (n - 2)))
- beta2 = (3.0 * (n**2 + 27*n - 70) * (n+1) * (n+3) /
- ((n-2.0) * (n+5) * (n+7) * (n+9)))
- W2 = -1 + math.sqrt(2 * (beta2 - 1))
- delta = 1 / math.sqrt(0.5 * math.log(W2))
- alpha = math.sqrt(2.0 / (W2 - 1))
- y = np.where(y == 0, 1, y)
- Z = delta * np.log(y / alpha + np.sqrt((y / alpha)**2 + 1))
- return SkewtestResult(*_normtest_finish(Z, alternative))
- KurtosistestResult = namedtuple('KurtosistestResult', ('statistic', 'pvalue'))
- def kurtosistest(a, axis=0, nan_policy='propagate', alternative='two-sided'):
- """Test whether a dataset has normal kurtosis.
- This function tests the null hypothesis that the kurtosis
- of the population from which the sample was drawn is that
- of the normal distribution.
- Parameters
- ----------
- a : array
- Array of the sample data.
- axis : int or None, optional
- Axis along which to compute test. Default is 0. If None,
- compute over the whole array `a`.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': returns nan
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- alternative : {'two-sided', 'less', 'greater'}, optional
- Defines the alternative hypothesis.
- The following options are available (default is 'two-sided'):
- * 'two-sided': the kurtosis of the distribution underlying the sample
- is different from that of the normal distribution
- * 'less': the kurtosis of the distribution underlying the sample
- is less than that of the normal distribution
- * 'greater': the kurtosis of the distribution underlying the sample
- is greater than that of the normal distribution
- .. versionadded:: 1.7.0
- Returns
- -------
- statistic : float
- The computed z-score for this test.
- pvalue : float
- The p-value for the hypothesis test.
- Notes
- -----
- Valid only for n>20. This function uses the method described in [1]_.
- References
- ----------
- .. [1] see e.g. F. J. Anscombe, W. J. Glynn, "Distribution of the kurtosis
- statistic b2 for normal samples", Biometrika, vol. 70, pp. 227-234, 1983.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.stats import kurtosistest
- >>> kurtosistest(list(range(20)))
- KurtosistestResult(statistic=-1.7058104152122062, pvalue=0.08804338332528348)
- >>> kurtosistest(list(range(20)), alternative='less')
- KurtosistestResult(statistic=-1.7058104152122062, pvalue=0.04402169166264174)
- >>> kurtosistest(list(range(20)), alternative='greater')
- KurtosistestResult(statistic=-1.7058104152122062, pvalue=0.9559783083373583)
- >>> rng = np.random.default_rng()
- >>> s = rng.normal(0, 1, 1000)
- >>> kurtosistest(s)
- KurtosistestResult(statistic=-1.475047944490622, pvalue=0.14019965402996987)
- """
- a, axis = _chk_asarray(a, axis)
- contains_nan, nan_policy = _contains_nan(a, nan_policy)
- if contains_nan and nan_policy == 'omit':
- a = ma.masked_invalid(a)
- return mstats_basic.kurtosistest(a, axis, alternative)
- n = a.shape[axis]
- if n < 5:
- raise ValueError(
- "kurtosistest requires at least 5 observations; %i observations"
- " were given." % int(n))
- if n < 20:
- warnings.warn("kurtosistest only valid for n>=20 ... continuing "
- "anyway, n=%i" % int(n))
- b2 = kurtosis(a, axis, fisher=False)
- E = 3.0*(n-1) / (n+1)
- varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1.)*(n+3)*(n+5)) # [1]_ Eq. 1
- x = (b2-E) / np.sqrt(varb2) # [1]_ Eq. 4
- # [1]_ Eq. 2:
- sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) /
- (n*(n-2)*(n-3)))
- # [1]_ Eq. 3:
- A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2)))
- term1 = 1 - 2/(9.0*A)
- denom = 1 + x*np.sqrt(2/(A-4.0))
- term2 = np.sign(denom) * np.where(denom == 0.0, np.nan,
- np.power((1-2.0/A)/np.abs(denom), 1/3.0))
- if np.any(denom == 0):
- msg = "Test statistic not defined in some cases due to division by " \
- "zero. Return nan in that case..."
- warnings.warn(msg, RuntimeWarning)
- Z = (term1 - term2) / np.sqrt(2/(9.0*A)) # [1]_ Eq. 5
- # zprob uses upper tail, so Z needs to be positive
- return KurtosistestResult(*_normtest_finish(Z, alternative))
- NormaltestResult = namedtuple('NormaltestResult', ('statistic', 'pvalue'))
- def normaltest(a, axis=0, nan_policy='propagate'):
- """Test whether a sample differs from a normal distribution.
- This function tests the null hypothesis that a sample comes
- from a normal distribution. It is based on D'Agostino and
- Pearson's [1]_, [2]_ test that combines skew and kurtosis to
- produce an omnibus test of normality.
- Parameters
- ----------
- a : array_like
- The array containing the sample to be tested.
- axis : int or None, optional
- Axis along which to compute test. Default is 0. If None,
- compute over the whole array `a`.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': returns nan
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- Returns
- -------
- statistic : float or array
- ``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and
- ``k`` is the z-score returned by `kurtosistest`.
- pvalue : float or array
- A 2-sided chi squared probability for the hypothesis test.
- References
- ----------
- .. [1] D'Agostino, R. B. (1971), "An omnibus test of normality for
- moderate and large sample size", Biometrika, 58, 341-348
- .. [2] D'Agostino, R. and Pearson, E. S. (1973), "Tests for departure from
- normality", Biometrika, 60, 613-622
- Examples
- --------
- >>> import numpy as np
- >>> from scipy import stats
- >>> rng = np.random.default_rng()
- >>> pts = 1000
- >>> a = rng.normal(0, 1, size=pts)
- >>> b = rng.normal(2, 1, size=pts)
- >>> x = np.concatenate((a, b))
- >>> k2, p = stats.normaltest(x)
- >>> alpha = 1e-3
- >>> print("p = {:g}".format(p))
- p = 8.4713e-19
- >>> if p < alpha: # null hypothesis: x comes from a normal distribution
- ... print("The null hypothesis can be rejected")
- ... else:
- ... print("The null hypothesis cannot be rejected")
- The null hypothesis can be rejected
- """
- a, axis = _chk_asarray(a, axis)
- contains_nan, nan_policy = _contains_nan(a, nan_policy)
- if contains_nan and nan_policy == 'omit':
- a = ma.masked_invalid(a)
- return mstats_basic.normaltest(a, axis)
- s, _ = skewtest(a, axis)
- k, _ = kurtosistest(a, axis)
- k2 = s*s + k*k
- return NormaltestResult(k2, distributions.chi2.sf(k2, 2))
- @_axis_nan_policy_factory(SignificanceResult, default_axis=None)
- def jarque_bera(x, *, axis=None):
- """Perform the Jarque-Bera goodness of fit test on sample data.
- The Jarque-Bera test tests whether the sample data has the skewness and
- kurtosis matching a normal distribution.
- Note that this test only works for a large enough number of data samples
- (>2000) as the test statistic asymptotically has a Chi-squared distribution
- with 2 degrees of freedom.
- Parameters
- ----------
- x : array_like
- Observations of a random variable.
- axis : int or None, default: 0
- If an int, the axis of the input along which to compute the statistic.
- The statistic of each axis-slice (e.g. row) of the input will appear in
- a corresponding element of the output.
- If ``None``, the input will be raveled before computing the statistic.
- Returns
- -------
- result : SignificanceResult
- An object with the following attributes:
- statistic : float
- The test statistic.
- pvalue : float
- The p-value for the hypothesis test.
- References
- ----------
- .. [1] Jarque, C. and Bera, A. (1980) "Efficient tests for normality,
- homoscedasticity and serial independence of regression residuals",
- 6 Econometric Letters 255-259.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy import stats
- >>> rng = np.random.default_rng()
- >>> x = rng.normal(0, 1, 100000)
- >>> jarque_bera_test = stats.jarque_bera(x)
- >>> jarque_bera_test
- Jarque_beraResult(statistic=3.3415184718131554, pvalue=0.18810419594996775)
- >>> jarque_bera_test.statistic
- 3.3415184718131554
- >>> jarque_bera_test.pvalue
- 0.18810419594996775
- """
- x = np.asarray(x)
- if axis is None:
- x = x.ravel()
- axis = 0
- n = x.shape[axis]
- if n == 0:
- raise ValueError('At least one observation is required.')
- mu = x.mean(axis=axis, keepdims=True)
- diffx = x - mu
- s = skew(diffx, axis=axis, _no_deco=True)
- k = kurtosis(diffx, axis=axis, _no_deco=True)
- statistic = n / 6 * (s**2 + k**2 / 4)
- pvalue = distributions.chi2.sf(statistic, df=2)
- return SignificanceResult(statistic, pvalue)
- #####################################
- # FREQUENCY FUNCTIONS #
- #####################################
- def scoreatpercentile(a, per, limit=(), interpolation_method='fraction',
- axis=None):
- """Calculate the score at a given percentile of the input sequence.
- For example, the score at `per=50` is the median. If the desired quantile
- lies between two data points, we interpolate between them, according to
- the value of `interpolation`. If the parameter `limit` is provided, it
- should be a tuple (lower, upper) of two values.
- Parameters
- ----------
- a : array_like
- A 1-D array of values from which to extract score.
- per : array_like
- Percentile(s) at which to extract score. Values should be in range
- [0,100].
- limit : tuple, optional
- Tuple of two scalars, the lower and upper limits within which to
- compute the percentile. Values of `a` outside
- this (closed) interval will be ignored.
- interpolation_method : {'fraction', 'lower', 'higher'}, optional
- Specifies the interpolation method to use,
- when the desired quantile lies between two data points `i` and `j`
- The following options are available (default is 'fraction'):
- * 'fraction': ``i + (j - i) * fraction`` where ``fraction`` is the
- fractional part of the index surrounded by ``i`` and ``j``
- * 'lower': ``i``
- * 'higher': ``j``
- axis : int, optional
- Axis along which the percentiles are computed. Default is None. If
- None, compute over the whole array `a`.
- Returns
- -------
- score : float or ndarray
- Score at percentile(s).
- See Also
- --------
- percentileofscore, numpy.percentile
- Notes
- -----
- This function will become obsolete in the future.
- For NumPy 1.9 and higher, `numpy.percentile` provides all the functionality
- that `scoreatpercentile` provides. And it's significantly faster.
- Therefore it's recommended to use `numpy.percentile` for users that have
- numpy >= 1.9.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy import stats
- >>> a = np.arange(100)
- >>> stats.scoreatpercentile(a, 50)
- 49.5
- """
- # adapted from NumPy's percentile function. When we require numpy >= 1.8,
- # the implementation of this function can be replaced by np.percentile.
- a = np.asarray(a)
- if a.size == 0:
- # empty array, return nan(s) with shape matching `per`
- if np.isscalar(per):
- return np.nan
- else:
- return np.full(np.asarray(per).shape, np.nan, dtype=np.float64)
- if limit:
- a = a[(limit[0] <= a) & (a <= limit[1])]
- sorted_ = np.sort(a, axis=axis)
- if axis is None:
- axis = 0
- return _compute_qth_percentile(sorted_, per, interpolation_method, axis)
- # handle sequence of per's without calling sort multiple times
- def _compute_qth_percentile(sorted_, per, interpolation_method, axis):
- if not np.isscalar(per):
- score = [_compute_qth_percentile(sorted_, i,
- interpolation_method, axis)
- for i in per]
- return np.array(score)
- if not (0 <= per <= 100):
- raise ValueError("percentile must be in the range [0, 100]")
- indexer = [slice(None)] * sorted_.ndim
- idx = per / 100. * (sorted_.shape[axis] - 1)
- if int(idx) != idx:
- # round fractional indices according to interpolation method
- if interpolation_method == 'lower':
- idx = int(np.floor(idx))
- elif interpolation_method == 'higher':
- idx = int(np.ceil(idx))
- elif interpolation_method == 'fraction':
- pass # keep idx as fraction and interpolate
- else:
- raise ValueError("interpolation_method can only be 'fraction', "
- "'lower' or 'higher'")
- i = int(idx)
- if i == idx:
- indexer[axis] = slice(i, i + 1)
- weights = array(1)
- sumval = 1.0
- else:
- indexer[axis] = slice(i, i + 2)
- j = i + 1
- weights = array([(j - idx), (idx - i)], float)
- wshape = [1] * sorted_.ndim
- wshape[axis] = 2
- weights.shape = wshape
- sumval = weights.sum()
- # Use np.add.reduce (== np.sum but a little faster) to coerce data type
- return np.add.reduce(sorted_[tuple(indexer)] * weights, axis=axis) / sumval
- def percentileofscore(a, score, kind='rank', nan_policy='propagate'):
- """Compute the percentile rank of a score relative to a list of scores.
- A `percentileofscore` of, for example, 80% means that 80% of the
- scores in `a` are below the given score. In the case of gaps or
- ties, the exact definition depends on the optional keyword, `kind`.
- Parameters
- ----------
- a : array_like
- Array to which `score` is compared.
- score : array_like
- Scores to compute percentiles for.
- kind : {'rank', 'weak', 'strict', 'mean'}, optional
- Specifies the interpretation of the resulting score.
- The following options are available (default is 'rank'):
- * 'rank': Average percentage ranking of score. In case of multiple
- matches, average the percentage rankings of all matching scores.
- * 'weak': This kind corresponds to the definition of a cumulative
- distribution function. A percentileofscore of 80% means that 80%
- of values are less than or equal to the provided score.
- * 'strict': Similar to "weak", except that only values that are
- strictly less than the given score are counted.
- * 'mean': The average of the "weak" and "strict" scores, often used
- in testing. See https://en.wikipedia.org/wiki/Percentile_rank
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Specifies how to treat `nan` values in `a`.
- The following options are available (default is 'propagate'):
- * 'propagate': returns nan (for each value in `score`).
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- Returns
- -------
- pcos : float
- Percentile-position of score (0-100) relative to `a`.
- See Also
- --------
- numpy.percentile
- scipy.stats.scoreatpercentile, scipy.stats.rankdata
- Examples
- --------
- Three-quarters of the given values lie below a given score:
- >>> import numpy as np
- >>> from scipy import stats
- >>> stats.percentileofscore([1, 2, 3, 4], 3)
- 75.0
- With multiple matches, note how the scores of the two matches, 0.6
- and 0.8 respectively, are averaged:
- >>> stats.percentileofscore([1, 2, 3, 3, 4], 3)
- 70.0
- Only 2/5 values are strictly less than 3:
- >>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='strict')
- 40.0
- But 4/5 values are less than or equal to 3:
- >>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='weak')
- 80.0
- The average between the weak and the strict scores is:
- >>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='mean')
- 60.0
- Score arrays (of any dimensionality) are supported:
- >>> stats.percentileofscore([1, 2, 3, 3, 4], [2, 3])
- array([40., 70.])
- The inputs can be infinite:
- >>> stats.percentileofscore([-np.inf, 0, 1, np.inf], [1, 2, np.inf])
- array([75., 75., 100.])
- If `a` is empty, then the resulting percentiles are all `nan`:
- >>> stats.percentileofscore([], [1, 2])
- array([nan, nan])
- """
- a = np.asarray(a)
- n = len(a)
- score = np.asarray(score)
- # Nan treatment
- cna, npa = _contains_nan(a, nan_policy, use_summation=False)
- cns, nps = _contains_nan(score, nan_policy, use_summation=False)
- if (cna or cns) and nan_policy == 'raise':
- raise ValueError("The input contains nan values")
- if cns:
- # If a score is nan, then the output should be nan
- # (also if nan_policy is "omit", because it only applies to `a`)
- score = ma.masked_where(np.isnan(score), score)
- if cna:
- if nan_policy == "omit":
- # Don't count nans
- a = ma.masked_where(np.isnan(a), a)
- n = a.count()
- if nan_policy == "propagate":
- # All outputs should be nans
- n = 0
- # Cannot compare to empty list ==> nan
- if n == 0:
- perct = np.full_like(score, np.nan, dtype=np.float64)
- else:
- # Prepare broadcasting
- score = score[..., None]
- def count(x):
- return np.count_nonzero(x, -1)
- # Despite using masked_array to omit nan values from processing,
- # the CI tests on "Azure pipelines" (but not on the other CI servers)
- # emits warnings when there are nan values, contrarily to the purpose
- # of masked_arrays. As a fix, we simply suppress the warnings.
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning,
- "invalid value encountered in less")
- sup.filter(RuntimeWarning,
- "invalid value encountered in greater")
- # Main computations/logic
- if kind == 'rank':
- left = count(a < score)
- right = count(a <= score)
- plus1 = left < right
- perct = (left + right + plus1) * (50.0 / n)
- elif kind == 'strict':
- perct = count(a < score) * (100.0 / n)
- elif kind == 'weak':
- perct = count(a <= score) * (100.0 / n)
- elif kind == 'mean':
- left = count(a < score)
- right = count(a <= score)
- perct = (left + right) * (50.0 / n)
- else:
- raise ValueError(
- "kind can only be 'rank', 'strict', 'weak' or 'mean'")
- # Re-insert nan values
- perct = ma.filled(perct, np.nan)
- if perct.ndim == 0:
- return perct[()]
- return perct
- HistogramResult = namedtuple('HistogramResult',
- ('count', 'lowerlimit', 'binsize', 'extrapoints'))
- def _histogram(a, numbins=10, defaultlimits=None, weights=None,
- printextras=False):
- """Create a histogram.
- Separate the range into several bins and return the number of instances
- in each bin.
- Parameters
- ----------
- a : array_like
- Array of scores which will be put into bins.
- numbins : int, optional
- The number of bins to use for the histogram. Default is 10.
- defaultlimits : tuple (lower, upper), optional
- The lower and upper values for the range of the histogram.
- If no value is given, a range slightly larger than the range of the
- values in a is used. Specifically ``(a.min() - s, a.max() + s)``,
- where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
- weights : array_like, optional
- The weights for each value in `a`. Default is None, which gives each
- value a weight of 1.0
- printextras : bool, optional
- If True, if there are extra points (i.e. the points that fall outside
- the bin limits) a warning is raised saying how many of those points
- there are. Default is False.
- Returns
- -------
- count : ndarray
- Number of points (or sum of weights) in each bin.
- lowerlimit : float
- Lowest value of histogram, the lower limit of the first bin.
- binsize : float
- The size of the bins (all bins have the same size).
- extrapoints : int
- The number of points outside the range of the histogram.
- See Also
- --------
- numpy.histogram
- Notes
- -----
- This histogram is based on numpy's histogram but has a larger range by
- default if default limits is not set.
- """
- a = np.ravel(a)
- if defaultlimits is None:
- if a.size == 0:
- # handle empty arrays. Undetermined range, so use 0-1.
- defaultlimits = (0, 1)
- else:
- # no range given, so use values in `a`
- data_min = a.min()
- data_max = a.max()
- # Have bins extend past min and max values slightly
- s = (data_max - data_min) / (2. * (numbins - 1.))
- defaultlimits = (data_min - s, data_max + s)
- # use numpy's histogram method to compute bins
- hist, bin_edges = np.histogram(a, bins=numbins, range=defaultlimits,
- weights=weights)
- # hist are not always floats, convert to keep with old output
- hist = np.array(hist, dtype=float)
- # fixed width for bins is assumed, as numpy's histogram gives
- # fixed width bins for int values for 'bins'
- binsize = bin_edges[1] - bin_edges[0]
- # calculate number of extra points
- extrapoints = len([v for v in a
- if defaultlimits[0] > v or v > defaultlimits[1]])
- if extrapoints > 0 and printextras:
- warnings.warn("Points outside given histogram range = %s"
- % extrapoints)
- return HistogramResult(hist, defaultlimits[0], binsize, extrapoints)
- CumfreqResult = namedtuple('CumfreqResult',
- ('cumcount', 'lowerlimit', 'binsize',
- 'extrapoints'))
- def cumfreq(a, numbins=10, defaultreallimits=None, weights=None):
- """Return a cumulative frequency histogram, using the histogram function.
- A cumulative histogram is a mapping that counts the cumulative number of
- observations in all of the bins up to the specified bin.
- Parameters
- ----------
- a : array_like
- Input array.
- numbins : int, optional
- The number of bins to use for the histogram. Default is 10.
- defaultreallimits : tuple (lower, upper), optional
- The lower and upper values for the range of the histogram.
- If no value is given, a range slightly larger than the range of the
- values in `a` is used. Specifically ``(a.min() - s, a.max() + s)``,
- where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
- weights : array_like, optional
- The weights for each value in `a`. Default is None, which gives each
- value a weight of 1.0
- Returns
- -------
- cumcount : ndarray
- Binned values of cumulative frequency.
- lowerlimit : float
- Lower real limit
- binsize : float
- Width of each bin.
- extrapoints : int
- Extra points.
- Examples
- --------
- >>> import numpy as np
- >>> import matplotlib.pyplot as plt
- >>> from scipy import stats
- >>> rng = np.random.default_rng()
- >>> x = [1, 4, 2, 1, 3, 1]
- >>> res = stats.cumfreq(x, numbins=4, defaultreallimits=(1.5, 5))
- >>> res.cumcount
- array([ 1., 2., 3., 3.])
- >>> res.extrapoints
- 3
- Create a normal distribution with 1000 random values
- >>> samples = stats.norm.rvs(size=1000, random_state=rng)
- Calculate cumulative frequencies
- >>> res = stats.cumfreq(samples, numbins=25)
- Calculate space of values for x
- >>> x = res.lowerlimit + np.linspace(0, res.binsize*res.cumcount.size,
- ... res.cumcount.size)
- Plot histogram and cumulative histogram
- >>> fig = plt.figure(figsize=(10, 4))
- >>> ax1 = fig.add_subplot(1, 2, 1)
- >>> ax2 = fig.add_subplot(1, 2, 2)
- >>> ax1.hist(samples, bins=25)
- >>> ax1.set_title('Histogram')
- >>> ax2.bar(x, res.cumcount, width=res.binsize)
- >>> ax2.set_title('Cumulative histogram')
- >>> ax2.set_xlim([x.min(), x.max()])
- >>> plt.show()
- """
- h, l, b, e = _histogram(a, numbins, defaultreallimits, weights=weights)
- cumhist = np.cumsum(h * 1, axis=0)
- return CumfreqResult(cumhist, l, b, e)
- RelfreqResult = namedtuple('RelfreqResult',
- ('frequency', 'lowerlimit', 'binsize',
- 'extrapoints'))
- def relfreq(a, numbins=10, defaultreallimits=None, weights=None):
- """Return a relative frequency histogram, using the histogram function.
- A relative frequency histogram is a mapping of the number of
- observations in each of the bins relative to the total of observations.
- Parameters
- ----------
- a : array_like
- Input array.
- numbins : int, optional
- The number of bins to use for the histogram. Default is 10.
- defaultreallimits : tuple (lower, upper), optional
- The lower and upper values for the range of the histogram.
- If no value is given, a range slightly larger than the range of the
- values in a is used. Specifically ``(a.min() - s, a.max() + s)``,
- where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
- weights : array_like, optional
- The weights for each value in `a`. Default is None, which gives each
- value a weight of 1.0
- Returns
- -------
- frequency : ndarray
- Binned values of relative frequency.
- lowerlimit : float
- Lower real limit.
- binsize : float
- Width of each bin.
- extrapoints : int
- Extra points.
- Examples
- --------
- >>> import numpy as np
- >>> import matplotlib.pyplot as plt
- >>> from scipy import stats
- >>> rng = np.random.default_rng()
- >>> a = np.array([2, 4, 1, 2, 3, 2])
- >>> res = stats.relfreq(a, numbins=4)
- >>> res.frequency
- array([ 0.16666667, 0.5 , 0.16666667, 0.16666667])
- >>> np.sum(res.frequency) # relative frequencies should add up to 1
- 1.0
- Create a normal distribution with 1000 random values
- >>> samples = stats.norm.rvs(size=1000, random_state=rng)
- Calculate relative frequencies
- >>> res = stats.relfreq(samples, numbins=25)
- Calculate space of values for x
- >>> x = res.lowerlimit + np.linspace(0, res.binsize*res.frequency.size,
- ... res.frequency.size)
- Plot relative frequency histogram
- >>> fig = plt.figure(figsize=(5, 4))
- >>> ax = fig.add_subplot(1, 1, 1)
- >>> ax.bar(x, res.frequency, width=res.binsize)
- >>> ax.set_title('Relative frequency histogram')
- >>> ax.set_xlim([x.min(), x.max()])
- >>> plt.show()
- """
- a = np.asanyarray(a)
- h, l, b, e = _histogram(a, numbins, defaultreallimits, weights=weights)
- h = h / a.shape[0]
- return RelfreqResult(h, l, b, e)
- #####################################
- # VARIABILITY FUNCTIONS #
- #####################################
- def obrientransform(*samples):
- """Compute the O'Brien transform on input data (any number of arrays).
- Used to test for homogeneity of variance prior to running one-way stats.
- Each array in ``*samples`` is one level of a factor.
- If `f_oneway` is run on the transformed data and found significant,
- the variances are unequal. From Maxwell and Delaney [1]_, p.112.
- Parameters
- ----------
- sample1, sample2, ... : array_like
- Any number of arrays.
- Returns
- -------
- obrientransform : ndarray
- Transformed data for use in an ANOVA. The first dimension
- of the result corresponds to the sequence of transformed
- arrays. If the arrays given are all 1-D of the same length,
- the return value is a 2-D array; otherwise it is a 1-D array
- of type object, with each element being an ndarray.
- References
- ----------
- .. [1] S. E. Maxwell and H. D. Delaney, "Designing Experiments and
- Analyzing Data: A Model Comparison Perspective", Wadsworth, 1990.
- Examples
- --------
- We'll test the following data sets for differences in their variance.
- >>> x = [10, 11, 13, 9, 7, 12, 12, 9, 10]
- >>> y = [13, 21, 5, 10, 8, 14, 10, 12, 7, 15]
- Apply the O'Brien transform to the data.
- >>> from scipy.stats import obrientransform
- >>> tx, ty = obrientransform(x, y)
- Use `scipy.stats.f_oneway` to apply a one-way ANOVA test to the
- transformed data.
- >>> from scipy.stats import f_oneway
- >>> F, p = f_oneway(tx, ty)
- >>> p
- 0.1314139477040335
- If we require that ``p < 0.05`` for significance, we cannot conclude
- that the variances are different.
- """
- TINY = np.sqrt(np.finfo(float).eps)
- # `arrays` will hold the transformed arguments.
- arrays = []
- sLast = None
- for sample in samples:
- a = np.asarray(sample)
- n = len(a)
- mu = np.mean(a)
- sq = (a - mu)**2
- sumsq = sq.sum()
- # The O'Brien transform.
- t = ((n - 1.5) * n * sq - 0.5 * sumsq) / ((n - 1) * (n - 2))
- # Check that the mean of the transformed data is equal to the
- # original variance.
- var = sumsq / (n - 1)
- if abs(var - np.mean(t)) > TINY:
- raise ValueError('Lack of convergence in obrientransform.')
- arrays.append(t)
- sLast = a.shape
- if sLast:
- for arr in arrays[:-1]:
- if sLast != arr.shape:
- return np.array(arrays, dtype=object)
- return np.array(arrays)
- def sem(a, axis=0, ddof=1, nan_policy='propagate'):
- """Compute standard error of the mean.
- Calculate the standard error of the mean (or standard error of
- measurement) of the values in the input array.
- Parameters
- ----------
- a : array_like
- An array containing the values for which the standard error is
- returned.
- axis : int or None, optional
- Axis along which to operate. Default is 0. If None, compute over
- the whole array `a`.
- ddof : int, optional
- Delta degrees-of-freedom. How many degrees of freedom to adjust
- for bias in limited samples relative to the population estimate
- of variance. Defaults to 1.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': returns nan
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- Returns
- -------
- s : ndarray or float
- The standard error of the mean in the sample(s), along the input axis.
- Notes
- -----
- The default value for `ddof` is different to the default (0) used by other
- ddof containing routines, such as np.std and np.nanstd.
- Examples
- --------
- Find standard error along the first axis:
- >>> import numpy as np
- >>> from scipy import stats
- >>> a = np.arange(20).reshape(5,4)
- >>> stats.sem(a)
- array([ 2.8284, 2.8284, 2.8284, 2.8284])
- Find standard error across the whole array, using n degrees of freedom:
- >>> stats.sem(a, axis=None, ddof=0)
- 1.2893796958227628
- """
- a, axis = _chk_asarray(a, axis)
- contains_nan, nan_policy = _contains_nan(a, nan_policy)
- if contains_nan and nan_policy == 'omit':
- a = ma.masked_invalid(a)
- return mstats_basic.sem(a, axis, ddof)
- n = a.shape[axis]
- s = np.std(a, axis=axis, ddof=ddof) / np.sqrt(n)
- return s
- def _isconst(x):
- """
- Check if all values in x are the same. nans are ignored.
- x must be a 1d array.
- The return value is a 1d array with length 1, so it can be used
- in np.apply_along_axis.
- """
- y = x[~np.isnan(x)]
- if y.size == 0:
- return np.array([True])
- else:
- return (y[0] == y).all(keepdims=True)
- def _quiet_nanmean(x):
- """
- Compute nanmean for the 1d array x, but quietly return nan if x is all nan.
- The return value is a 1d array with length 1, so it can be used
- in np.apply_along_axis.
- """
- y = x[~np.isnan(x)]
- if y.size == 0:
- return np.array([np.nan])
- else:
- return np.mean(y, keepdims=True)
- def _quiet_nanstd(x, ddof=0):
- """
- Compute nanstd for the 1d array x, but quietly return nan if x is all nan.
- The return value is a 1d array with length 1, so it can be used
- in np.apply_along_axis.
- """
- y = x[~np.isnan(x)]
- if y.size == 0:
- return np.array([np.nan])
- else:
- return np.std(y, keepdims=True, ddof=ddof)
- def zscore(a, axis=0, ddof=0, nan_policy='propagate'):
- """
- Compute the z score.
- Compute the z score of each value in the sample, relative to the
- sample mean and standard deviation.
- Parameters
- ----------
- a : array_like
- An array like object containing the sample data.
- axis : int or None, optional
- Axis along which to operate. Default is 0. If None, compute over
- the whole array `a`.
- ddof : int, optional
- Degrees of freedom correction in the calculation of the
- standard deviation. Default is 0.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan. 'propagate' returns nan,
- 'raise' throws an error, 'omit' performs the calculations ignoring nan
- values. Default is 'propagate'. Note that when the value is 'omit',
- nans in the input also propagate to the output, but they do not affect
- the z-scores computed for the non-nan values.
- Returns
- -------
- zscore : array_like
- The z-scores, standardized by mean and standard deviation of
- input array `a`.
- Notes
- -----
- This function preserves ndarray subclasses, and works also with
- matrices and masked arrays (it uses `asanyarray` instead of
- `asarray` for parameters).
- Examples
- --------
- >>> import numpy as np
- >>> a = np.array([ 0.7972, 0.0767, 0.4383, 0.7866, 0.8091,
- ... 0.1954, 0.6307, 0.6599, 0.1065, 0.0508])
- >>> from scipy import stats
- >>> stats.zscore(a)
- array([ 1.1273, -1.247 , -0.0552, 1.0923, 1.1664, -0.8559, 0.5786,
- 0.6748, -1.1488, -1.3324])
- Computing along a specified axis, using n-1 degrees of freedom
- (``ddof=1``) to calculate the standard deviation:
- >>> b = np.array([[ 0.3148, 0.0478, 0.6243, 0.4608],
- ... [ 0.7149, 0.0775, 0.6072, 0.9656],
- ... [ 0.6341, 0.1403, 0.9759, 0.4064],
- ... [ 0.5918, 0.6948, 0.904 , 0.3721],
- ... [ 0.0921, 0.2481, 0.1188, 0.1366]])
- >>> stats.zscore(b, axis=1, ddof=1)
- array([[-0.19264823, -1.28415119, 1.07259584, 0.40420358],
- [ 0.33048416, -1.37380874, 0.04251374, 1.00081084],
- [ 0.26796377, -1.12598418, 1.23283094, -0.37481053],
- [-0.22095197, 0.24468594, 1.19042819, -1.21416216],
- [-0.82780366, 1.4457416 , -0.43867764, -0.1792603 ]])
- An example with `nan_policy='omit'`:
- >>> x = np.array([[25.11, 30.10, np.nan, 32.02, 43.15],
- ... [14.95, 16.06, 121.25, 94.35, 29.81]])
- >>> stats.zscore(x, axis=1, nan_policy='omit')
- array([[-1.13490897, -0.37830299, nan, -0.08718406, 1.60039602],
- [-0.91611681, -0.89090508, 1.4983032 , 0.88731639, -0.5785977 ]])
- """
- return zmap(a, a, axis=axis, ddof=ddof, nan_policy=nan_policy)
- def gzscore(a, *, axis=0, ddof=0, nan_policy='propagate'):
- """
- Compute the geometric standard score.
- Compute the geometric z score of each strictly positive value in the
- sample, relative to the geometric mean and standard deviation.
- Mathematically the geometric z score can be evaluated as::
- gzscore = log(a/gmu) / log(gsigma)
- where ``gmu`` (resp. ``gsigma``) is the geometric mean (resp. standard
- deviation).
- Parameters
- ----------
- a : array_like
- Sample data.
- axis : int or None, optional
- Axis along which to operate. Default is 0. If None, compute over
- the whole array `a`.
- ddof : int, optional
- Degrees of freedom correction in the calculation of the
- standard deviation. Default is 0.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan. 'propagate' returns nan,
- 'raise' throws an error, 'omit' performs the calculations ignoring nan
- values. Default is 'propagate'. Note that when the value is 'omit',
- nans in the input also propagate to the output, but they do not affect
- the geometric z scores computed for the non-nan values.
- Returns
- -------
- gzscore : array_like
- The geometric z scores, standardized by geometric mean and geometric
- standard deviation of input array `a`.
- See Also
- --------
- gmean : Geometric mean
- gstd : Geometric standard deviation
- zscore : Standard score
- Notes
- -----
- This function preserves ndarray subclasses, and works also with
- matrices and masked arrays (it uses ``asanyarray`` instead of
- ``asarray`` for parameters).
- .. versionadded:: 1.8
- Examples
- --------
- Draw samples from a log-normal distribution:
- >>> import numpy as np
- >>> from scipy.stats import zscore, gzscore
- >>> import matplotlib.pyplot as plt
- >>> rng = np.random.default_rng()
- >>> mu, sigma = 3., 1. # mean and standard deviation
- >>> x = rng.lognormal(mu, sigma, size=500)
- Display the histogram of the samples:
- >>> fig, ax = plt.subplots()
- >>> ax.hist(x, 50)
- >>> plt.show()
- Display the histogram of the samples standardized by the classical zscore.
- Distribution is rescaled but its shape is unchanged.
- >>> fig, ax = plt.subplots()
- >>> ax.hist(zscore(x), 50)
- >>> plt.show()
- Demonstrate that the distribution of geometric zscores is rescaled and
- quasinormal:
- >>> fig, ax = plt.subplots()
- >>> ax.hist(gzscore(x), 50)
- >>> plt.show()
- """
- a = np.asanyarray(a)
- log = ma.log if isinstance(a, ma.MaskedArray) else np.log
- return zscore(log(a), axis=axis, ddof=ddof, nan_policy=nan_policy)
- def zmap(scores, compare, axis=0, ddof=0, nan_policy='propagate'):
- """
- Calculate the relative z-scores.
- Return an array of z-scores, i.e., scores that are standardized to
- zero mean and unit variance, where mean and variance are calculated
- from the comparison array.
- Parameters
- ----------
- scores : array_like
- The input for which z-scores are calculated.
- compare : array_like
- The input from which the mean and standard deviation of the
- normalization are taken; assumed to have the same dimension as
- `scores`.
- axis : int or None, optional
- Axis over which mean and variance of `compare` are calculated.
- Default is 0. If None, compute over the whole array `scores`.
- ddof : int, optional
- Degrees of freedom correction in the calculation of the
- standard deviation. Default is 0.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle the occurrence of nans in `compare`.
- 'propagate' returns nan, 'raise' raises an exception, 'omit'
- performs the calculations ignoring nan values. Default is
- 'propagate'. Note that when the value is 'omit', nans in `scores`
- also propagate to the output, but they do not affect the z-scores
- computed for the non-nan values.
- Returns
- -------
- zscore : array_like
- Z-scores, in the same shape as `scores`.
- Notes
- -----
- This function preserves ndarray subclasses, and works also with
- matrices and masked arrays (it uses `asanyarray` instead of
- `asarray` for parameters).
- Examples
- --------
- >>> from scipy.stats import zmap
- >>> a = [0.5, 2.0, 2.5, 3]
- >>> b = [0, 1, 2, 3, 4]
- >>> zmap(a, b)
- array([-1.06066017, 0. , 0.35355339, 0.70710678])
- """
- a = np.asanyarray(compare)
- if a.size == 0:
- return np.empty(a.shape)
- contains_nan, nan_policy = _contains_nan(a, nan_policy)
- if contains_nan and nan_policy == 'omit':
- if axis is None:
- mn = _quiet_nanmean(a.ravel())
- std = _quiet_nanstd(a.ravel(), ddof=ddof)
- isconst = _isconst(a.ravel())
- else:
- mn = np.apply_along_axis(_quiet_nanmean, axis, a)
- std = np.apply_along_axis(_quiet_nanstd, axis, a, ddof=ddof)
- isconst = np.apply_along_axis(_isconst, axis, a)
- else:
- mn = a.mean(axis=axis, keepdims=True)
- std = a.std(axis=axis, ddof=ddof, keepdims=True)
- if axis is None:
- isconst = (a.item(0) == a).all()
- else:
- isconst = (_first(a, axis) == a).all(axis=axis, keepdims=True)
- # Set std deviations that are 0 to 1 to avoid division by 0.
- std[isconst] = 1.0
- z = (scores - mn) / std
- # Set the outputs associated with a constant input to nan.
- z[np.broadcast_to(isconst, z.shape)] = np.nan
- return z
- def gstd(a, axis=0, ddof=1):
- """
- Calculate the geometric standard deviation of an array.
- The geometric standard deviation describes the spread of a set of numbers
- where the geometric mean is preferred. It is a multiplicative factor, and
- so a dimensionless quantity.
- It is defined as the exponent of the standard deviation of ``log(a)``.
- Mathematically the population geometric standard deviation can be
- evaluated as::
- gstd = exp(std(log(a)))
- .. versionadded:: 1.3.0
- Parameters
- ----------
- a : array_like
- An array like object containing the sample data.
- axis : int, tuple or None, optional
- Axis along which to operate. Default is 0. If None, compute over
- the whole array `a`.
- ddof : int, optional
- Degree of freedom correction in the calculation of the
- geometric standard deviation. Default is 1.
- Returns
- -------
- ndarray or float
- An array of the geometric standard deviation. If `axis` is None or `a`
- is a 1d array a float is returned.
- See Also
- --------
- gmean : Geometric mean
- numpy.std : Standard deviation
- Notes
- -----
- As the calculation requires the use of logarithms the geometric standard
- deviation only supports strictly positive values. Any non-positive or
- infinite values will raise a `ValueError`.
- The geometric standard deviation is sometimes confused with the exponent of
- the standard deviation, ``exp(std(a))``. Instead the geometric standard
- deviation is ``exp(std(log(a)))``.
- The default value for `ddof` is different to the default value (0) used
- by other ddof containing functions, such as ``np.std`` and ``np.nanstd``.
- References
- ----------
- .. [1] Kirkwood, T. B., "Geometric means and measures of dispersion",
- Biometrics, vol. 35, pp. 908-909, 1979
- Examples
- --------
- Find the geometric standard deviation of a log-normally distributed sample.
- Note that the standard deviation of the distribution is one, on a
- log scale this evaluates to approximately ``exp(1)``.
- >>> import numpy as np
- >>> from scipy.stats import gstd
- >>> rng = np.random.default_rng()
- >>> sample = rng.lognormal(mean=0, sigma=1, size=1000)
- >>> gstd(sample)
- 2.810010162475324
- Compute the geometric standard deviation of a multidimensional array and
- of a given axis.
- >>> a = np.arange(1, 25).reshape(2, 3, 4)
- >>> gstd(a, axis=None)
- 2.2944076136018947
- >>> gstd(a, axis=2)
- array([[1.82424757, 1.22436866, 1.13183117],
- [1.09348306, 1.07244798, 1.05914985]])
- >>> gstd(a, axis=(1,2))
- array([2.12939215, 1.22120169])
- The geometric standard deviation further handles masked arrays.
- >>> a = np.arange(1, 25).reshape(2, 3, 4)
- >>> ma = np.ma.masked_where(a > 16, a)
- >>> ma
- masked_array(
- data=[[[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12]],
- [[13, 14, 15, 16],
- [--, --, --, --],
- [--, --, --, --]]],
- mask=[[[False, False, False, False],
- [False, False, False, False],
- [False, False, False, False]],
- [[False, False, False, False],
- [ True, True, True, True],
- [ True, True, True, True]]],
- fill_value=999999)
- >>> gstd(ma, axis=2)
- masked_array(
- data=[[1.8242475707663655, 1.2243686572447428, 1.1318311657788478],
- [1.0934830582350938, --, --]],
- mask=[[False, False, False],
- [False, True, True]],
- fill_value=999999)
- """
- a = np.asanyarray(a)
- log = ma.log if isinstance(a, ma.MaskedArray) else np.log
- try:
- with warnings.catch_warnings():
- warnings.simplefilter("error", RuntimeWarning)
- return np.exp(np.std(log(a), axis=axis, ddof=ddof))
- except RuntimeWarning as w:
- if np.isinf(a).any():
- raise ValueError(
- 'Infinite value encountered. The geometric standard deviation '
- 'is defined for strictly positive values only.'
- ) from w
- a_nan = np.isnan(a)
- a_nan_any = a_nan.any()
- # exclude NaN's from negativity check, but
- # avoid expensive masking for arrays with no NaN
- if ((a_nan_any and np.less_equal(np.nanmin(a), 0)) or
- (not a_nan_any and np.less_equal(a, 0).any())):
- raise ValueError(
- 'Non positive value encountered. The geometric standard '
- 'deviation is defined for strictly positive values only.'
- ) from w
- elif 'Degrees of freedom <= 0 for slice' == str(w):
- raise ValueError(w) from w
- else:
- # Remaining warnings don't need to be exceptions.
- return np.exp(np.std(log(a, where=~a_nan), axis=axis, ddof=ddof))
- except TypeError as e:
- raise ValueError(
- 'Invalid array input. The inputs could not be '
- 'safely coerced to any supported types') from e
- # Private dictionary initialized only once at module level
- # See https://en.wikipedia.org/wiki/Robust_measures_of_scale
- _scale_conversions = {'raw': 1.0,
- 'normal': special.erfinv(0.5) * 2.0 * math.sqrt(2.0)}
- def iqr(x, axis=None, rng=(25, 75), scale=1.0, nan_policy='propagate',
- interpolation='linear', keepdims=False):
- r"""
- Compute the interquartile range of the data along the specified axis.
- The interquartile range (IQR) is the difference between the 75th and
- 25th percentile of the data. It is a measure of the dispersion
- similar to standard deviation or variance, but is much more robust
- against outliers [2]_.
- The ``rng`` parameter allows this function to compute other
- percentile ranges than the actual IQR. For example, setting
- ``rng=(0, 100)`` is equivalent to `numpy.ptp`.
- The IQR of an empty array is `np.nan`.
- .. versionadded:: 0.18.0
- Parameters
- ----------
- x : array_like
- Input array or object that can be converted to an array.
- axis : int or sequence of int, optional
- Axis along which the range is computed. The default is to
- compute the IQR for the entire array.
- rng : Two-element sequence containing floats in range of [0,100] optional
- Percentiles over which to compute the range. Each must be
- between 0 and 100, inclusive. The default is the true IQR:
- ``(25, 75)``. The order of the elements is not important.
- scale : scalar or str, optional
- The numerical value of scale will be divided out of the final
- result. The following string values are recognized:
- * 'raw' : No scaling, just return the raw IQR.
- **Deprecated!** Use ``scale=1`` instead.
- * 'normal' : Scale by
- :math:`2 \sqrt{2} erf^{-1}(\frac{1}{2}) \approx 1.349`.
- The default is 1.0. The use of ``scale='raw'`` is deprecated infavor
- of ``scale=1`` and will raise an error in SciPy 1.12.0.
- Array-like `scale` is also allowed, as long
- as it broadcasts correctly to the output such that
- ``out / scale`` is a valid operation. The output dimensions
- depend on the input array, `x`, the `axis` argument, and the
- `keepdims` flag.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': returns nan
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- interpolation : str, optional
- Specifies the interpolation method to use when the percentile
- boundaries lie between two data points ``i`` and ``j``.
- The following options are available (default is 'linear'):
- * 'linear': ``i + (j - i)*fraction``, where ``fraction`` is the
- fractional part of the index surrounded by ``i`` and ``j``.
- * 'lower': ``i``.
- * 'higher': ``j``.
- * 'nearest': ``i`` or ``j`` whichever is nearest.
- * 'midpoint': ``(i + j)/2``.
- For NumPy >= 1.22.0, the additional options provided by the ``method``
- keyword of `numpy.percentile` are also valid.
- keepdims : bool, optional
- If this is set to True, the reduced axes are left in the
- result as dimensions with size one. With this option, the result
- will broadcast correctly against the original array `x`.
- Returns
- -------
- iqr : scalar or ndarray
- If ``axis=None``, a scalar is returned. If the input contains
- integers or floats of smaller precision than ``np.float64``, then the
- output data-type is ``np.float64``. Otherwise, the output data-type is
- the same as that of the input.
- See Also
- --------
- numpy.std, numpy.var
- References
- ----------
- .. [1] "Interquartile range" https://en.wikipedia.org/wiki/Interquartile_range
- .. [2] "Robust measures of scale" https://en.wikipedia.org/wiki/Robust_measures_of_scale
- .. [3] "Quantile" https://en.wikipedia.org/wiki/Quantile
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.stats import iqr
- >>> x = np.array([[10, 7, 4], [3, 2, 1]])
- >>> x
- array([[10, 7, 4],
- [ 3, 2, 1]])
- >>> iqr(x)
- 4.0
- >>> iqr(x, axis=0)
- array([ 3.5, 2.5, 1.5])
- >>> iqr(x, axis=1)
- array([ 3., 1.])
- >>> iqr(x, axis=1, keepdims=True)
- array([[ 3.],
- [ 1.]])
- """
- x = asarray(x)
- # This check prevents percentile from raising an error later. Also, it is
- # consistent with `np.var` and `np.std`.
- if not x.size:
- return np.nan
- # An error may be raised here, so fail-fast, before doing lengthy
- # computations, even though `scale` is not used until later
- if isinstance(scale, str):
- scale_key = scale.lower()
- if scale_key not in _scale_conversions:
- raise ValueError("{0} not a valid scale for `iqr`".format(scale))
- if scale_key == 'raw':
- msg = ("The use of 'scale=\"raw\"' is deprecated infavor of "
- "'scale=1' and will raise an error in SciPy 1.12.0.")
- warnings.warn(msg, DeprecationWarning, stacklevel=2)
- scale = _scale_conversions[scale_key]
- # Select the percentile function to use based on nans and policy
- contains_nan, nan_policy = _contains_nan(x, nan_policy)
- if contains_nan and nan_policy == 'omit':
- percentile_func = np.nanpercentile
- else:
- percentile_func = np.percentile
- if len(rng) != 2:
- raise TypeError("quantile range must be two element sequence")
- if np.isnan(rng).any():
- raise ValueError("range must not contain NaNs")
- rng = sorted(rng)
- if NumpyVersion(np.__version__) >= '1.22.0':
- pct = percentile_func(x, rng, axis=axis, method=interpolation,
- keepdims=keepdims)
- else:
- pct = percentile_func(x, rng, axis=axis, interpolation=interpolation,
- keepdims=keepdims)
- out = np.subtract(pct[1], pct[0])
- if scale != 1.0:
- out /= scale
- return out
- def _mad_1d(x, center, nan_policy):
- # Median absolute deviation for 1-d array x.
- # This is a helper function for `median_abs_deviation`; it assumes its
- # arguments have been validated already. In particular, x must be a
- # 1-d numpy array, center must be callable, and if nan_policy is not
- # 'propagate', it is assumed to be 'omit', because 'raise' is handled
- # in `median_abs_deviation`.
- # No warning is generated if x is empty or all nan.
- isnan = np.isnan(x)
- if isnan.any():
- if nan_policy == 'propagate':
- return np.nan
- x = x[~isnan]
- if x.size == 0:
- # MAD of an empty array is nan.
- return np.nan
- # Edge cases have been handled, so do the basic MAD calculation.
- med = center(x)
- mad = np.median(np.abs(x - med))
- return mad
- def median_abs_deviation(x, axis=0, center=np.median, scale=1.0,
- nan_policy='propagate'):
- r"""
- Compute the median absolute deviation of the data along the given axis.
- The median absolute deviation (MAD, [1]_) computes the median over the
- absolute deviations from the median. It is a measure of dispersion
- similar to the standard deviation but more robust to outliers [2]_.
- The MAD of an empty array is ``np.nan``.
- .. versionadded:: 1.5.0
- Parameters
- ----------
- x : array_like
- Input array or object that can be converted to an array.
- axis : int or None, optional
- Axis along which the range is computed. Default is 0. If None, compute
- the MAD over the entire array.
- center : callable, optional
- A function that will return the central value. The default is to use
- np.median. Any user defined function used will need to have the
- function signature ``func(arr, axis)``.
- scale : scalar or str, optional
- The numerical value of scale will be divided out of the final
- result. The default is 1.0. The string "normal" is also accepted,
- and results in `scale` being the inverse of the standard normal
- quantile function at 0.75, which is approximately 0.67449.
- Array-like scale is also allowed, as long as it broadcasts correctly
- to the output such that ``out / scale`` is a valid operation. The
- output dimensions depend on the input array, `x`, and the `axis`
- argument.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': returns nan
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- Returns
- -------
- mad : scalar or ndarray
- If ``axis=None``, a scalar is returned. If the input contains
- integers or floats of smaller precision than ``np.float64``, then the
- output data-type is ``np.float64``. Otherwise, the output data-type is
- the same as that of the input.
- See Also
- --------
- numpy.std, numpy.var, numpy.median, scipy.stats.iqr, scipy.stats.tmean,
- scipy.stats.tstd, scipy.stats.tvar
- Notes
- -----
- The `center` argument only affects the calculation of the central value
- around which the MAD is calculated. That is, passing in ``center=np.mean``
- will calculate the MAD around the mean - it will not calculate the *mean*
- absolute deviation.
- The input array may contain `inf`, but if `center` returns `inf`, the
- corresponding MAD for that data will be `nan`.
- References
- ----------
- .. [1] "Median absolute deviation",
- https://en.wikipedia.org/wiki/Median_absolute_deviation
- .. [2] "Robust measures of scale",
- https://en.wikipedia.org/wiki/Robust_measures_of_scale
- Examples
- --------
- When comparing the behavior of `median_abs_deviation` with ``np.std``,
- the latter is affected when we change a single value of an array to have an
- outlier value while the MAD hardly changes:
- >>> import numpy as np
- >>> from scipy import stats
- >>> x = stats.norm.rvs(size=100, scale=1, random_state=123456)
- >>> x.std()
- 0.9973906394005013
- >>> stats.median_abs_deviation(x)
- 0.82832610097857
- >>> x[0] = 345.6
- >>> x.std()
- 34.42304872314415
- >>> stats.median_abs_deviation(x)
- 0.8323442311590675
- Axis handling example:
- >>> x = np.array([[10, 7, 4], [3, 2, 1]])
- >>> x
- array([[10, 7, 4],
- [ 3, 2, 1]])
- >>> stats.median_abs_deviation(x)
- array([3.5, 2.5, 1.5])
- >>> stats.median_abs_deviation(x, axis=None)
- 2.0
- Scale normal example:
- >>> x = stats.norm.rvs(size=1000000, scale=2, random_state=123456)
- >>> stats.median_abs_deviation(x)
- 1.3487398527041636
- >>> stats.median_abs_deviation(x, scale='normal')
- 1.9996446978061115
- """
- if not callable(center):
- raise TypeError("The argument 'center' must be callable. The given "
- f"value {repr(center)} is not callable.")
- # An error may be raised here, so fail-fast, before doing lengthy
- # computations, even though `scale` is not used until later
- if isinstance(scale, str):
- if scale.lower() == 'normal':
- scale = 0.6744897501960817 # special.ndtri(0.75)
- else:
- raise ValueError(f"{scale} is not a valid scale value.")
- x = asarray(x)
- # Consistent with `np.var` and `np.std`.
- if not x.size:
- if axis is None:
- return np.nan
- nan_shape = tuple(item for i, item in enumerate(x.shape) if i != axis)
- if nan_shape == ():
- # Return nan, not array(nan)
- return np.nan
- return np.full(nan_shape, np.nan)
- contains_nan, nan_policy = _contains_nan(x, nan_policy)
- if contains_nan:
- if axis is None:
- mad = _mad_1d(x.ravel(), center, nan_policy)
- else:
- mad = np.apply_along_axis(_mad_1d, axis, x, center, nan_policy)
- else:
- if axis is None:
- med = center(x, axis=None)
- mad = np.median(np.abs(x - med))
- else:
- # Wrap the call to center() in expand_dims() so it acts like
- # keepdims=True was used.
- med = np.expand_dims(center(x, axis=axis), axis)
- mad = np.median(np.abs(x - med), axis=axis)
- return mad / scale
- #####################################
- # TRIMMING FUNCTIONS #
- #####################################
- SigmaclipResult = namedtuple('SigmaclipResult', ('clipped', 'lower', 'upper'))
- def sigmaclip(a, low=4., high=4.):
- """Perform iterative sigma-clipping of array elements.
- Starting from the full sample, all elements outside the critical range are
- removed, i.e. all elements of the input array `c` that satisfy either of
- the following conditions::
- c < mean(c) - std(c)*low
- c > mean(c) + std(c)*high
- The iteration continues with the updated sample until no
- elements are outside the (updated) range.
- Parameters
- ----------
- a : array_like
- Data array, will be raveled if not 1-D.
- low : float, optional
- Lower bound factor of sigma clipping. Default is 4.
- high : float, optional
- Upper bound factor of sigma clipping. Default is 4.
- Returns
- -------
- clipped : ndarray
- Input array with clipped elements removed.
- lower : float
- Lower threshold value use for clipping.
- upper : float
- Upper threshold value use for clipping.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.stats import sigmaclip
- >>> a = np.concatenate((np.linspace(9.5, 10.5, 31),
- ... np.linspace(0, 20, 5)))
- >>> fact = 1.5
- >>> c, low, upp = sigmaclip(a, fact, fact)
- >>> c
- array([ 9.96666667, 10. , 10.03333333, 10. ])
- >>> c.var(), c.std()
- (0.00055555555555555165, 0.023570226039551501)
- >>> low, c.mean() - fact*c.std(), c.min()
- (9.9646446609406727, 9.9646446609406727, 9.9666666666666668)
- >>> upp, c.mean() + fact*c.std(), c.max()
- (10.035355339059327, 10.035355339059327, 10.033333333333333)
- >>> a = np.concatenate((np.linspace(9.5, 10.5, 11),
- ... np.linspace(-100, -50, 3)))
- >>> c, low, upp = sigmaclip(a, 1.8, 1.8)
- >>> (c == np.linspace(9.5, 10.5, 11)).all()
- True
- """
- c = np.asarray(a).ravel()
- delta = 1
- while delta:
- c_std = c.std()
- c_mean = c.mean()
- size = c.size
- critlower = c_mean - c_std * low
- critupper = c_mean + c_std * high
- c = c[(c >= critlower) & (c <= critupper)]
- delta = size - c.size
- return SigmaclipResult(c, critlower, critupper)
- def trimboth(a, proportiontocut, axis=0):
- """Slice off a proportion of items from both ends of an array.
- Slice off the passed proportion of items from both ends of the passed
- array (i.e., with `proportiontocut` = 0.1, slices leftmost 10% **and**
- rightmost 10% of scores). The trimmed values are the lowest and
- highest ones.
- Slice off less if proportion results in a non-integer slice index (i.e.
- conservatively slices off `proportiontocut`).
- Parameters
- ----------
- a : array_like
- Data to trim.
- proportiontocut : float
- Proportion (in range 0-1) of total data set to trim of each end.
- axis : int or None, optional
- Axis along which to trim data. Default is 0. If None, compute over
- the whole array `a`.
- Returns
- -------
- out : ndarray
- Trimmed version of array `a`. The order of the trimmed content
- is undefined.
- See Also
- --------
- trim_mean
- Examples
- --------
- Create an array of 10 values and trim 10% of those values from each end:
- >>> import numpy as np
- >>> from scipy import stats
- >>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
- >>> stats.trimboth(a, 0.1)
- array([1, 3, 2, 4, 5, 6, 7, 8])
- Note that the elements of the input array are trimmed by value, but the
- output array is not necessarily sorted.
- The proportion to trim is rounded down to the nearest integer. For
- instance, trimming 25% of the values from each end of an array of 10
- values will return an array of 6 values:
- >>> b = np.arange(10)
- >>> stats.trimboth(b, 1/4).shape
- (6,)
- Multidimensional arrays can be trimmed along any axis or across the entire
- array:
- >>> c = [2, 4, 6, 8, 0, 1, 3, 5, 7, 9]
- >>> d = np.array([a, b, c])
- >>> stats.trimboth(d, 0.4, axis=0).shape
- (1, 10)
- >>> stats.trimboth(d, 0.4, axis=1).shape
- (3, 2)
- >>> stats.trimboth(d, 0.4, axis=None).shape
- (6,)
- """
- a = np.asarray(a)
- if a.size == 0:
- return a
- if axis is None:
- a = a.ravel()
- axis = 0
- nobs = a.shape[axis]
- lowercut = int(proportiontocut * nobs)
- uppercut = nobs - lowercut
- if (lowercut >= uppercut):
- raise ValueError("Proportion too big.")
- atmp = np.partition(a, (lowercut, uppercut - 1), axis)
- sl = [slice(None)] * atmp.ndim
- sl[axis] = slice(lowercut, uppercut)
- return atmp[tuple(sl)]
- def trim1(a, proportiontocut, tail='right', axis=0):
- """Slice off a proportion from ONE end of the passed array distribution.
- If `proportiontocut` = 0.1, slices off 'leftmost' or 'rightmost'
- 10% of scores. The lowest or highest values are trimmed (depending on
- the tail).
- Slice off less if proportion results in a non-integer slice index
- (i.e. conservatively slices off `proportiontocut` ).
- Parameters
- ----------
- a : array_like
- Input array.
- proportiontocut : float
- Fraction to cut off of 'left' or 'right' of distribution.
- tail : {'left', 'right'}, optional
- Defaults to 'right'.
- axis : int or None, optional
- Axis along which to trim data. Default is 0. If None, compute over
- the whole array `a`.
- Returns
- -------
- trim1 : ndarray
- Trimmed version of array `a`. The order of the trimmed content is
- undefined.
- Examples
- --------
- Create an array of 10 values and trim 20% of its lowest values:
- >>> import numpy as np
- >>> from scipy import stats
- >>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
- >>> stats.trim1(a, 0.2, 'left')
- array([2, 4, 3, 5, 6, 7, 8, 9])
- Note that the elements of the input array are trimmed by value, but the
- output array is not necessarily sorted.
- The proportion to trim is rounded down to the nearest integer. For
- instance, trimming 25% of the values from an array of 10 values will
- return an array of 8 values:
- >>> b = np.arange(10)
- >>> stats.trim1(b, 1/4).shape
- (8,)
- Multidimensional arrays can be trimmed along any axis or across the entire
- array:
- >>> c = [2, 4, 6, 8, 0, 1, 3, 5, 7, 9]
- >>> d = np.array([a, b, c])
- >>> stats.trim1(d, 0.8, axis=0).shape
- (1, 10)
- >>> stats.trim1(d, 0.8, axis=1).shape
- (3, 2)
- >>> stats.trim1(d, 0.8, axis=None).shape
- (6,)
- """
- a = np.asarray(a)
- if axis is None:
- a = a.ravel()
- axis = 0
- nobs = a.shape[axis]
- # avoid possible corner case
- if proportiontocut >= 1:
- return []
- if tail.lower() == 'right':
- lowercut = 0
- uppercut = nobs - int(proportiontocut * nobs)
- elif tail.lower() == 'left':
- lowercut = int(proportiontocut * nobs)
- uppercut = nobs
- atmp = np.partition(a, (lowercut, uppercut - 1), axis)
- sl = [slice(None)] * atmp.ndim
- sl[axis] = slice(lowercut, uppercut)
- return atmp[tuple(sl)]
- def trim_mean(a, proportiontocut, axis=0):
- """Return mean of array after trimming distribution from both tails.
- If `proportiontocut` = 0.1, slices off 'leftmost' and 'rightmost' 10% of
- scores. The input is sorted before slicing. Slices off less if proportion
- results in a non-integer slice index (i.e., conservatively slices off
- `proportiontocut` ).
- Parameters
- ----------
- a : array_like
- Input array.
- proportiontocut : float
- Fraction to cut off of both tails of the distribution.
- axis : int or None, optional
- Axis along which the trimmed means are computed. Default is 0.
- If None, compute over the whole array `a`.
- Returns
- -------
- trim_mean : ndarray
- Mean of trimmed array.
- See Also
- --------
- trimboth
- tmean : Compute the trimmed mean ignoring values outside given `limits`.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy import stats
- >>> x = np.arange(20)
- >>> stats.trim_mean(x, 0.1)
- 9.5
- >>> x2 = x.reshape(5, 4)
- >>> x2
- array([[ 0, 1, 2, 3],
- [ 4, 5, 6, 7],
- [ 8, 9, 10, 11],
- [12, 13, 14, 15],
- [16, 17, 18, 19]])
- >>> stats.trim_mean(x2, 0.25)
- array([ 8., 9., 10., 11.])
- >>> stats.trim_mean(x2, 0.25, axis=1)
- array([ 1.5, 5.5, 9.5, 13.5, 17.5])
- """
- a = np.asarray(a)
- if a.size == 0:
- return np.nan
- if axis is None:
- a = a.ravel()
- axis = 0
- nobs = a.shape[axis]
- lowercut = int(proportiontocut * nobs)
- uppercut = nobs - lowercut
- if (lowercut > uppercut):
- raise ValueError("Proportion too big.")
- atmp = np.partition(a, (lowercut, uppercut - 1), axis)
- sl = [slice(None)] * atmp.ndim
- sl[axis] = slice(lowercut, uppercut)
- return np.mean(atmp[tuple(sl)], axis=axis)
- F_onewayResult = namedtuple('F_onewayResult', ('statistic', 'pvalue'))
- def _create_f_oneway_nan_result(shape, axis):
- """
- This is a helper function for f_oneway for creating the return values
- in certain degenerate conditions. It creates return values that are
- all nan with the appropriate shape for the given `shape` and `axis`.
- """
- axis = np.core.multiarray.normalize_axis_index(axis, len(shape))
- shp = shape[:axis] + shape[axis+1:]
- if shp == ():
- f = np.nan
- prob = np.nan
- else:
- f = np.full(shp, fill_value=np.nan)
- prob = f.copy()
- return F_onewayResult(f, prob)
- def _first(arr, axis):
- """Return arr[..., 0:1, ...] where 0:1 is in the `axis` position."""
- return np.take_along_axis(arr, np.array(0, ndmin=arr.ndim), axis)
- def f_oneway(*samples, axis=0):
- """Perform one-way ANOVA.
- The one-way ANOVA tests the null hypothesis that two or more groups have
- the same population mean. The test is applied to samples from two or
- more groups, possibly with differing sizes.
- Parameters
- ----------
- sample1, sample2, ... : array_like
- The sample measurements for each group. There must be at least
- two arguments. If the arrays are multidimensional, then all the
- dimensions of the array must be the same except for `axis`.
- axis : int, optional
- Axis of the input arrays along which the test is applied.
- Default is 0.
- Returns
- -------
- statistic : float
- The computed F statistic of the test.
- pvalue : float
- The associated p-value from the F distribution.
- Warns
- -----
- `~scipy.stats.ConstantInputWarning`
- Raised if all values within each of the input arrays are identical.
- In this case the F statistic is either infinite or isn't defined,
- so ``np.inf`` or ``np.nan`` is returned.
- `~scipy.stats.DegenerateDataWarning`
- Raised if the length of any input array is 0, or if all the input
- arrays have length 1. ``np.nan`` is returned for the F statistic
- and the p-value in these cases.
- Notes
- -----
- The ANOVA test has important assumptions that must be satisfied in order
- for the associated p-value to be valid.
- 1. The samples are independent.
- 2. Each sample is from a normally distributed population.
- 3. The population standard deviations of the groups are all equal. This
- property is known as homoscedasticity.
- If these assumptions are not true for a given set of data, it may still
- be possible to use the Kruskal-Wallis H-test (`scipy.stats.kruskal`) or
- the Alexander-Govern test (`scipy.stats.alexandergovern`) although with
- some loss of power.
- The length of each group must be at least one, and there must be at
- least one group with length greater than one. If these conditions
- are not satisfied, a warning is generated and (``np.nan``, ``np.nan``)
- is returned.
- If all values in each group are identical, and there exist at least two
- groups with different values, the function generates a warning and
- returns (``np.inf``, 0).
- If all values in all groups are the same, function generates a warning
- and returns (``np.nan``, ``np.nan``).
- The algorithm is from Heiman [2]_, pp.394-7.
- References
- ----------
- .. [1] R. Lowry, "Concepts and Applications of Inferential Statistics",
- Chapter 14, 2014, http://vassarstats.net/textbook/
- .. [2] G.W. Heiman, "Understanding research methods and statistics: An
- integrated introduction for psychology", Houghton, Mifflin and
- Company, 2001.
- .. [3] G.H. McDonald, "Handbook of Biological Statistics", One-way ANOVA.
- http://www.biostathandbook.com/onewayanova.html
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.stats import f_oneway
- Here are some data [3]_ on a shell measurement (the length of the anterior
- adductor muscle scar, standardized by dividing by length) in the mussel
- Mytilus trossulus from five locations: Tillamook, Oregon; Newport, Oregon;
- Petersburg, Alaska; Magadan, Russia; and Tvarminne, Finland, taken from a
- much larger data set used in McDonald et al. (1991).
- >>> tillamook = [0.0571, 0.0813, 0.0831, 0.0976, 0.0817, 0.0859, 0.0735,
- ... 0.0659, 0.0923, 0.0836]
- >>> newport = [0.0873, 0.0662, 0.0672, 0.0819, 0.0749, 0.0649, 0.0835,
- ... 0.0725]
- >>> petersburg = [0.0974, 0.1352, 0.0817, 0.1016, 0.0968, 0.1064, 0.105]
- >>> magadan = [0.1033, 0.0915, 0.0781, 0.0685, 0.0677, 0.0697, 0.0764,
- ... 0.0689]
- >>> tvarminne = [0.0703, 0.1026, 0.0956, 0.0973, 0.1039, 0.1045]
- >>> f_oneway(tillamook, newport, petersburg, magadan, tvarminne)
- F_onewayResult(statistic=7.121019471642447, pvalue=0.0002812242314534544)
- `f_oneway` accepts multidimensional input arrays. When the inputs
- are multidimensional and `axis` is not given, the test is performed
- along the first axis of the input arrays. For the following data, the
- test is performed three times, once for each column.
- >>> a = np.array([[9.87, 9.03, 6.81],
- ... [7.18, 8.35, 7.00],
- ... [8.39, 7.58, 7.68],
- ... [7.45, 6.33, 9.35],
- ... [6.41, 7.10, 9.33],
- ... [8.00, 8.24, 8.44]])
- >>> b = np.array([[6.35, 7.30, 7.16],
- ... [6.65, 6.68, 7.63],
- ... [5.72, 7.73, 6.72],
- ... [7.01, 9.19, 7.41],
- ... [7.75, 7.87, 8.30],
- ... [6.90, 7.97, 6.97]])
- >>> c = np.array([[3.31, 8.77, 1.01],
- ... [8.25, 3.24, 3.62],
- ... [6.32, 8.81, 5.19],
- ... [7.48, 8.83, 8.91],
- ... [8.59, 6.01, 6.07],
- ... [3.07, 9.72, 7.48]])
- >>> F, p = f_oneway(a, b, c)
- >>> F
- array([1.75676344, 0.03701228, 3.76439349])
- >>> p
- array([0.20630784, 0.96375203, 0.04733157])
- """
- if len(samples) < 2:
- raise TypeError('at least two inputs are required;'
- f' got {len(samples)}.')
- samples = [np.asarray(sample, dtype=float) for sample in samples]
- # ANOVA on N groups, each in its own array
- num_groups = len(samples)
- # We haven't explicitly validated axis, but if it is bad, this call of
- # np.concatenate will raise np.AxisError. The call will raise ValueError
- # if the dimensions of all the arrays, except the axis dimension, are not
- # the same.
- alldata = np.concatenate(samples, axis=axis)
- bign = alldata.shape[axis]
- # Check this after forming alldata, so shape errors are detected
- # and reported before checking for 0 length inputs.
- if any(sample.shape[axis] == 0 for sample in samples):
- warnings.warn(stats.DegenerateDataWarning('at least one input '
- 'has length 0'))
- return _create_f_oneway_nan_result(alldata.shape, axis)
- # Must have at least one group with length greater than 1.
- if all(sample.shape[axis] == 1 for sample in samples):
- msg = ('all input arrays have length 1. f_oneway requires that at '
- 'least one input has length greater than 1.')
- warnings.warn(stats.DegenerateDataWarning(msg))
- return _create_f_oneway_nan_result(alldata.shape, axis)
- # Check if all values within each group are identical, and if the common
- # value in at least one group is different from that in another group.
- # Based on https://github.com/scipy/scipy/issues/11669
- # If axis=0, say, and the groups have shape (n0, ...), (n1, ...), ...,
- # then is_const is a boolean array with shape (num_groups, ...).
- # It is True if the values within the groups along the axis slice are
- # identical. In the typical case where each input array is 1-d, is_const is
- # a 1-d array with length num_groups.
- is_const = np.concatenate(
- [(_first(sample, axis) == sample).all(axis=axis,
- keepdims=True)
- for sample in samples],
- axis=axis
- )
- # all_const is a boolean array with shape (...) (see previous comment).
- # It is True if the values within each group along the axis slice are
- # the same (e.g. [[3, 3, 3], [5, 5, 5, 5], [4, 4, 4]]).
- all_const = is_const.all(axis=axis)
- if all_const.any():
- msg = ("Each of the input arrays is constant;"
- "the F statistic is not defined or infinite")
- warnings.warn(stats.ConstantInputWarning(msg))
- # all_same_const is True if all the values in the groups along the axis=0
- # slice are the same (e.g. [[3, 3, 3], [3, 3, 3, 3], [3, 3, 3]]).
- all_same_const = (_first(alldata, axis) == alldata).all(axis=axis)
- # Determine the mean of the data, and subtract that from all inputs to a
- # variance (via sum_of_sq / sq_of_sum) calculation. Variance is invariant
- # to a shift in location, and centering all data around zero vastly
- # improves numerical stability.
- offset = alldata.mean(axis=axis, keepdims=True)
- alldata -= offset
- normalized_ss = _square_of_sums(alldata, axis=axis) / bign
- sstot = _sum_of_squares(alldata, axis=axis) - normalized_ss
- ssbn = 0
- for sample in samples:
- ssbn += _square_of_sums(sample - offset,
- axis=axis) / sample.shape[axis]
- # Naming: variables ending in bn/b are for "between treatments", wn/w are
- # for "within treatments"
- ssbn -= normalized_ss
- sswn = sstot - ssbn
- dfbn = num_groups - 1
- dfwn = bign - num_groups
- msb = ssbn / dfbn
- msw = sswn / dfwn
- with np.errstate(divide='ignore', invalid='ignore'):
- f = msb / msw
- prob = special.fdtrc(dfbn, dfwn, f) # equivalent to stats.f.sf
- # Fix any f values that should be inf or nan because the corresponding
- # inputs were constant.
- if np.isscalar(f):
- if all_same_const:
- f = np.nan
- prob = np.nan
- elif all_const:
- f = np.inf
- prob = 0.0
- else:
- f[all_const] = np.inf
- prob[all_const] = 0.0
- f[all_same_const] = np.nan
- prob[all_same_const] = np.nan
- return F_onewayResult(f, prob)
- def alexandergovern(*samples, nan_policy='propagate'):
- """Performs the Alexander Govern test.
- The Alexander-Govern approximation tests the equality of k independent
- means in the face of heterogeneity of variance. The test is applied to
- samples from two or more groups, possibly with differing sizes.
- Parameters
- ----------
- sample1, sample2, ... : array_like
- The sample measurements for each group. There must be at least
- two samples.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': returns nan
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- Returns
- -------
- statistic : float
- The computed A statistic of the test.
- pvalue : float
- The associated p-value from the chi-squared distribution.
- Warns
- -----
- `~scipy.stats.ConstantInputWarning`
- Raised if an input is a constant array. The statistic is not defined
- in this case, so ``np.nan`` is returned.
- See Also
- --------
- f_oneway : one-way ANOVA
- Notes
- -----
- The use of this test relies on several assumptions.
- 1. The samples are independent.
- 2. Each sample is from a normally distributed population.
- 3. Unlike `f_oneway`, this test does not assume on homoscedasticity,
- instead relaxing the assumption of equal variances.
- Input samples must be finite, one dimensional, and with size greater than
- one.
- References
- ----------
- .. [1] Alexander, Ralph A., and Diane M. Govern. "A New and Simpler
- Approximation for ANOVA under Variance Heterogeneity." Journal
- of Educational Statistics, vol. 19, no. 2, 1994, pp. 91-101.
- JSTOR, www.jstor.org/stable/1165140. Accessed 12 Sept. 2020.
- Examples
- --------
- >>> from scipy.stats import alexandergovern
- Here are some data on annual percentage rate of interest charged on
- new car loans at nine of the largest banks in four American cities
- taken from the National Institute of Standards and Technology's
- ANOVA dataset.
- We use `alexandergovern` to test the null hypothesis that all cities
- have the same mean APR against the alternative that the cities do not
- all have the same mean APR. We decide that a significance level of 5%
- is required to reject the null hypothesis in favor of the alternative.
- >>> atlanta = [13.75, 13.75, 13.5, 13.5, 13.0, 13.0, 13.0, 12.75, 12.5]
- >>> chicago = [14.25, 13.0, 12.75, 12.5, 12.5, 12.4, 12.3, 11.9, 11.9]
- >>> houston = [14.0, 14.0, 13.51, 13.5, 13.5, 13.25, 13.0, 12.5, 12.5]
- >>> memphis = [15.0, 14.0, 13.75, 13.59, 13.25, 12.97, 12.5, 12.25,
- ... 11.89]
- >>> alexandergovern(atlanta, chicago, houston, memphis)
- AlexanderGovernResult(statistic=4.65087071883494,
- pvalue=0.19922132490385214)
- The p-value is 0.1992, indicating a nearly 20% chance of observing
- such an extreme value of the test statistic under the null hypothesis.
- This exceeds 5%, so we do not reject the null hypothesis in favor of
- the alternative.
- """
- samples = _alexandergovern_input_validation(samples, nan_policy)
- if np.any([(sample == sample[0]).all() for sample in samples]):
- msg = "An input array is constant; the statistic is not defined."
- warnings.warn(stats.ConstantInputWarning(msg))
- return AlexanderGovernResult(np.nan, np.nan)
- # The following formula numbers reference the equation described on
- # page 92 by Alexander, Govern. Formulas 5, 6, and 7 describe other
- # tests that serve as the basis for equation (8) but are not needed
- # to perform the test.
- # precalculate mean and length of each sample
- lengths = np.array([ma.count(sample) if nan_policy == 'omit'
- else len(sample) for sample in samples])
- means = np.array([np.mean(sample) for sample in samples])
- # (1) determine standard error of the mean for each sample
- standard_errors = [np.std(sample, ddof=1) / np.sqrt(length)
- for sample, length in zip(samples, lengths)]
- # (2) define a weight for each sample
- inv_sq_se = 1 / np.square(standard_errors)
- weights = inv_sq_se / np.sum(inv_sq_se)
- # (3) determine variance-weighted estimate of the common mean
- var_w = np.sum(weights * means)
- # (4) determine one-sample t statistic for each group
- t_stats = (means - var_w)/standard_errors
- # calculate parameters to be used in transformation
- v = lengths - 1
- a = v - .5
- b = 48 * a**2
- c = (a * np.log(1 + (t_stats ** 2)/v))**.5
- # (8) perform a normalizing transformation on t statistic
- z = (c + ((c**3 + 3*c)/b) -
- ((4*c**7 + 33*c**5 + 240*c**3 + 855*c) /
- (b**2*10 + 8*b*c**4 + 1000*b)))
- # (9) calculate statistic
- A = np.sum(np.square(z))
- # "[the p value is determined from] central chi-square random deviates
- # with k - 1 degrees of freedom". Alexander, Govern (94)
- p = distributions.chi2.sf(A, len(samples) - 1)
- return AlexanderGovernResult(A, p)
- def _alexandergovern_input_validation(samples, nan_policy):
- if len(samples) < 2:
- raise TypeError(f"2 or more inputs required, got {len(samples)}")
- # input arrays are flattened
- samples = [np.asarray(sample, dtype=float) for sample in samples]
- for i, sample in enumerate(samples):
- if np.size(sample) <= 1:
- raise ValueError("Input sample size must be greater than one.")
- if sample.ndim != 1:
- raise ValueError("Input samples must be one-dimensional")
- if np.isinf(sample).any():
- raise ValueError("Input samples must be finite.")
- contains_nan, nan_policy = _contains_nan(sample,
- nan_policy=nan_policy)
- if contains_nan and nan_policy == 'omit':
- samples[i] = ma.masked_invalid(sample)
- return samples
- AlexanderGovernResult = make_dataclass("AlexanderGovernResult", ("statistic",
- "pvalue"))
- def _pearsonr_fisher_ci(r, n, confidence_level, alternative):
- """
- Compute the confidence interval for Pearson's R.
- Fisher's transformation is used to compute the confidence interval
- (https://en.wikipedia.org/wiki/Fisher_transformation).
- """
- if r == 1:
- zr = np.inf
- elif r == -1:
- zr = -np.inf
- else:
- zr = np.arctanh(r)
- if n > 3:
- se = np.sqrt(1 / (n - 3))
- if alternative == "two-sided":
- h = special.ndtri(0.5 + confidence_level/2)
- zlo = zr - h*se
- zhi = zr + h*se
- rlo = np.tanh(zlo)
- rhi = np.tanh(zhi)
- elif alternative == "less":
- h = special.ndtri(confidence_level)
- zhi = zr + h*se
- rhi = np.tanh(zhi)
- rlo = -1.0
- else:
- # alternative == "greater":
- h = special.ndtri(confidence_level)
- zlo = zr - h*se
- rlo = np.tanh(zlo)
- rhi = 1.0
- else:
- rlo, rhi = -1.0, 1.0
- return ConfidenceInterval(low=rlo, high=rhi)
- ConfidenceInterval = namedtuple('ConfidenceInterval', ['low', 'high'])
- PearsonRResultBase = _make_tuple_bunch('PearsonRResultBase',
- ['statistic', 'pvalue'], [])
- class PearsonRResult(PearsonRResultBase):
- """
- Result of `scipy.stats.pearsonr`
- Attributes
- ----------
- statistic : float
- Pearson product-moment correlation coefficient.
- pvalue : float
- The p-value associated with the chosen alternative.
- Methods
- -------
- confidence_interval
- Computes the confidence interval of the correlation
- coefficient `statistic` for the given confidence level.
- """
- def __init__(self, statistic, pvalue, alternative, n):
- super().__init__(statistic, pvalue)
- self._alternative = alternative
- self._n = n
- # add alias for consistency with other correlation functions
- self.correlation = statistic
- def confidence_interval(self, confidence_level=0.95):
- """
- The confidence interval for the correlation coefficient.
- Compute the confidence interval for the correlation coefficient
- ``statistic`` with the given confidence level.
- The confidence interval is computed using the Fisher transformation
- F(r) = arctanh(r) [1]_. When the sample pairs are drawn from a
- bivariate normal distribution, F(r) approximately follows a normal
- distribution with standard error ``1/sqrt(n - 3)``, where ``n`` is the
- length of the original samples along the calculation axis. When
- ``n <= 3``, this approximation does not yield a finite, real standard
- error, so we define the confidence interval to be -1 to 1.
- Parameters
- ----------
- confidence_level : float
- The confidence level for the calculation of the correlation
- coefficient confidence interval. Default is 0.95.
- Returns
- -------
- ci : namedtuple
- The confidence interval is returned in a ``namedtuple`` with
- fields `low` and `high`.
- References
- ----------
- .. [1] "Pearson correlation coefficient", Wikipedia,
- https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
- """
- return _pearsonr_fisher_ci(self.statistic, self._n, confidence_level,
- self._alternative)
- def pearsonr(x, y, *, alternative='two-sided'):
- r"""
- Pearson correlation coefficient and p-value for testing non-correlation.
- The Pearson correlation coefficient [1]_ measures the linear relationship
- between two datasets. Like other correlation
- coefficients, this one varies between -1 and +1 with 0 implying no
- correlation. Correlations of -1 or +1 imply an exact linear relationship.
- Positive correlations imply that as x increases, so does y. Negative
- correlations imply that as x increases, y decreases.
- This function also performs a test of the null hypothesis that the
- distributions underlying the samples are uncorrelated and normally
- distributed. (See Kowalski [3]_
- for a discussion of the effects of non-normality of the input on the
- distribution of the correlation coefficient.)
- The p-value roughly indicates the probability of an uncorrelated system
- producing datasets that have a Pearson correlation at least as extreme
- as the one computed from these datasets.
- Parameters
- ----------
- x : (N,) array_like
- Input array.
- y : (N,) array_like
- Input array.
- alternative : {'two-sided', 'greater', 'less'}, optional
- Defines the alternative hypothesis. Default is 'two-sided'.
- The following options are available:
- * 'two-sided': the correlation is nonzero
- * 'less': the correlation is negative (less than zero)
- * 'greater': the correlation is positive (greater than zero)
- .. versionadded:: 1.9.0
- Returns
- -------
- result : `~scipy.stats._result_classes.PearsonRResult`
- An object with the following attributes:
- statistic : float
- Pearson product-moment correlation coefficient.
- pvalue : float
- The p-value associated with the chosen alternative.
- The object has the following method:
- confidence_interval(confidence_level=0.95)
- This method computes the confidence interval of the correlation
- coefficient `statistic` for the given confidence level.
- The confidence interval is returned in a ``namedtuple`` with
- fields `low` and `high`. See the Notes for more details.
- Warns
- -----
- `~scipy.stats.ConstantInputWarning`
- Raised if an input is a constant array. The correlation coefficient
- is not defined in this case, so ``np.nan`` is returned.
- `~scipy.stats.NearConstantInputWarning`
- Raised if an input is "nearly" constant. The array ``x`` is considered
- nearly constant if ``norm(x - mean(x)) < 1e-13 * abs(mean(x))``.
- Numerical errors in the calculation ``x - mean(x)`` in this case might
- result in an inaccurate calculation of r.
- See Also
- --------
- spearmanr : Spearman rank-order correlation coefficient.
- kendalltau : Kendall's tau, a correlation measure for ordinal data.
- Notes
- -----
- The correlation coefficient is calculated as follows:
- .. math::
- r = \frac{\sum (x - m_x) (y - m_y)}
- {\sqrt{\sum (x - m_x)^2 \sum (y - m_y)^2}}
- where :math:`m_x` is the mean of the vector x and :math:`m_y` is
- the mean of the vector y.
- Under the assumption that x and y are drawn from
- independent normal distributions (so the population correlation coefficient
- is 0), the probability density function of the sample correlation
- coefficient r is ([1]_, [2]_):
- .. math::
- f(r) = \frac{{(1-r^2)}^{n/2-2}}{\mathrm{B}(\frac{1}{2},\frac{n}{2}-1)}
- where n is the number of samples, and B is the beta function. This
- is sometimes referred to as the exact distribution of r. This is
- the distribution that is used in `pearsonr` to compute the p-value.
- The distribution is a beta distribution on the interval [-1, 1],
- with equal shape parameters a = b = n/2 - 1. In terms of SciPy's
- implementation of the beta distribution, the distribution of r is::
- dist = scipy.stats.beta(n/2 - 1, n/2 - 1, loc=-1, scale=2)
- The default p-value returned by `pearsonr` is a two-sided p-value. For a
- given sample with correlation coefficient r, the p-value is
- the probability that abs(r') of a random sample x' and y' drawn from
- the population with zero correlation would be greater than or equal
- to abs(r). In terms of the object ``dist`` shown above, the p-value
- for a given r and length n can be computed as::
- p = 2*dist.cdf(-abs(r))
- When n is 2, the above continuous distribution is not well-defined.
- One can interpret the limit of the beta distribution as the shape
- parameters a and b approach a = b = 0 as a discrete distribution with
- equal probability masses at r = 1 and r = -1. More directly, one
- can observe that, given the data x = [x1, x2] and y = [y1, y2], and
- assuming x1 != x2 and y1 != y2, the only possible values for r are 1
- and -1. Because abs(r') for any sample x' and y' with length 2 will
- be 1, the two-sided p-value for a sample of length 2 is always 1.
- For backwards compatibility, the object that is returned also behaves
- like a tuple of length two that holds the statistic and the p-value.
- References
- ----------
- .. [1] "Pearson correlation coefficient", Wikipedia,
- https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
- .. [2] Student, "Probable error of a correlation coefficient",
- Biometrika, Volume 6, Issue 2-3, 1 September 1908, pp. 302-310.
- .. [3] C. J. Kowalski, "On the Effects of Non-Normality on the Distribution
- of the Sample Product-Moment Correlation Coefficient"
- Journal of the Royal Statistical Society. Series C (Applied
- Statistics), Vol. 21, No. 1 (1972), pp. 1-12.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy import stats
- >>> res = stats.pearsonr([1, 2, 3, 4, 5], [10, 9, 2.5, 6, 4])
- >>> res
- PearsonRResult(statistic=-0.7426106572325056, pvalue=0.15055580885344558)
- >>> res.confidence_interval()
- ConfidenceInterval(low=-0.9816918044786463, high=0.40501116769030976)
- There is a linear dependence between x and y if y = a + b*x + e, where
- a,b are constants and e is a random error term, assumed to be independent
- of x. For simplicity, assume that x is standard normal, a=0, b=1 and let
- e follow a normal distribution with mean zero and standard deviation s>0.
- >>> rng = np.random.default_rng()
- >>> s = 0.5
- >>> x = stats.norm.rvs(size=500, random_state=rng)
- >>> e = stats.norm.rvs(scale=s, size=500, random_state=rng)
- >>> y = x + e
- >>> stats.pearsonr(x, y).statistic
- 0.9001942438244763
- This should be close to the exact value given by
- >>> 1/np.sqrt(1 + s**2)
- 0.8944271909999159
- For s=0.5, we observe a high level of correlation. In general, a large
- variance of the noise reduces the correlation, while the correlation
- approaches one as the variance of the error goes to zero.
- It is important to keep in mind that no correlation does not imply
- independence unless (x, y) is jointly normal. Correlation can even be zero
- when there is a very simple dependence structure: if X follows a
- standard normal distribution, let y = abs(x). Note that the correlation
- between x and y is zero. Indeed, since the expectation of x is zero,
- cov(x, y) = E[x*y]. By definition, this equals E[x*abs(x)] which is zero
- by symmetry. The following lines of code illustrate this observation:
- >>> y = np.abs(x)
- >>> stats.pearsonr(x, y)
- PearsonRResult(statistic=-0.05444919272687482, pvalue=0.22422294836207743)
- A non-zero correlation coefficient can be misleading. For example, if X has
- a standard normal distribution, define y = x if x < 0 and y = 0 otherwise.
- A simple calculation shows that corr(x, y) = sqrt(2/Pi) = 0.797...,
- implying a high level of correlation:
- >>> y = np.where(x < 0, x, 0)
- >>> stats.pearsonr(x, y)
- PearsonRResult(statistic=0.861985781588, pvalue=4.813432002751103e-149)
- This is unintuitive since there is no dependence of x and y if x is larger
- than zero which happens in about half of the cases if we sample x and y.
- """
- n = len(x)
- if n != len(y):
- raise ValueError('x and y must have the same length.')
- if n < 2:
- raise ValueError('x and y must have length at least 2.')
- x = np.asarray(x)
- y = np.asarray(y)
- if (np.issubdtype(x.dtype, np.complexfloating)
- or np.issubdtype(y.dtype, np.complexfloating)):
- raise ValueError('This function does not support complex data')
- # If an input is constant, the correlation coefficient is not defined.
- if (x == x[0]).all() or (y == y[0]).all():
- msg = ("An input array is constant; the correlation coefficient "
- "is not defined.")
- warnings.warn(stats.ConstantInputWarning(msg))
- result = PearsonRResult(statistic=np.nan, pvalue=np.nan, n=n,
- alternative=alternative)
- return result
- # dtype is the data type for the calculations. This expression ensures
- # that the data type is at least 64 bit floating point. It might have
- # more precision if the input is, for example, np.longdouble.
- dtype = type(1.0 + x[0] + y[0])
- if n == 2:
- r = dtype(np.sign(x[1] - x[0])*np.sign(y[1] - y[0]))
- result = PearsonRResult(statistic=r, pvalue=1.0, n=n,
- alternative=alternative)
- return result
- xmean = x.mean(dtype=dtype)
- ymean = y.mean(dtype=dtype)
- # By using `astype(dtype)`, we ensure that the intermediate calculations
- # use at least 64 bit floating point.
- xm = x.astype(dtype) - xmean
- ym = y.astype(dtype) - ymean
- # Unlike np.linalg.norm or the expression sqrt((xm*xm).sum()),
- # scipy.linalg.norm(xm) does not overflow if xm is, for example,
- # [-5e210, 5e210, 3e200, -3e200]
- normxm = linalg.norm(xm)
- normym = linalg.norm(ym)
- threshold = 1e-13
- if normxm < threshold*abs(xmean) or normym < threshold*abs(ymean):
- # If all the values in x (likewise y) are very close to the mean,
- # the loss of precision that occurs in the subtraction xm = x - xmean
- # might result in large errors in r.
- msg = ("An input array is nearly constant; the computed "
- "correlation coefficient may be inaccurate.")
- warnings.warn(stats.NearConstantInputWarning(msg))
- r = np.dot(xm/normxm, ym/normym)
- # Presumably, if abs(r) > 1, then it is only some small artifact of
- # floating point arithmetic.
- r = max(min(r, 1.0), -1.0)
- # As explained in the docstring, the distribution of `r` under the null
- # hypothesis is the beta distribution on (-1, 1) with a = b = n/2 - 1.
- ab = n/2 - 1
- dist = stats.beta(ab, ab, loc=-1, scale=2)
- if alternative == 'two-sided':
- prob = 2*dist.sf(abs(r))
- elif alternative == 'less':
- prob = dist.cdf(r)
- elif alternative == 'greater':
- prob = dist.sf(r)
- else:
- raise ValueError('alternative must be one of '
- '["two-sided", "less", "greater"]')
- return PearsonRResult(statistic=r, pvalue=prob, n=n,
- alternative=alternative)
- def fisher_exact(table, alternative='two-sided'):
- """Perform a Fisher exact test on a 2x2 contingency table.
- The null hypothesis is that the true odds ratio of the populations
- underlying the observations is one, and the observations were sampled
- from these populations under a condition: the marginals of the
- resulting table must equal those of the observed table. The statistic
- returned is the unconditional maximum likelihood estimate of the odds
- ratio, and the p-value is the probability under the null hypothesis of
- obtaining a table at least as extreme as the one that was actually
- observed. There are other possible choices of statistic and two-sided
- p-value definition associated with Fisher's exact test; please see the
- Notes for more information.
- Parameters
- ----------
- table : array_like of ints
- A 2x2 contingency table. Elements must be non-negative integers.
- alternative : {'two-sided', 'less', 'greater'}, optional
- Defines the alternative hypothesis.
- The following options are available (default is 'two-sided'):
- * 'two-sided': the odds ratio of the underlying population is not one
- * 'less': the odds ratio of the underlying population is less than one
- * 'greater': the odds ratio of the underlying population is greater
- than one
- See the Notes for more details.
- Returns
- -------
- res : SignificanceResult
- An object containing attributes:
- statistic : float
- This is the prior odds ratio, not a posterior estimate.
- pvalue : float
- The probability under the null hypothesis of obtaining a
- table at least as extreme as the one that was actually observed.
- See Also
- --------
- chi2_contingency : Chi-square test of independence of variables in a
- contingency table. This can be used as an alternative to
- `fisher_exact` when the numbers in the table are large.
- contingency.odds_ratio : Compute the odds ratio (sample or conditional
- MLE) for a 2x2 contingency table.
- barnard_exact : Barnard's exact test, which is a more powerful alternative
- than Fisher's exact test for 2x2 contingency tables.
- boschloo_exact : Boschloo's exact test, which is a more powerful alternative
- than Fisher's exact test for 2x2 contingency tables.
- Notes
- -----
- *Null hypothesis and p-values*
- The null hypothesis is that the true odds ratio of the populations
- underlying the observations is one, and the observations were sampled at
- random from these populations under a condition: the marginals of the
- resulting table must equal those of the observed table. Equivalently,
- the null hypothesis is that the input table is from the hypergeometric
- distribution with parameters (as used in `hypergeom`)
- ``M = a + b + c + d``, ``n = a + b`` and ``N = a + c``, where the
- input table is ``[[a, b], [c, d]]``. This distribution has support
- ``max(0, N + n - M) <= x <= min(N, n)``, or, in terms of the values
- in the input table, ``min(0, a - d) <= x <= a + min(b, c)``. ``x``
- can be interpreted as the upper-left element of a 2x2 table, so the
- tables in the distribution have form::
- [ x n - x ]
- [N - x M - (n + N) + x]
- For example, if::
- table = [6 2]
- [1 4]
- then the support is ``2 <= x <= 7``, and the tables in the distribution
- are::
- [2 6] [3 5] [4 4] [5 3] [6 2] [7 1]
- [5 0] [4 1] [3 2] [2 3] [1 4] [0 5]
- The probability of each table is given by the hypergeometric distribution
- ``hypergeom.pmf(x, M, n, N)``. For this example, these are (rounded to
- three significant digits)::
- x 2 3 4 5 6 7
- p 0.0163 0.163 0.408 0.326 0.0816 0.00466
- These can be computed with::
- >>> import numpy as np
- >>> from scipy.stats import hypergeom
- >>> table = np.array([[6, 2], [1, 4]])
- >>> M = table.sum()
- >>> n = table[0].sum()
- >>> N = table[:, 0].sum()
- >>> start, end = hypergeom.support(M, n, N)
- >>> hypergeom.pmf(np.arange(start, end+1), M, n, N)
- array([0.01631702, 0.16317016, 0.40792541, 0.32634033, 0.08158508,
- 0.004662 ])
- The two-sided p-value is the probability that, under the null hypothesis,
- a random table would have a probability equal to or less than the
- probability of the input table. For our example, the probability of
- the input table (where ``x = 6``) is 0.0816. The x values where the
- probability does not exceed this are 2, 6 and 7, so the two-sided p-value
- is ``0.0163 + 0.0816 + 0.00466 ~= 0.10256``::
- >>> from scipy.stats import fisher_exact
- >>> res = fisher_exact(table, alternative='two-sided')
- >>> res.pvalue
- 0.10256410256410257
- The one-sided p-value for ``alternative='greater'`` is the probability
- that a random table has ``x >= a``, which in our example is ``x >= 6``,
- or ``0.0816 + 0.00466 ~= 0.08626``::
- >>> res = fisher_exact(table, alternative='greater')
- >>> res.pvalue
- 0.08624708624708627
- This is equivalent to computing the survival function of the
- distribution at ``x = 5`` (one less than ``x`` from the input table,
- because we want to include the probability of ``x = 6`` in the sum)::
- >>> hypergeom.sf(5, M, n, N)
- 0.08624708624708627
- For ``alternative='less'``, the one-sided p-value is the probability
- that a random table has ``x <= a``, (i.e. ``x <= 6`` in our example),
- or ``0.0163 + 0.163 + 0.408 + 0.326 + 0.0816 ~= 0.9949``::
- >>> res = fisher_exact(table, alternative='less')
- >>> res.pvalue
- 0.9953379953379957
- This is equivalent to computing the cumulative distribution function
- of the distribution at ``x = 6``:
- >>> hypergeom.cdf(6, M, n, N)
- 0.9953379953379957
- *Odds ratio*
- The calculated odds ratio is different from the value computed by the
- R function ``fisher.test``. This implementation returns the "sample"
- or "unconditional" maximum likelihood estimate, while ``fisher.test``
- in R uses the conditional maximum likelihood estimate. To compute the
- conditional maximum likelihood estimate of the odds ratio, use
- `scipy.stats.contingency.odds_ratio`.
- Examples
- --------
- Say we spend a few days counting whales and sharks in the Atlantic and
- Indian oceans. In the Atlantic ocean we find 8 whales and 1 shark, in the
- Indian ocean 2 whales and 5 sharks. Then our contingency table is::
- Atlantic Indian
- whales 8 2
- sharks 1 5
- We use this table to find the p-value:
- >>> from scipy.stats import fisher_exact
- >>> res = fisher_exact([[8, 2], [1, 5]])
- >>> res.pvalue
- 0.0349...
- The probability that we would observe this or an even more imbalanced ratio
- by chance is about 3.5%. A commonly used significance level is 5%--if we
- adopt that, we can therefore conclude that our observed imbalance is
- statistically significant; whales prefer the Atlantic while sharks prefer
- the Indian ocean.
- """
- hypergeom = distributions.hypergeom
- # int32 is not enough for the algorithm
- c = np.asarray(table, dtype=np.int64)
- if not c.shape == (2, 2):
- raise ValueError("The input `table` must be of shape (2, 2).")
- if np.any(c < 0):
- raise ValueError("All values in `table` must be nonnegative.")
- if 0 in c.sum(axis=0) or 0 in c.sum(axis=1):
- # If both values in a row or column are zero, the p-value is 1 and
- # the odds ratio is NaN.
- return SignificanceResult(np.nan, 1.0)
- if c[1, 0] > 0 and c[0, 1] > 0:
- oddsratio = c[0, 0] * c[1, 1] / (c[1, 0] * c[0, 1])
- else:
- oddsratio = np.inf
- n1 = c[0, 0] + c[0, 1]
- n2 = c[1, 0] + c[1, 1]
- n = c[0, 0] + c[1, 0]
- def pmf(x):
- return hypergeom.pmf(x, n1 + n2, n1, n)
- if alternative == 'less':
- pvalue = hypergeom.cdf(c[0, 0], n1 + n2, n1, n)
- elif alternative == 'greater':
- # Same formula as the 'less' case, but with the second column.
- pvalue = hypergeom.cdf(c[0, 1], n1 + n2, n1, c[0, 1] + c[1, 1])
- elif alternative == 'two-sided':
- mode = int((n + 1) * (n1 + 1) / (n1 + n2 + 2))
- pexact = hypergeom.pmf(c[0, 0], n1 + n2, n1, n)
- pmode = hypergeom.pmf(mode, n1 + n2, n1, n)
- epsilon = 1e-14
- gamma = 1 + epsilon
- if np.abs(pexact - pmode) / np.maximum(pexact, pmode) <= epsilon:
- return SignificanceResult(oddsratio, 1.)
- elif c[0, 0] < mode:
- plower = hypergeom.cdf(c[0, 0], n1 + n2, n1, n)
- if hypergeom.pmf(n, n1 + n2, n1, n) > pexact * gamma:
- return SignificanceResult(oddsratio, plower)
- guess = _binary_search(lambda x: -pmf(x), -pexact * gamma, mode, n)
- pvalue = plower + hypergeom.sf(guess, n1 + n2, n1, n)
- else:
- pupper = hypergeom.sf(c[0, 0] - 1, n1 + n2, n1, n)
- if hypergeom.pmf(0, n1 + n2, n1, n) > pexact * gamma:
- return SignificanceResult(oddsratio, pupper)
- guess = _binary_search(pmf, pexact * gamma, 0, mode)
- pvalue = pupper + hypergeom.cdf(guess, n1 + n2, n1, n)
- else:
- msg = "`alternative` should be one of {'two-sided', 'less', 'greater'}"
- raise ValueError(msg)
- pvalue = min(pvalue, 1.0)
- return SignificanceResult(oddsratio, pvalue)
- def spearmanr(a, b=None, axis=0, nan_policy='propagate',
- alternative='two-sided'):
- """Calculate a Spearman correlation coefficient with associated p-value.
- The Spearman rank-order correlation coefficient is a nonparametric measure
- of the monotonicity of the relationship between two datasets.
- Like other correlation coefficients,
- this one varies between -1 and +1 with 0 implying no correlation.
- Correlations of -1 or +1 imply an exact monotonic relationship. Positive
- correlations imply that as x increases, so does y. Negative correlations
- imply that as x increases, y decreases.
- The p-value roughly indicates the probability of an uncorrelated system
- producing datasets that have a Spearman correlation at least as extreme
- as the one computed from these datasets. Although calculation of the
- p-value does not make strong assumptions about the distributions underlying
- the samples, it is only accurate for very large samples (>500
- observations). For smaller sample sizes, consider a permutation test (see
- Examples section below).
- Parameters
- ----------
- a, b : 1D or 2D array_like, b is optional
- One or two 1-D or 2-D arrays containing multiple variables and
- observations. When these are 1-D, each represents a vector of
- observations of a single variable. For the behavior in the 2-D case,
- see under ``axis``, below.
- Both arrays need to have the same length in the ``axis`` dimension.
- axis : int or None, optional
- If axis=0 (default), then each column represents a variable, with
- observations in the rows. If axis=1, the relationship is transposed:
- each row represents a variable, while the columns contain observations.
- If axis=None, then both arrays will be raveled.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': returns nan
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- alternative : {'two-sided', 'less', 'greater'}, optional
- Defines the alternative hypothesis. Default is 'two-sided'.
- The following options are available:
- * 'two-sided': the correlation is nonzero
- * 'less': the correlation is negative (less than zero)
- * 'greater': the correlation is positive (greater than zero)
- .. versionadded:: 1.7.0
- Returns
- -------
- res : SignificanceResult
- An object containing attributes:
- statistic : float or ndarray (2-D square)
- Spearman correlation matrix or correlation coefficient (if only 2
- variables are given as parameters). Correlation matrix is square
- with length equal to total number of variables (columns or rows) in
- ``a`` and ``b`` combined.
- pvalue : float
- The p-value for a hypothesis test whose null hypothesis
- is that two sets of data are linearly uncorrelated. See
- `alternative` above for alternative hypotheses. `pvalue` has the
- same shape as `statistic`.
- Warns
- -----
- `~scipy.stats.ConstantInputWarning`
- Raised if an input is a constant array. The correlation coefficient
- is not defined in this case, so ``np.nan`` is returned.
- References
- ----------
- .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
- Probability and Statistics Tables and Formulae. Chapman & Hall: New
- York. 2000.
- Section 14.7
- .. [2] Kendall, M. G. and Stuart, A. (1973).
- The Advanced Theory of Statistics, Volume 2: Inference and Relationship.
- Griffin. 1973.
- Section 31.18
- Examples
- --------
- >>> import numpy as np
- >>> from scipy import stats
- >>> res = stats.spearmanr([1, 2, 3, 4, 5], [5, 6, 7, 8, 7])
- >>> res.statistic
- 0.8207826816681233
- >>> res.pvalue
- 0.08858700531354381
- >>> rng = np.random.default_rng()
- >>> x2n = rng.standard_normal((100, 2))
- >>> y2n = rng.standard_normal((100, 2))
- >>> res = stats.spearmanr(x2n)
- >>> res.statistic, res.pvalue
- (-0.07960396039603959, 0.4311168705769747)
- >>> res = stats.spearmanr(x2n[:, 0], x2n[:, 1])
- >>> res.statistic, res.pvalue
- (-0.07960396039603959, 0.4311168705769747)
- >>> res = stats.spearmanr(x2n, y2n)
- >>> res.statistic
- array([[ 1. , -0.07960396, -0.08314431, 0.09662166],
- [-0.07960396, 1. , -0.14448245, 0.16738074],
- [-0.08314431, -0.14448245, 1. , 0.03234323],
- [ 0.09662166, 0.16738074, 0.03234323, 1. ]])
- >>> res.pvalue
- array([[0. , 0.43111687, 0.41084066, 0.33891628],
- [0.43111687, 0. , 0.15151618, 0.09600687],
- [0.41084066, 0.15151618, 0. , 0.74938561],
- [0.33891628, 0.09600687, 0.74938561, 0. ]])
- >>> res = stats.spearmanr(x2n.T, y2n.T, axis=1)
- >>> res.statistic
- array([[ 1. , -0.07960396, -0.08314431, 0.09662166],
- [-0.07960396, 1. , -0.14448245, 0.16738074],
- [-0.08314431, -0.14448245, 1. , 0.03234323],
- [ 0.09662166, 0.16738074, 0.03234323, 1. ]])
- >>> res = stats.spearmanr(x2n, y2n, axis=None)
- >>> res.statistic, res.pvalue
- (0.044981624540613524, 0.5270803651336189)
- >>> res = stats.spearmanr(x2n.ravel(), y2n.ravel())
- >>> res.statistic, res.pvalue
- (0.044981624540613524, 0.5270803651336189)
- >>> rng = np.random.default_rng()
- >>> xint = rng.integers(10, size=(100, 2))
- >>> res = stats.spearmanr(xint)
- >>> res.statistic, res.pvalue
- (0.09800224850707953, 0.3320271757932076)
- For small samples, consider performing a permutation test instead of
- relying on the asymptotic p-value. Note that to calculate the null
- distribution of the statistic (for all possibly pairings between
- observations in sample ``x`` and ``y``), only one of the two inputs needs
- to be permuted.
- >>> x = [1.76405235, 0.40015721, 0.97873798,
- ... 2.2408932, 1.86755799, -0.97727788]
- >>> y = [2.71414076, 0.2488, 0.87551913,
- ... 2.6514917, 2.01160156, 0.47699563]
- >>> def statistic(x): # permute only `x`
- ... return stats.spearmanr(x, y).statistic
- >>> res_exact = stats.permutation_test((x,), statistic,
- ... permutation_type='pairings')
- >>> res_asymptotic = stats.spearmanr(x, y)
- >>> res_exact.pvalue, res_asymptotic.pvalue # asymptotic pvalue is too low
- (0.10277777777777777, 0.07239650145772594)
- """
- if axis is not None and axis > 1:
- raise ValueError("spearmanr only handles 1-D or 2-D arrays, "
- "supplied axis argument {}, please use only "
- "values 0, 1 or None for axis".format(axis))
- a, axisout = _chk_asarray(a, axis)
- if a.ndim > 2:
- raise ValueError("spearmanr only handles 1-D or 2-D arrays")
- if b is None:
- if a.ndim < 2:
- raise ValueError("`spearmanr` needs at least 2 "
- "variables to compare")
- else:
- # Concatenate a and b, so that we now only have to handle the case
- # of a 2-D `a`.
- b, _ = _chk_asarray(b, axis)
- if axisout == 0:
- a = np.column_stack((a, b))
- else:
- a = np.row_stack((a, b))
- n_vars = a.shape[1 - axisout]
- n_obs = a.shape[axisout]
- if n_obs <= 1:
- # Handle empty arrays or single observations.
- res = SignificanceResult(np.nan, np.nan)
- res.correlation = np.nan
- return res
- warn_msg = ("An input array is constant; the correlation coefficient "
- "is not defined.")
- if axisout == 0:
- if (a[:, 0][0] == a[:, 0]).all() or (a[:, 1][0] == a[:, 1]).all():
- # If an input is constant, the correlation coefficient
- # is not defined.
- warnings.warn(stats.ConstantInputWarning(warn_msg))
- res = SignificanceResult(np.nan, np.nan)
- res.correlation = np.nan
- return res
- else: # case when axisout == 1 b/c a is 2 dim only
- if (a[0, :][0] == a[0, :]).all() or (a[1, :][0] == a[1, :]).all():
- # If an input is constant, the correlation coefficient
- # is not defined.
- warnings.warn(stats.ConstantInputWarning(warn_msg))
- res = SignificanceResult(np.nan, np.nan)
- res.correlation = np.nan
- return res
- a_contains_nan, nan_policy = _contains_nan(a, nan_policy)
- variable_has_nan = np.zeros(n_vars, dtype=bool)
- if a_contains_nan:
- if nan_policy == 'omit':
- return mstats_basic.spearmanr(a, axis=axis, nan_policy=nan_policy,
- alternative=alternative)
- elif nan_policy == 'propagate':
- if a.ndim == 1 or n_vars <= 2:
- res = SignificanceResult(np.nan, np.nan)
- res.correlation = np.nan
- return res
- else:
- # Keep track of variables with NaNs, set the outputs to NaN
- # only for those variables
- variable_has_nan = np.isnan(a).any(axis=axisout)
- a_ranked = np.apply_along_axis(rankdata, axisout, a)
- rs = np.corrcoef(a_ranked, rowvar=axisout)
- dof = n_obs - 2 # degrees of freedom
- # rs can have elements equal to 1, so avoid zero division warnings
- with np.errstate(divide='ignore'):
- # clip the small negative values possibly caused by rounding
- # errors before taking the square root
- t = rs * np.sqrt((dof/((rs+1.0)*(1.0-rs))).clip(0))
- t, prob = _ttest_finish(dof, t, alternative)
- # For backwards compatibility, return scalars when comparing 2 columns
- if rs.shape == (2, 2):
- res = SignificanceResult(rs[1, 0], prob[1, 0])
- res.correlation = rs[1, 0]
- return res
- else:
- rs[variable_has_nan, :] = np.nan
- rs[:, variable_has_nan] = np.nan
- res = SignificanceResult(rs, prob)
- res.correlation = rs
- return res
- def pointbiserialr(x, y):
- r"""Calculate a point biserial correlation coefficient and its p-value.
- The point biserial correlation is used to measure the relationship
- between a binary variable, x, and a continuous variable, y. Like other
- correlation coefficients, this one varies between -1 and +1 with 0
- implying no correlation. Correlations of -1 or +1 imply a determinative
- relationship.
- This function may be computed using a shortcut formula but produces the
- same result as `pearsonr`.
- Parameters
- ----------
- x : array_like of bools
- Input array.
- y : array_like
- Input array.
- Returns
- -------
- res: SignificanceResult
- An object containing attributes:
- statistic : float
- The R value.
- pvalue : float
- The two-sided p-value.
- Notes
- -----
- `pointbiserialr` uses a t-test with ``n-1`` degrees of freedom.
- It is equivalent to `pearsonr`.
- The value of the point-biserial correlation can be calculated from:
- .. math::
- r_{pb} = \frac{\overline{Y_{1}} -
- \overline{Y_{0}}}{s_{y}}\sqrt{\frac{N_{1} N_{2}}{N (N - 1))}}
- Where :math:`Y_{0}` and :math:`Y_{1}` are means of the metric
- observations coded 0 and 1 respectively; :math:`N_{0}` and :math:`N_{1}`
- are number of observations coded 0 and 1 respectively; :math:`N` is the
- total number of observations and :math:`s_{y}` is the standard
- deviation of all the metric observations.
- A value of :math:`r_{pb}` that is significantly different from zero is
- completely equivalent to a significant difference in means between the two
- groups. Thus, an independent groups t Test with :math:`N-2` degrees of
- freedom may be used to test whether :math:`r_{pb}` is nonzero. The
- relation between the t-statistic for comparing two independent groups and
- :math:`r_{pb}` is given by:
- .. math::
- t = \sqrt{N - 2}\frac{r_{pb}}{\sqrt{1 - r^{2}_{pb}}}
- References
- ----------
- .. [1] J. Lev, "The Point Biserial Coefficient of Correlation", Ann. Math.
- Statist., Vol. 20, no.1, pp. 125-126, 1949.
- .. [2] R.F. Tate, "Correlation Between a Discrete and a Continuous
- Variable. Point-Biserial Correlation.", Ann. Math. Statist., Vol. 25,
- np. 3, pp. 603-607, 1954.
- .. [3] D. Kornbrot "Point Biserial Correlation", In Wiley StatsRef:
- Statistics Reference Online (eds N. Balakrishnan, et al.), 2014.
- :doi:`10.1002/9781118445112.stat06227`
- Examples
- --------
- >>> import numpy as np
- >>> from scipy import stats
- >>> a = np.array([0, 0, 0, 1, 1, 1, 1])
- >>> b = np.arange(7)
- >>> stats.pointbiserialr(a, b)
- (0.8660254037844386, 0.011724811003954652)
- >>> stats.pearsonr(a, b)
- (0.86602540378443871, 0.011724811003954626)
- >>> np.corrcoef(a, b)
- array([[ 1. , 0.8660254],
- [ 0.8660254, 1. ]])
- """
- rpb, prob = pearsonr(x, y)
- # create result object with alias for backward compatibility
- res = SignificanceResult(rpb, prob)
- res.correlation = rpb
- return res
- def kendalltau(x, y, initial_lexsort=None, nan_policy='propagate',
- method='auto', variant='b', alternative='two-sided'):
- """Calculate Kendall's tau, a correlation measure for ordinal data.
- Kendall's tau is a measure of the correspondence between two rankings.
- Values close to 1 indicate strong agreement, and values close to -1
- indicate strong disagreement. This implements two variants of Kendall's
- tau: tau-b (the default) and tau-c (also known as Stuart's tau-c). These
- differ only in how they are normalized to lie within the range -1 to 1;
- the hypothesis tests (their p-values) are identical. Kendall's original
- tau-a is not implemented separately because both tau-b and tau-c reduce
- to tau-a in the absence of ties.
- Parameters
- ----------
- x, y : array_like
- Arrays of rankings, of the same shape. If arrays are not 1-D, they
- will be flattened to 1-D.
- initial_lexsort : bool, optional, deprecated
- This argument is unused.
- .. deprecated:: 1.10.0
- `kendalltau` keyword argument `initial_lexsort` is deprecated as it
- is unused and will be removed in SciPy 1.12.0.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': returns nan
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- method : {'auto', 'asymptotic', 'exact'}, optional
- Defines which method is used to calculate the p-value [5]_.
- The following options are available (default is 'auto'):
- * 'auto': selects the appropriate method based on a trade-off
- between speed and accuracy
- * 'asymptotic': uses a normal approximation valid for large samples
- * 'exact': computes the exact p-value, but can only be used if no ties
- are present. As the sample size increases, the 'exact' computation
- time may grow and the result may lose some precision.
- variant : {'b', 'c'}, optional
- Defines which variant of Kendall's tau is returned. Default is 'b'.
- alternative : {'two-sided', 'less', 'greater'}, optional
- Defines the alternative hypothesis. Default is 'two-sided'.
- The following options are available:
- * 'two-sided': the rank correlation is nonzero
- * 'less': the rank correlation is negative (less than zero)
- * 'greater': the rank correlation is positive (greater than zero)
- Returns
- -------
- res : SignificanceResult
- An object containing attributes:
- statistic : float
- The tau statistic.
- pvalue : float
- The p-value for a hypothesis test whose null hypothesis is
- an absence of association, tau = 0.
- See Also
- --------
- spearmanr : Calculates a Spearman rank-order correlation coefficient.
- theilslopes : Computes the Theil-Sen estimator for a set of points (x, y).
- weightedtau : Computes a weighted version of Kendall's tau.
- Notes
- -----
- The definition of Kendall's tau that is used is [2]_::
- tau_b = (P - Q) / sqrt((P + Q + T) * (P + Q + U))
- tau_c = 2 (P - Q) / (n**2 * (m - 1) / m)
- where P is the number of concordant pairs, Q the number of discordant
- pairs, T the number of ties only in `x`, and U the number of ties only in
- `y`. If a tie occurs for the same pair in both `x` and `y`, it is not
- added to either T or U. n is the total number of samples, and m is the
- number of unique values in either `x` or `y`, whichever is smaller.
- References
- ----------
- .. [1] Maurice G. Kendall, "A New Measure of Rank Correlation", Biometrika
- Vol. 30, No. 1/2, pp. 81-93, 1938.
- .. [2] Maurice G. Kendall, "The treatment of ties in ranking problems",
- Biometrika Vol. 33, No. 3, pp. 239-251. 1945.
- .. [3] Gottfried E. Noether, "Elements of Nonparametric Statistics", John
- Wiley & Sons, 1967.
- .. [4] Peter M. Fenwick, "A new data structure for cumulative frequency
- tables", Software: Practice and Experience, Vol. 24, No. 3,
- pp. 327-336, 1994.
- .. [5] Maurice G. Kendall, "Rank Correlation Methods" (4th Edition),
- Charles Griffin & Co., 1970.
- Examples
- --------
- >>> from scipy import stats
- >>> x1 = [12, 2, 1, 12, 2]
- >>> x2 = [1, 4, 7, 1, 0]
- >>> res = stats.kendalltau(x1, x2)
- >>> res.statistic
- -0.47140452079103173
- >>> res.pvalue
- 0.2827454599327748
- """
- if initial_lexsort is not None:
- msg = ("'kendalltau' keyword argument 'initial_lexsort' is deprecated"
- " as it is unused and will be removed in SciPy 1.12.0.")
- warnings.warn(msg, DeprecationWarning, stacklevel=2)
- x = np.asarray(x).ravel()
- y = np.asarray(y).ravel()
- if x.size != y.size:
- raise ValueError("All inputs to `kendalltau` must be of the same "
- f"size, found x-size {x.size} and y-size {y.size}")
- elif not x.size or not y.size:
- # Return NaN if arrays are empty
- res = SignificanceResult(np.nan, np.nan)
- res.correlation = np.nan
- return res
- # check both x and y
- cnx, npx = _contains_nan(x, nan_policy)
- cny, npy = _contains_nan(y, nan_policy)
- contains_nan = cnx or cny
- if npx == 'omit' or npy == 'omit':
- nan_policy = 'omit'
- if contains_nan and nan_policy == 'propagate':
- res = SignificanceResult(np.nan, np.nan)
- res.correlation = np.nan
- return res
- elif contains_nan and nan_policy == 'omit':
- x = ma.masked_invalid(x)
- y = ma.masked_invalid(y)
- if variant == 'b':
- return mstats_basic.kendalltau(x, y, method=method, use_ties=True,
- alternative=alternative)
- else:
- message = ("nan_policy='omit' is currently compatible only with "
- "variant='b'.")
- raise ValueError(message)
- def count_rank_tie(ranks):
- cnt = np.bincount(ranks).astype('int64', copy=False)
- cnt = cnt[cnt > 1]
- return ((cnt * (cnt - 1) // 2).sum(),
- (cnt * (cnt - 1.) * (cnt - 2)).sum(),
- (cnt * (cnt - 1.) * (2*cnt + 5)).sum())
- size = x.size
- perm = np.argsort(y) # sort on y and convert y to dense ranks
- x, y = x[perm], y[perm]
- y = np.r_[True, y[1:] != y[:-1]].cumsum(dtype=np.intp)
- # stable sort on x and convert x to dense ranks
- perm = np.argsort(x, kind='mergesort')
- x, y = x[perm], y[perm]
- x = np.r_[True, x[1:] != x[:-1]].cumsum(dtype=np.intp)
- dis = _kendall_dis(x, y) # discordant pairs
- obs = np.r_[True, (x[1:] != x[:-1]) | (y[1:] != y[:-1]), True]
- cnt = np.diff(np.nonzero(obs)[0]).astype('int64', copy=False)
- ntie = (cnt * (cnt - 1) // 2).sum() # joint ties
- xtie, x0, x1 = count_rank_tie(x) # ties in x, stats
- ytie, y0, y1 = count_rank_tie(y) # ties in y, stats
- tot = (size * (size - 1)) // 2
- if xtie == tot or ytie == tot:
- res = SignificanceResult(np.nan, np.nan)
- res.correlation = np.nan
- return res
- # Note that tot = con + dis + (xtie - ntie) + (ytie - ntie) + ntie
- # = con + dis + xtie + ytie - ntie
- con_minus_dis = tot - xtie - ytie + ntie - 2 * dis
- if variant == 'b':
- tau = con_minus_dis / np.sqrt(tot - xtie) / np.sqrt(tot - ytie)
- elif variant == 'c':
- minclasses = min(len(set(x)), len(set(y)))
- tau = 2*con_minus_dis / (size**2 * (minclasses-1)/minclasses)
- else:
- raise ValueError(f"Unknown variant of the method chosen: {variant}. "
- "variant must be 'b' or 'c'.")
- # Limit range to fix computational errors
- tau = min(1., max(-1., tau))
- # The p-value calculation is the same for all variants since the p-value
- # depends only on con_minus_dis.
- if method == 'exact' and (xtie != 0 or ytie != 0):
- raise ValueError("Ties found, exact method cannot be used.")
- if method == 'auto':
- if (xtie == 0 and ytie == 0) and (size <= 33 or
- min(dis, tot-dis) <= 1):
- method = 'exact'
- else:
- method = 'asymptotic'
- if xtie == 0 and ytie == 0 and method == 'exact':
- pvalue = mstats_basic._kendall_p_exact(size, tot-dis, alternative)
- elif method == 'asymptotic':
- # con_minus_dis is approx normally distributed with this variance [3]_
- m = size * (size - 1.)
- var = ((m * (2*size + 5) - x1 - y1) / 18 +
- (2 * xtie * ytie) / m + x0 * y0 / (9 * m * (size - 2)))
- z = con_minus_dis / np.sqrt(var)
- _, pvalue = _normtest_finish(z, alternative)
- else:
- raise ValueError(f"Unknown method {method} specified. Use 'auto', "
- "'exact' or 'asymptotic'.")
- # create result object with alias for backward compatibility
- res = SignificanceResult(tau, pvalue)
- res.correlation = tau
- return res
- def weightedtau(x, y, rank=True, weigher=None, additive=True):
- r"""Compute a weighted version of Kendall's :math:`\tau`.
- The weighted :math:`\tau` is a weighted version of Kendall's
- :math:`\tau` in which exchanges of high weight are more influential than
- exchanges of low weight. The default parameters compute the additive
- hyperbolic version of the index, :math:`\tau_\mathrm h`, which has
- been shown to provide the best balance between important and
- unimportant elements [1]_.
- The weighting is defined by means of a rank array, which assigns a
- nonnegative rank to each element (higher importance ranks being
- associated with smaller values, e.g., 0 is the highest possible rank),
- and a weigher function, which assigns a weight based on the rank to
- each element. The weight of an exchange is then the sum or the product
- of the weights of the ranks of the exchanged elements. The default
- parameters compute :math:`\tau_\mathrm h`: an exchange between
- elements with rank :math:`r` and :math:`s` (starting from zero) has
- weight :math:`1/(r+1) + 1/(s+1)`.
- Specifying a rank array is meaningful only if you have in mind an
- external criterion of importance. If, as it usually happens, you do
- not have in mind a specific rank, the weighted :math:`\tau` is
- defined by averaging the values obtained using the decreasing
- lexicographical rank by (`x`, `y`) and by (`y`, `x`). This is the
- behavior with default parameters. Note that the convention used
- here for ranking (lower values imply higher importance) is opposite
- to that used by other SciPy statistical functions.
- Parameters
- ----------
- x, y : array_like
- Arrays of scores, of the same shape. If arrays are not 1-D, they will
- be flattened to 1-D.
- rank : array_like of ints or bool, optional
- A nonnegative rank assigned to each element. If it is None, the
- decreasing lexicographical rank by (`x`, `y`) will be used: elements of
- higher rank will be those with larger `x`-values, using `y`-values to
- break ties (in particular, swapping `x` and `y` will give a different
- result). If it is False, the element indices will be used
- directly as ranks. The default is True, in which case this
- function returns the average of the values obtained using the
- decreasing lexicographical rank by (`x`, `y`) and by (`y`, `x`).
- weigher : callable, optional
- The weigher function. Must map nonnegative integers (zero
- representing the most important element) to a nonnegative weight.
- The default, None, provides hyperbolic weighing, that is,
- rank :math:`r` is mapped to weight :math:`1/(r+1)`.
- additive : bool, optional
- If True, the weight of an exchange is computed by adding the
- weights of the ranks of the exchanged elements; otherwise, the weights
- are multiplied. The default is True.
- Returns
- -------
- res: SignificanceResult
- An object containing attributes:
- statistic : float
- The weighted :math:`\tau` correlation index.
- pvalue : float
- Presently ``np.nan``, as the null distribution of the statistic is
- unknown (even in the additive hyperbolic case).
- See Also
- --------
- kendalltau : Calculates Kendall's tau.
- spearmanr : Calculates a Spearman rank-order correlation coefficient.
- theilslopes : Computes the Theil-Sen estimator for a set of points (x, y).
- Notes
- -----
- This function uses an :math:`O(n \log n)`, mergesort-based algorithm
- [1]_ that is a weighted extension of Knight's algorithm for Kendall's
- :math:`\tau` [2]_. It can compute Shieh's weighted :math:`\tau` [3]_
- between rankings without ties (i.e., permutations) by setting
- `additive` and `rank` to False, as the definition given in [1]_ is a
- generalization of Shieh's.
- NaNs are considered the smallest possible score.
- .. versionadded:: 0.19.0
- References
- ----------
- .. [1] Sebastiano Vigna, "A weighted correlation index for rankings with
- ties", Proceedings of the 24th international conference on World
- Wide Web, pp. 1166-1176, ACM, 2015.
- .. [2] W.R. Knight, "A Computer Method for Calculating Kendall's Tau with
- Ungrouped Data", Journal of the American Statistical Association,
- Vol. 61, No. 314, Part 1, pp. 436-439, 1966.
- .. [3] Grace S. Shieh. "A weighted Kendall's tau statistic", Statistics &
- Probability Letters, Vol. 39, No. 1, pp. 17-24, 1998.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy import stats
- >>> x = [12, 2, 1, 12, 2]
- >>> y = [1, 4, 7, 1, 0]
- >>> res = stats.weightedtau(x, y)
- >>> res.statistic
- -0.56694968153682723
- >>> res.pvalue
- nan
- >>> res = stats.weightedtau(x, y, additive=False)
- >>> res.statistic
- -0.62205716951801038
- NaNs are considered the smallest possible score:
- >>> x = [12, 2, 1, 12, 2]
- >>> y = [1, 4, 7, 1, np.nan]
- >>> res = stats.weightedtau(x, y)
- >>> res.statistic
- -0.56694968153682723
- This is exactly Kendall's tau:
- >>> x = [12, 2, 1, 12, 2]
- >>> y = [1, 4, 7, 1, 0]
- >>> res = stats.weightedtau(x, y, weigher=lambda x: 1)
- >>> res.statistic
- -0.47140452079103173
- >>> x = [12, 2, 1, 12, 2]
- >>> y = [1, 4, 7, 1, 0]
- >>> stats.weightedtau(x, y, rank=None)
- SignificanceResult(statistic=-0.4157652301037516, pvalue=nan)
- >>> stats.weightedtau(y, x, rank=None)
- SignificanceResult(statistic=-0.7181341329699028, pvalue=nan)
- """
- x = np.asarray(x).ravel()
- y = np.asarray(y).ravel()
- if x.size != y.size:
- raise ValueError("All inputs to `weightedtau` must be "
- "of the same size, "
- "found x-size %s and y-size %s" % (x.size, y.size))
- if not x.size:
- # Return NaN if arrays are empty
- res = SignificanceResult(np.nan, np.nan)
- res.correlation = np.nan
- return res
- # If there are NaNs we apply _toint64()
- if np.isnan(np.sum(x)):
- x = _toint64(x)
- if np.isnan(np.sum(y)):
- y = _toint64(y)
- # Reduce to ranks unsupported types
- if x.dtype != y.dtype:
- if x.dtype != np.int64:
- x = _toint64(x)
- if y.dtype != np.int64:
- y = _toint64(y)
- else:
- if x.dtype not in (np.int32, np.int64, np.float32, np.float64):
- x = _toint64(x)
- y = _toint64(y)
- if rank is True:
- tau = (
- _weightedrankedtau(x, y, None, weigher, additive) +
- _weightedrankedtau(y, x, None, weigher, additive)
- ) / 2
- res = SignificanceResult(tau, np.nan)
- res.correlation = tau
- return res
- if rank is False:
- rank = np.arange(x.size, dtype=np.intp)
- elif rank is not None:
- rank = np.asarray(rank).ravel()
- if rank.size != x.size:
- raise ValueError(
- "All inputs to `weightedtau` must be of the same size, "
- "found x-size %s and rank-size %s" % (x.size, rank.size)
- )
- tau = _weightedrankedtau(x, y, rank, weigher, additive)
- res = SignificanceResult(tau, np.nan)
- res.correlation = tau
- return res
- # FROM MGCPY: https://github.com/neurodata/mgcpy
- class _ParallelP:
- """Helper function to calculate parallel p-value."""
- def __init__(self, x, y, random_states):
- self.x = x
- self.y = y
- self.random_states = random_states
- def __call__(self, index):
- order = self.random_states[index].permutation(self.y.shape[0])
- permy = self.y[order][:, order]
- # calculate permuted stats, store in null distribution
- perm_stat = _mgc_stat(self.x, permy)[0]
- return perm_stat
- def _perm_test(x, y, stat, reps=1000, workers=-1, random_state=None):
- r"""Helper function that calculates the p-value. See below for uses.
- Parameters
- ----------
- x, y : ndarray
- `x` and `y` have shapes `(n, p)` and `(n, q)`.
- stat : float
- The sample test statistic.
- reps : int, optional
- The number of replications used to estimate the null when using the
- permutation test. The default is 1000 replications.
- workers : int or map-like callable, optional
- If `workers` is an int the population is subdivided into `workers`
- sections and evaluated in parallel (uses
- `multiprocessing.Pool <multiprocessing>`). Supply `-1` to use all cores
- available to the Process. Alternatively supply a map-like callable,
- such as `multiprocessing.Pool.map` for evaluating the population in
- parallel. This evaluation is carried out as `workers(func, iterable)`.
- Requires that `func` be pickleable.
- random_state : {None, int, `numpy.random.Generator`,
- `numpy.random.RandomState`}, optional
- If `seed` is None (or `np.random`), the `numpy.random.RandomState`
- singleton is used.
- If `seed` is an int, a new ``RandomState`` instance is used,
- seeded with `seed`.
- If `seed` is already a ``Generator`` or ``RandomState`` instance then
- that instance is used.
- Returns
- -------
- pvalue : float
- The sample test p-value.
- null_dist : list
- The approximated null distribution.
- """
- # generate seeds for each rep (change to new parallel random number
- # capabilities in numpy >= 1.17+)
- random_state = check_random_state(random_state)
- random_states = [np.random.RandomState(rng_integers(random_state, 1 << 32,
- size=4, dtype=np.uint32)) for _ in range(reps)]
- # parallelizes with specified workers over number of reps and set seeds
- parallelp = _ParallelP(x=x, y=y, random_states=random_states)
- with MapWrapper(workers) as mapwrapper:
- null_dist = np.array(list(mapwrapper(parallelp, range(reps))))
- # calculate p-value and significant permutation map through list
- pvalue = (1 + (null_dist >= stat).sum()) / (1 + reps)
- return pvalue, null_dist
- def _euclidean_dist(x):
- return cdist(x, x)
- MGCResult = _make_tuple_bunch('MGCResult',
- ['statistic', 'pvalue', 'mgc_dict'], [])
- def multiscale_graphcorr(x, y, compute_distance=_euclidean_dist, reps=1000,
- workers=1, is_twosamp=False, random_state=None):
- r"""Computes the Multiscale Graph Correlation (MGC) test statistic.
- Specifically, for each point, MGC finds the :math:`k`-nearest neighbors for
- one property (e.g. cloud density), and the :math:`l`-nearest neighbors for
- the other property (e.g. grass wetness) [1]_. This pair :math:`(k, l)` is
- called the "scale". A priori, however, it is not know which scales will be
- most informative. So, MGC computes all distance pairs, and then efficiently
- computes the distance correlations for all scales. The local correlations
- illustrate which scales are relatively informative about the relationship.
- The key, therefore, to successfully discover and decipher relationships
- between disparate data modalities is to adaptively determine which scales
- are the most informative, and the geometric implication for the most
- informative scales. Doing so not only provides an estimate of whether the
- modalities are related, but also provides insight into how the
- determination was made. This is especially important in high-dimensional
- data, where simple visualizations do not reveal relationships to the
- unaided human eye. Characterizations of this implementation in particular
- have been derived from and benchmarked within in [2]_.
- Parameters
- ----------
- x, y : ndarray
- If ``x`` and ``y`` have shapes ``(n, p)`` and ``(n, q)`` where `n` is
- the number of samples and `p` and `q` are the number of dimensions,
- then the MGC independence test will be run. Alternatively, ``x`` and
- ``y`` can have shapes ``(n, n)`` if they are distance or similarity
- matrices, and ``compute_distance`` must be sent to ``None``. If ``x``
- and ``y`` have shapes ``(n, p)`` and ``(m, p)``, an unpaired
- two-sample MGC test will be run.
- compute_distance : callable, optional
- A function that computes the distance or similarity among the samples
- within each data matrix. Set to ``None`` if ``x`` and ``y`` are
- already distance matrices. The default uses the euclidean norm metric.
- If you are calling a custom function, either create the distance
- matrix before-hand or create a function of the form
- ``compute_distance(x)`` where `x` is the data matrix for which
- pairwise distances are calculated.
- reps : int, optional
- The number of replications used to estimate the null when using the
- permutation test. The default is ``1000``.
- workers : int or map-like callable, optional
- If ``workers`` is an int the population is subdivided into ``workers``
- sections and evaluated in parallel (uses ``multiprocessing.Pool
- <multiprocessing>``). Supply ``-1`` to use all cores available to the
- Process. Alternatively supply a map-like callable, such as
- ``multiprocessing.Pool.map`` for evaluating the p-value in parallel.
- This evaluation is carried out as ``workers(func, iterable)``.
- Requires that `func` be pickleable. The default is ``1``.
- is_twosamp : bool, optional
- If `True`, a two sample test will be run. If ``x`` and ``y`` have
- shapes ``(n, p)`` and ``(m, p)``, this optional will be overridden and
- set to ``True``. Set to ``True`` if ``x`` and ``y`` both have shapes
- ``(n, p)`` and a two sample test is desired. The default is ``False``.
- Note that this will not run if inputs are distance matrices.
- random_state : {None, int, `numpy.random.Generator`,
- `numpy.random.RandomState`}, optional
- If `seed` is None (or `np.random`), the `numpy.random.RandomState`
- singleton is used.
- If `seed` is an int, a new ``RandomState`` instance is used,
- seeded with `seed`.
- If `seed` is already a ``Generator`` or ``RandomState`` instance then
- that instance is used.
- Returns
- -------
- res : MGCResult
- An object containing attributes:
- statistic : float
- The sample MGC test statistic within `[-1, 1]`.
- pvalue : float
- The p-value obtained via permutation.
- mgc_dict : dict
- Contains additional useful results:
- - mgc_map : ndarray
- A 2D representation of the latent geometry of the
- relationship.
- - opt_scale : (int, int)
- The estimated optimal scale as a `(x, y)` pair.
- - null_dist : list
- The null distribution derived from the permuted matrices.
- See Also
- --------
- pearsonr : Pearson correlation coefficient and p-value for testing
- non-correlation.
- kendalltau : Calculates Kendall's tau.
- spearmanr : Calculates a Spearman rank-order correlation coefficient.
- Notes
- -----
- A description of the process of MGC and applications on neuroscience data
- can be found in [1]_. It is performed using the following steps:
- #. Two distance matrices :math:`D^X` and :math:`D^Y` are computed and
- modified to be mean zero columnwise. This results in two
- :math:`n \times n` distance matrices :math:`A` and :math:`B` (the
- centering and unbiased modification) [3]_.
- #. For all values :math:`k` and :math:`l` from :math:`1, ..., n`,
- * The :math:`k`-nearest neighbor and :math:`l`-nearest neighbor graphs
- are calculated for each property. Here, :math:`G_k (i, j)` indicates
- the :math:`k`-smallest values of the :math:`i`-th row of :math:`A`
- and :math:`H_l (i, j)` indicates the :math:`l` smallested values of
- the :math:`i`-th row of :math:`B`
- * Let :math:`\circ` denotes the entry-wise matrix product, then local
- correlations are summed and normalized using the following statistic:
- .. math::
- c^{kl} = \frac{\sum_{ij} A G_k B H_l}
- {\sqrt{\sum_{ij} A^2 G_k \times \sum_{ij} B^2 H_l}}
- #. The MGC test statistic is the smoothed optimal local correlation of
- :math:`\{ c^{kl} \}`. Denote the smoothing operation as :math:`R(\cdot)`
- (which essentially set all isolated large correlations) as 0 and
- connected large correlations the same as before, see [3]_.) MGC is,
- .. math::
- MGC_n (x, y) = \max_{(k, l)} R \left(c^{kl} \left( x_n, y_n \right)
- \right)
- The test statistic returns a value between :math:`(-1, 1)` since it is
- normalized.
- The p-value returned is calculated using a permutation test. This process
- is completed by first randomly permuting :math:`y` to estimate the null
- distribution and then calculating the probability of observing a test
- statistic, under the null, at least as extreme as the observed test
- statistic.
- MGC requires at least 5 samples to run with reliable results. It can also
- handle high-dimensional data sets.
- In addition, by manipulating the input data matrices, the two-sample
- testing problem can be reduced to the independence testing problem [4]_.
- Given sample data :math:`U` and :math:`V` of sizes :math:`p \times n`
- :math:`p \times m`, data matrix :math:`X` and :math:`Y` can be created as
- follows:
- .. math::
- X = [U | V] \in \mathcal{R}^{p \times (n + m)}
- Y = [0_{1 \times n} | 1_{1 \times m}] \in \mathcal{R}^{(n + m)}
- Then, the MGC statistic can be calculated as normal. This methodology can
- be extended to similar tests such as distance correlation [4]_.
- .. versionadded:: 1.4.0
- References
- ----------
- .. [1] Vogelstein, J. T., Bridgeford, E. W., Wang, Q., Priebe, C. E.,
- Maggioni, M., & Shen, C. (2019). Discovering and deciphering
- relationships across disparate data modalities. ELife.
- .. [2] Panda, S., Palaniappan, S., Xiong, J., Swaminathan, A.,
- Ramachandran, S., Bridgeford, E. W., ... Vogelstein, J. T. (2019).
- mgcpy: A Comprehensive High Dimensional Independence Testing Python
- Package. :arXiv:`1907.02088`
- .. [3] Shen, C., Priebe, C.E., & Vogelstein, J. T. (2019). From distance
- correlation to multiscale graph correlation. Journal of the American
- Statistical Association.
- .. [4] Shen, C. & Vogelstein, J. T. (2018). The Exact Equivalence of
- Distance and Kernel Methods for Hypothesis Testing.
- :arXiv:`1806.05514`
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.stats import multiscale_graphcorr
- >>> x = np.arange(100)
- >>> y = x
- >>> res = multiscale_graphcorr(x, y)
- >>> res.statistic, res.pvalue
- (1.0, 0.001)
- To run an unpaired two-sample test,
- >>> x = np.arange(100)
- >>> y = np.arange(79)
- >>> res = multiscale_graphcorr(x, y)
- >>> res.statistic, res.pvalue # doctest: +SKIP
- (0.033258146255703246, 0.023)
- or, if shape of the inputs are the same,
- >>> x = np.arange(100)
- >>> y = x
- >>> res = multiscale_graphcorr(x, y, is_twosamp=True)
- >>> res.statistic, res.pvalue # doctest: +SKIP
- (-0.008021809890200488, 1.0)
- """
- if not isinstance(x, np.ndarray) or not isinstance(y, np.ndarray):
- raise ValueError("x and y must be ndarrays")
- # convert arrays of type (n,) to (n, 1)
- if x.ndim == 1:
- x = x[:, np.newaxis]
- elif x.ndim != 2:
- raise ValueError("Expected a 2-D array `x`, found shape "
- "{}".format(x.shape))
- if y.ndim == 1:
- y = y[:, np.newaxis]
- elif y.ndim != 2:
- raise ValueError("Expected a 2-D array `y`, found shape "
- "{}".format(y.shape))
- nx, px = x.shape
- ny, py = y.shape
- # check for NaNs
- _contains_nan(x, nan_policy='raise')
- _contains_nan(y, nan_policy='raise')
- # check for positive or negative infinity and raise error
- if np.sum(np.isinf(x)) > 0 or np.sum(np.isinf(y)) > 0:
- raise ValueError("Inputs contain infinities")
- if nx != ny:
- if px == py:
- # reshape x and y for two sample testing
- is_twosamp = True
- else:
- raise ValueError("Shape mismatch, x and y must have shape [n, p] "
- "and [n, q] or have shape [n, p] and [m, p].")
- if nx < 5 or ny < 5:
- raise ValueError("MGC requires at least 5 samples to give reasonable "
- "results.")
- # convert x and y to float
- x = x.astype(np.float64)
- y = y.astype(np.float64)
- # check if compute_distance_matrix if a callable()
- if not callable(compute_distance) and compute_distance is not None:
- raise ValueError("Compute_distance must be a function.")
- # check if number of reps exists, integer, or > 0 (if under 1000 raises
- # warning)
- if not isinstance(reps, int) or reps < 0:
- raise ValueError("Number of reps must be an integer greater than 0.")
- elif reps < 1000:
- msg = ("The number of replications is low (under 1000), and p-value "
- "calculations may be unreliable. Use the p-value result, with "
- "caution!")
- warnings.warn(msg, RuntimeWarning)
- if is_twosamp:
- if compute_distance is None:
- raise ValueError("Cannot run if inputs are distance matrices")
- x, y = _two_sample_transform(x, y)
- if compute_distance is not None:
- # compute distance matrices for x and y
- x = compute_distance(x)
- y = compute_distance(y)
- # calculate MGC stat
- stat, stat_dict = _mgc_stat(x, y)
- stat_mgc_map = stat_dict["stat_mgc_map"]
- opt_scale = stat_dict["opt_scale"]
- # calculate permutation MGC p-value
- pvalue, null_dist = _perm_test(x, y, stat, reps=reps, workers=workers,
- random_state=random_state)
- # save all stats (other than stat/p-value) in dictionary
- mgc_dict = {"mgc_map": stat_mgc_map,
- "opt_scale": opt_scale,
- "null_dist": null_dist}
- # create result object with alias for backward compatibility
- res = MGCResult(stat, pvalue, mgc_dict)
- res.stat = stat
- return res
- def _mgc_stat(distx, disty):
- r"""Helper function that calculates the MGC stat. See above for use.
- Parameters
- ----------
- distx, disty : ndarray
- `distx` and `disty` have shapes `(n, p)` and `(n, q)` or
- `(n, n)` and `(n, n)`
- if distance matrices.
- Returns
- -------
- stat : float
- The sample MGC test statistic within `[-1, 1]`.
- stat_dict : dict
- Contains additional useful additional returns containing the following
- keys:
- - stat_mgc_map : ndarray
- MGC-map of the statistics.
- - opt_scale : (float, float)
- The estimated optimal scale as a `(x, y)` pair.
- """
- # calculate MGC map and optimal scale
- stat_mgc_map = _local_correlations(distx, disty, global_corr='mgc')
- n, m = stat_mgc_map.shape
- if m == 1 or n == 1:
- # the global scale at is the statistic calculated at maximial nearest
- # neighbors. There is not enough local scale to search over, so
- # default to global scale
- stat = stat_mgc_map[m - 1][n - 1]
- opt_scale = m * n
- else:
- samp_size = len(distx) - 1
- # threshold to find connected region of significant local correlations
- sig_connect = _threshold_mgc_map(stat_mgc_map, samp_size)
- # maximum within the significant region
- stat, opt_scale = _smooth_mgc_map(sig_connect, stat_mgc_map)
- stat_dict = {"stat_mgc_map": stat_mgc_map,
- "opt_scale": opt_scale}
- return stat, stat_dict
- def _threshold_mgc_map(stat_mgc_map, samp_size):
- r"""
- Finds a connected region of significance in the MGC-map by thresholding.
- Parameters
- ----------
- stat_mgc_map : ndarray
- All local correlations within `[-1,1]`.
- samp_size : int
- The sample size of original data.
- Returns
- -------
- sig_connect : ndarray
- A binary matrix with 1's indicating the significant region.
- """
- m, n = stat_mgc_map.shape
- # 0.02 is simply an empirical threshold, this can be set to 0.01 or 0.05
- # with varying levels of performance. Threshold is based on a beta
- # approximation.
- per_sig = 1 - (0.02 / samp_size) # Percentile to consider as significant
- threshold = samp_size * (samp_size - 3)/4 - 1/2 # Beta approximation
- threshold = distributions.beta.ppf(per_sig, threshold, threshold) * 2 - 1
- # the global scale at is the statistic calculated at maximial nearest
- # neighbors. Threshold is the maximum on the global and local scales
- threshold = max(threshold, stat_mgc_map[m - 1][n - 1])
- # find the largest connected component of significant correlations
- sig_connect = stat_mgc_map > threshold
- if np.sum(sig_connect) > 0:
- sig_connect, _ = _measurements.label(sig_connect)
- _, label_counts = np.unique(sig_connect, return_counts=True)
- # skip the first element in label_counts, as it is count(zeros)
- max_label = np.argmax(label_counts[1:]) + 1
- sig_connect = sig_connect == max_label
- else:
- sig_connect = np.array([[False]])
- return sig_connect
- def _smooth_mgc_map(sig_connect, stat_mgc_map):
- """Finds the smoothed maximal within the significant region R.
- If area of R is too small it returns the last local correlation. Otherwise,
- returns the maximum within significant_connected_region.
- Parameters
- ----------
- sig_connect : ndarray
- A binary matrix with 1's indicating the significant region.
- stat_mgc_map : ndarray
- All local correlations within `[-1, 1]`.
- Returns
- -------
- stat : float
- The sample MGC statistic within `[-1, 1]`.
- opt_scale: (float, float)
- The estimated optimal scale as an `(x, y)` pair.
- """
- m, n = stat_mgc_map.shape
- # the global scale at is the statistic calculated at maximial nearest
- # neighbors. By default, statistic and optimal scale are global.
- stat = stat_mgc_map[m - 1][n - 1]
- opt_scale = [m, n]
- if np.linalg.norm(sig_connect) != 0:
- # proceed only when the connected region's area is sufficiently large
- # 0.02 is simply an empirical threshold, this can be set to 0.01 or 0.05
- # with varying levels of performance
- if np.sum(sig_connect) >= np.ceil(0.02 * max(m, n)) * min(m, n):
- max_corr = max(stat_mgc_map[sig_connect])
- # find all scales within significant_connected_region that maximize
- # the local correlation
- max_corr_index = np.where((stat_mgc_map >= max_corr) & sig_connect)
- if max_corr >= stat:
- stat = max_corr
- k, l = max_corr_index
- one_d_indices = k * n + l # 2D to 1D indexing
- k = np.max(one_d_indices) // n
- l = np.max(one_d_indices) % n
- opt_scale = [k+1, l+1] # adding 1s to match R indexing
- return stat, opt_scale
- def _two_sample_transform(u, v):
- """Helper function that concatenates x and y for two sample MGC stat.
- See above for use.
- Parameters
- ----------
- u, v : ndarray
- `u` and `v` have shapes `(n, p)` and `(m, p)`.
- Returns
- -------
- x : ndarray
- Concatenate `u` and `v` along the `axis = 0`. `x` thus has shape
- `(2n, p)`.
- y : ndarray
- Label matrix for `x` where 0 refers to samples that comes from `u` and
- 1 refers to samples that come from `v`. `y` thus has shape `(2n, 1)`.
- """
- nx = u.shape[0]
- ny = v.shape[0]
- x = np.concatenate([u, v], axis=0)
- y = np.concatenate([np.zeros(nx), np.ones(ny)], axis=0).reshape(-1, 1)
- return x, y
- #####################################
- # INFERENTIAL STATISTICS #
- #####################################
- TtestResultBase = _make_tuple_bunch('TtestResultBase',
- ['statistic', 'pvalue'], ['df'])
- class TtestResult(TtestResultBase):
- """
- Result of a t-test.
- See the documentation of the particular t-test function for more
- information about the definition of the statistic and meaning of
- the confidence interval.
- Attributes
- ----------
- statistic : float or array
- The t-statistic of the sample.
- pvalue : float or array
- The p-value associated with the given alternative.
- df : float or array
- The number of degrees of freedom used in calculation of the
- t-statistic; this is one less than the size of the sample
- (``a.shape[axis]-1`` if there are no masked elements or omitted NaNs).
- Methods
- -------
- confidence_interval
- Computes a confidence interval around the population statistic
- for the given confidence level.
- The confidence interval is returned in a ``namedtuple`` with
- fields `low` and `high`.
- """
- def __init__(self, statistic, pvalue, df, # public
- alternative, standard_error, estimate): # private
- super().__init__(statistic, pvalue, df=df)
- self._alternative = alternative
- self._standard_error = standard_error # denominator of t-statistic
- self._estimate = estimate # point estimate of sample mean
- def confidence_interval(self, confidence_level=0.95):
- """
- Parameters
- ----------
- confidence_level : float
- The confidence level for the calculation of the population mean
- confidence interval. Default is 0.95.
- Returns
- -------
- ci : namedtuple
- The confidence interval is returned in a ``namedtuple`` with
- fields `low` and `high`.
- """
- low, high = _t_confidence_interval(self.df, self.statistic,
- confidence_level, self._alternative)
- low = low * self._standard_error + self._estimate
- high = high * self._standard_error + self._estimate
- return ConfidenceInterval(low=low, high=high)
- def pack_TtestResult(statistic, pvalue, df, alternative, standard_error,
- estimate):
- # this could be any number of dimensions (including 0d), but there is
- # at most one unique value
- alternative = np.atleast_1d(alternative).ravel()
- alternative = alternative[0] if alternative.size else np.nan
- return TtestResult(statistic, pvalue, df=df, alternative=alternative,
- standard_error=standard_error, estimate=estimate)
- def unpack_TtestResult(res):
- return (res.statistic, res.pvalue, res.df, res._alternative,
- res._standard_error, res._estimate)
- @_axis_nan_policy_factory(pack_TtestResult, default_axis=0, n_samples=2,
- result_to_tuple=unpack_TtestResult, n_outputs=6)
- def ttest_1samp(a, popmean, axis=0, nan_policy='propagate',
- alternative="two-sided"):
- """Calculate the T-test for the mean of ONE group of scores.
- This is a test for the null hypothesis that the expected value
- (mean) of a sample of independent observations `a` is equal to the given
- population mean, `popmean`.
- Parameters
- ----------
- a : array_like
- Sample observation.
- popmean : float or array_like
- Expected value in null hypothesis. If array_like, then its length along
- `axis` must equal 1, and it must otherwise be broadcastable with `a`.
- axis : int or None, optional
- Axis along which to compute test; default is 0. If None, compute over
- the whole array `a`.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': returns nan
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- alternative : {'two-sided', 'less', 'greater'}, optional
- Defines the alternative hypothesis.
- The following options are available (default is 'two-sided'):
- * 'two-sided': the mean of the underlying distribution of the sample
- is different than the given population mean (`popmean`)
- * 'less': the mean of the underlying distribution of the sample is
- less than the given population mean (`popmean`)
- * 'greater': the mean of the underlying distribution of the sample is
- greater than the given population mean (`popmean`)
- Returns
- -------
- result : `~scipy.stats._result_classes.TtestResult`
- An object with the following attributes:
- statistic : float or array
- The t-statistic.
- pvalue : float or array
- The p-value associated with the given alternative.
- df : float or array
- The number of degrees of freedom used in calculation of the
- t-statistic; this is one less than the size of the sample
- (``a.shape[axis]``).
- .. versionadded:: 1.10.0
- The object also has the following method:
- confidence_interval(confidence_level=0.95)
- Computes a confidence interval around the population
- mean for the given confidence level.
- The confidence interval is returned in a ``namedtuple`` with
- fields `low` and `high`.
- .. versionadded:: 1.10.0
- Notes
- -----
- The statistic is calculated as ``(np.mean(a) - popmean)/se``, where
- ``se`` is the standard error. Therefore, the statistic will be positive
- when the sample mean is greater than the population mean and negative when
- the sample mean is less than the population mean.
- Examples
- --------
- Suppose we wish to test the null hypothesis that the mean of a population
- is equal to 0.5. We choose a confidence level of 99%; that is, we will
- reject the null hypothesis in favor of the alternative if the p-value is
- less than 0.01.
- When testing random variates from the standard uniform distribution, which
- has a mean of 0.5, we expect the data to be consistent with the null
- hypothesis most of the time.
- >>> import numpy as np
- >>> from scipy import stats
- >>> rng = np.random.default_rng()
- >>> rvs = stats.uniform.rvs(size=50, random_state=rng)
- >>> stats.ttest_1samp(rvs, popmean=0.5)
- TtestResult(statistic=2.456308468440, pvalue=0.017628209047638, df=49)
- As expected, the p-value of 0.017 is not below our threshold of 0.01, so
- we cannot reject the null hypothesis.
- When testing data from the standard *normal* distribution, which has a mean
- of 0, we would expect the null hypothesis to be rejected.
- >>> rvs = stats.norm.rvs(size=50, random_state=rng)
- >>> stats.ttest_1samp(rvs, popmean=0.5)
- TtestResult(statistic=-7.433605518875, pvalue=1.416760157221e-09, df=49)
- Indeed, the p-value is lower than our threshold of 0.01, so we reject the
- null hypothesis in favor of the default "two-sided" alternative: the mean
- of the population is *not* equal to 0.5.
- However, suppose we were to test the null hypothesis against the
- one-sided alternative that the mean of the population is *greater* than
- 0.5. Since the mean of the standard normal is less than 0.5, we would not
- expect the null hypothesis to be rejected.
- >>> stats.ttest_1samp(rvs, popmean=0.5, alternative='greater')
- TtestResult(statistic=-7.433605518875, pvalue=0.99999999929, df=49)
- Unsurprisingly, with a p-value greater than our threshold, we would not
- reject the null hypothesis.
- Note that when working with a confidence level of 99%, a true null
- hypothesis will be rejected approximately 1% of the time.
- >>> rvs = stats.uniform.rvs(size=(100, 50), random_state=rng)
- >>> res = stats.ttest_1samp(rvs, popmean=0.5, axis=1)
- >>> np.sum(res.pvalue < 0.01)
- 1
- Indeed, even though all 100 samples above were drawn from the standard
- uniform distribution, which *does* have a population mean of 0.5, we would
- mistakenly reject the null hypothesis for one of them.
- `ttest_1samp` can also compute a confidence interval around the population
- mean.
- >>> rvs = stats.norm.rvs(size=50, random_state=rng)
- >>> res = stats.ttest_1samp(rvs, popmean=0)
- >>> ci = res.confidence_interval(confidence_level=0.95)
- >>> ci
- ConfidenceInterval(low=-0.3193887540880017, high=0.2898583388980972)
- The bounds of the 95% confidence interval are the
- minimum and maximum values of the parameter `popmean` for which the
- p-value of the test would be 0.05.
- >>> res = stats.ttest_1samp(rvs, popmean=ci.low)
- >>> np.testing.assert_allclose(res.pvalue, 0.05)
- >>> res = stats.ttest_1samp(rvs, popmean=ci.high)
- >>> np.testing.assert_allclose(res.pvalue, 0.05)
- Under certain assumptions about the population from which a sample
- is drawn, the confidence interval with confidence level 95% is expected
- to contain the true population mean in 95% of sample replications.
- >>> rvs = stats.norm.rvs(size=(50, 1000), loc=1, random_state=rng)
- >>> res = stats.ttest_1samp(rvs, popmean=0)
- >>> ci = res.confidence_interval()
- >>> contains_pop_mean = (ci.low < 1) & (ci.high > 1)
- >>> contains_pop_mean.sum()
- 953
- """
- a, axis = _chk_asarray(a, axis)
- n = a.shape[axis]
- df = n - 1
- mean = np.mean(a, axis)
- try:
- popmean = np.squeeze(popmean, axis=axis)
- except ValueError as e:
- raise ValueError("`popmean.shape[axis]` must equal 1.") from e
- d = mean - popmean
- v = _var(a, axis, ddof=1)
- denom = np.sqrt(v / n)
- with np.errstate(divide='ignore', invalid='ignore'):
- t = np.divide(d, denom)
- t, prob = _ttest_finish(df, t, alternative)
- # when nan_policy='omit', `df` can be different for different axis-slices
- df = np.broadcast_to(df, t.shape)[()]
- # _axis_nan_policy decorator doesn't play well with strings
- alternative_num = {"less": -1, "two-sided": 0, "greater": 1}[alternative]
- return TtestResult(t, prob, df=df, alternative=alternative_num,
- standard_error=denom, estimate=mean)
- def _t_confidence_interval(df, t, confidence_level, alternative):
- # Input validation on `alternative` is already done
- # We just need IV on confidence_level
- if confidence_level < 0 or confidence_level > 1:
- message = "`confidence_level` must be a number between 0 and 1."
- raise ValueError(message)
- if alternative < 0: # 'less'
- p = confidence_level
- low, high = np.broadcast_arrays(-np.inf, special.stdtrit(df, p))
- elif alternative > 0: # 'greater'
- p = 1 - confidence_level
- low, high = np.broadcast_arrays(special.stdtrit(df, p), np.inf)
- elif alternative == 0: # 'two-sided'
- tail_probability = (1 - confidence_level)/2
- p = tail_probability, 1-tail_probability
- # axis of p must be the zeroth and orthogonal to all the rest
- p = np.reshape(p, [2] + [1]*np.asarray(df).ndim)
- low, high = special.stdtrit(df, p)
- else: # alternative is NaN when input is empty (see _axis_nan_policy)
- p, nans = np.broadcast_arrays(t, np.nan)
- low, high = nans, nans
- return low[()], high[()]
- def _ttest_finish(df, t, alternative):
- """Common code between all 3 t-test functions."""
- # We use ``stdtr`` directly here as it handles the case when ``nan``
- # values are present in the data and masked arrays are passed
- # while ``t.cdf`` emits runtime warnings. This way ``_ttest_finish``
- # can be shared between the ``stats`` and ``mstats`` versions.
- if alternative == 'less':
- pval = special.stdtr(df, t)
- elif alternative == 'greater':
- pval = special.stdtr(df, -t)
- elif alternative == 'two-sided':
- pval = special.stdtr(df, -np.abs(t))*2
- else:
- raise ValueError("alternative must be "
- "'less', 'greater' or 'two-sided'")
- if t.ndim == 0:
- t = t[()]
- if pval.ndim == 0:
- pval = pval[()]
- return t, pval
- def _ttest_ind_from_stats(mean1, mean2, denom, df, alternative):
- d = mean1 - mean2
- with np.errstate(divide='ignore', invalid='ignore'):
- t = np.divide(d, denom)
- t, prob = _ttest_finish(df, t, alternative)
- return (t, prob)
- def _unequal_var_ttest_denom(v1, n1, v2, n2):
- vn1 = v1 / n1
- vn2 = v2 / n2
- with np.errstate(divide='ignore', invalid='ignore'):
- df = (vn1 + vn2)**2 / (vn1**2 / (n1 - 1) + vn2**2 / (n2 - 1))
- # If df is undefined, variances are zero (assumes n1 > 0 & n2 > 0).
- # Hence it doesn't matter what df is as long as it's not NaN.
- df = np.where(np.isnan(df), 1, df)
- denom = np.sqrt(vn1 + vn2)
- return df, denom
- def _equal_var_ttest_denom(v1, n1, v2, n2):
- df = n1 + n2 - 2.0
- svar = ((n1 - 1) * v1 + (n2 - 1) * v2) / df
- denom = np.sqrt(svar * (1.0 / n1 + 1.0 / n2))
- return df, denom
- Ttest_indResult = namedtuple('Ttest_indResult', ('statistic', 'pvalue'))
- def ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2,
- equal_var=True, alternative="two-sided"):
- r"""
- T-test for means of two independent samples from descriptive statistics.
- This is a test for the null hypothesis that two independent
- samples have identical average (expected) values.
- Parameters
- ----------
- mean1 : array_like
- The mean(s) of sample 1.
- std1 : array_like
- The corrected sample standard deviation of sample 1 (i.e. ``ddof=1``).
- nobs1 : array_like
- The number(s) of observations of sample 1.
- mean2 : array_like
- The mean(s) of sample 2.
- std2 : array_like
- The corrected sample standard deviation of sample 2 (i.e. ``ddof=1``).
- nobs2 : array_like
- The number(s) of observations of sample 2.
- equal_var : bool, optional
- If True (default), perform a standard independent 2 sample test
- that assumes equal population variances [1]_.
- If False, perform Welch's t-test, which does not assume equal
- population variance [2]_.
- alternative : {'two-sided', 'less', 'greater'}, optional
- Defines the alternative hypothesis.
- The following options are available (default is 'two-sided'):
- * 'two-sided': the means of the distributions are unequal.
- * 'less': the mean of the first distribution is less than the
- mean of the second distribution.
- * 'greater': the mean of the first distribution is greater than the
- mean of the second distribution.
- .. versionadded:: 1.6.0
- Returns
- -------
- statistic : float or array
- The calculated t-statistics.
- pvalue : float or array
- The two-tailed p-value.
- See Also
- --------
- scipy.stats.ttest_ind
- Notes
- -----
- The statistic is calculated as ``(mean1 - mean2)/se``, where ``se`` is the
- standard error. Therefore, the statistic will be positive when `mean1` is
- greater than `mean2` and negative when `mean1` is less than `mean2`.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test
- .. [2] https://en.wikipedia.org/wiki/Welch%27s_t-test
- Examples
- --------
- Suppose we have the summary data for two samples, as follows (with the
- Sample Variance being the corrected sample variance)::
- Sample Sample
- Size Mean Variance
- Sample 1 13 15.0 87.5
- Sample 2 11 12.0 39.0
- Apply the t-test to this data (with the assumption that the population
- variances are equal):
- >>> import numpy as np
- >>> from scipy.stats import ttest_ind_from_stats
- >>> ttest_ind_from_stats(mean1=15.0, std1=np.sqrt(87.5), nobs1=13,
- ... mean2=12.0, std2=np.sqrt(39.0), nobs2=11)
- Ttest_indResult(statistic=0.9051358093310269, pvalue=0.3751996797581487)
- For comparison, here is the data from which those summary statistics
- were taken. With this data, we can compute the same result using
- `scipy.stats.ttest_ind`:
- >>> a = np.array([1, 3, 4, 6, 11, 13, 15, 19, 22, 24, 25, 26, 26])
- >>> b = np.array([2, 4, 6, 9, 11, 13, 14, 15, 18, 19, 21])
- >>> from scipy.stats import ttest_ind
- >>> ttest_ind(a, b)
- Ttest_indResult(statistic=0.905135809331027, pvalue=0.3751996797581486)
- Suppose we instead have binary data and would like to apply a t-test to
- compare the proportion of 1s in two independent groups::
- Number of Sample Sample
- Size ones Mean Variance
- Sample 1 150 30 0.2 0.161073
- Sample 2 200 45 0.225 0.175251
- The sample mean :math:`\hat{p}` is the proportion of ones in the sample
- and the variance for a binary observation is estimated by
- :math:`\hat{p}(1-\hat{p})`.
- >>> ttest_ind_from_stats(mean1=0.2, std1=np.sqrt(0.161073), nobs1=150,
- ... mean2=0.225, std2=np.sqrt(0.175251), nobs2=200)
- Ttest_indResult(statistic=-0.5627187905196761, pvalue=0.5739887114209541)
- For comparison, we could compute the t statistic and p-value using
- arrays of 0s and 1s and `scipy.stat.ttest_ind`, as above.
- >>> group1 = np.array([1]*30 + [0]*(150-30))
- >>> group2 = np.array([1]*45 + [0]*(200-45))
- >>> ttest_ind(group1, group2)
- Ttest_indResult(statistic=-0.5627179589855622, pvalue=0.573989277115258)
- """
- mean1 = np.asarray(mean1)
- std1 = np.asarray(std1)
- mean2 = np.asarray(mean2)
- std2 = np.asarray(std2)
- if equal_var:
- df, denom = _equal_var_ttest_denom(std1**2, nobs1, std2**2, nobs2)
- else:
- df, denom = _unequal_var_ttest_denom(std1**2, nobs1,
- std2**2, nobs2)
- res = _ttest_ind_from_stats(mean1, mean2, denom, df, alternative)
- return Ttest_indResult(*res)
- def _ttest_nans(a, b, axis, namedtuple_type):
- """
- Generate an array of `nan`, with shape determined by `a`, `b` and `axis`.
- This function is used by ttest_ind and ttest_rel to create the return
- value when one of the inputs has size 0.
- The shapes of the arrays are determined by dropping `axis` from the
- shapes of `a` and `b` and broadcasting what is left.
- The return value is a named tuple of the type given in `namedtuple_type`.
- Examples
- --------
- >>> import numpy as np
- >>> a = np.zeros((9, 2))
- >>> b = np.zeros((5, 1))
- >>> _ttest_nans(a, b, 0, Ttest_indResult)
- Ttest_indResult(statistic=array([nan, nan]), pvalue=array([nan, nan]))
- >>> a = np.zeros((3, 0, 9))
- >>> b = np.zeros((1, 10))
- >>> stat, p = _ttest_nans(a, b, -1, Ttest_indResult)
- >>> stat
- array([], shape=(3, 0), dtype=float64)
- >>> p
- array([], shape=(3, 0), dtype=float64)
- >>> a = np.zeros(10)
- >>> b = np.zeros(7)
- >>> _ttest_nans(a, b, 0, Ttest_indResult)
- Ttest_indResult(statistic=nan, pvalue=nan)
- """
- shp = _broadcast_shapes_with_dropped_axis(a, b, axis)
- if len(shp) == 0:
- t = np.nan
- p = np.nan
- else:
- t = np.full(shp, fill_value=np.nan)
- p = t.copy()
- return namedtuple_type(t, p)
- def ttest_ind(a, b, axis=0, equal_var=True, nan_policy='propagate',
- permutations=None, random_state=None, alternative="two-sided",
- trim=0):
- """
- Calculate the T-test for the means of *two independent* samples of scores.
- This is a test for the null hypothesis that 2 independent samples
- have identical average (expected) values. This test assumes that the
- populations have identical variances by default.
- Parameters
- ----------
- a, b : array_like
- The arrays must have the same shape, except in the dimension
- corresponding to `axis` (the first, by default).
- axis : int or None, optional
- Axis along which to compute test. If None, compute over the whole
- arrays, `a`, and `b`.
- equal_var : bool, optional
- If True (default), perform a standard independent 2 sample test
- that assumes equal population variances [1]_.
- If False, perform Welch's t-test, which does not assume equal
- population variance [2]_.
- .. versionadded:: 0.11.0
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': returns nan
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- The 'omit' option is not currently available for permutation tests or
- one-sided asympyotic tests.
- permutations : non-negative int, np.inf, or None (default), optional
- If 0 or None (default), use the t-distribution to calculate p-values.
- Otherwise, `permutations` is the number of random permutations that
- will be used to estimate p-values using a permutation test. If
- `permutations` equals or exceeds the number of distinct partitions of
- the pooled data, an exact test is performed instead (i.e. each
- distinct partition is used exactly once). See Notes for details.
- .. versionadded:: 1.7.0
- random_state : {None, int, `numpy.random.Generator`,
- `numpy.random.RandomState`}, optional
- If `seed` is None (or `np.random`), the `numpy.random.RandomState`
- singleton is used.
- If `seed` is an int, a new ``RandomState`` instance is used,
- seeded with `seed`.
- If `seed` is already a ``Generator`` or ``RandomState`` instance then
- that instance is used.
- Pseudorandom number generator state used to generate permutations
- (used only when `permutations` is not None).
- .. versionadded:: 1.7.0
- alternative : {'two-sided', 'less', 'greater'}, optional
- Defines the alternative hypothesis.
- The following options are available (default is 'two-sided'):
- * 'two-sided': the means of the distributions underlying the samples
- are unequal.
- * 'less': the mean of the distribution underlying the first sample
- is less than the mean of the distribution underlying the second
- sample.
- * 'greater': the mean of the distribution underlying the first
- sample is greater than the mean of the distribution underlying
- the second sample.
- .. versionadded:: 1.6.0
- trim : float, optional
- If nonzero, performs a trimmed (Yuen's) t-test.
- Defines the fraction of elements to be trimmed from each end of the
- input samples. If 0 (default), no elements will be trimmed from either
- side. The number of trimmed elements from each tail is the floor of the
- trim times the number of elements. Valid range is [0, .5).
- .. versionadded:: 1.7
- Returns
- -------
- statistic : float or array
- The calculated t-statistic.
- pvalue : float or array
- The p-value.
- Notes
- -----
- Suppose we observe two independent samples, e.g. flower petal lengths, and
- we are considering whether the two samples were drawn from the same
- population (e.g. the same species of flower or two species with similar
- petal characteristics) or two different populations.
- The t-test quantifies the difference between the arithmetic means
- of the two samples. The p-value quantifies the probability of observing
- as or more extreme values assuming the null hypothesis, that the
- samples are drawn from populations with the same population means, is true.
- A p-value larger than a chosen threshold (e.g. 5% or 1%) indicates that
- our observation is not so unlikely to have occurred by chance. Therefore,
- we do not reject the null hypothesis of equal population means.
- If the p-value is smaller than our threshold, then we have evidence
- against the null hypothesis of equal population means.
- By default, the p-value is determined by comparing the t-statistic of the
- observed data against a theoretical t-distribution.
- When ``1 < permutations < binom(n, k)``, where
- * ``k`` is the number of observations in `a`,
- * ``n`` is the total number of observations in `a` and `b`, and
- * ``binom(n, k)`` is the binomial coefficient (``n`` choose ``k``),
- the data are pooled (concatenated), randomly assigned to either group `a`
- or `b`, and the t-statistic is calculated. This process is performed
- repeatedly (`permutation` times), generating a distribution of the
- t-statistic under the null hypothesis, and the t-statistic of the observed
- data is compared to this distribution to determine the p-value.
- Specifically, the p-value reported is the "achieved significance level"
- (ASL) as defined in 4.4 of [3]_. Note that there are other ways of
- estimating p-values using randomized permutation tests; for other
- options, see the more general `permutation_test`.
- When ``permutations >= binom(n, k)``, an exact test is performed: the data
- are partitioned between the groups in each distinct way exactly once.
- The permutation test can be computationally expensive and not necessarily
- more accurate than the analytical test, but it does not make strong
- assumptions about the shape of the underlying distribution.
- Use of trimming is commonly referred to as the trimmed t-test. At times
- called Yuen's t-test, this is an extension of Welch's t-test, with the
- difference being the use of winsorized means in calculation of the variance
- and the trimmed sample size in calculation of the statistic. Trimming is
- recommended if the underlying distribution is long-tailed or contaminated
- with outliers [4]_.
- The statistic is calculated as ``(np.mean(a) - np.mean(b))/se``, where
- ``se`` is the standard error. Therefore, the statistic will be positive
- when the sample mean of `a` is greater than the sample mean of `b` and
- negative when the sample mean of `a` is less than the sample mean of
- `b`.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test
- .. [2] https://en.wikipedia.org/wiki/Welch%27s_t-test
- .. [3] B. Efron and T. Hastie. Computer Age Statistical Inference. (2016).
- .. [4] Yuen, Karen K. "The Two-Sample Trimmed t for Unequal Population
- Variances." Biometrika, vol. 61, no. 1, 1974, pp. 165-170. JSTOR,
- www.jstor.org/stable/2334299. Accessed 30 Mar. 2021.
- .. [5] Yuen, Karen K., and W. J. Dixon. "The Approximate Behaviour and
- Performance of the Two-Sample Trimmed t." Biometrika, vol. 60,
- no. 2, 1973, pp. 369-374. JSTOR, www.jstor.org/stable/2334550.
- Accessed 30 Mar. 2021.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy import stats
- >>> rng = np.random.default_rng()
- Test with sample with identical means:
- >>> rvs1 = stats.norm.rvs(loc=5, scale=10, size=500, random_state=rng)
- >>> rvs2 = stats.norm.rvs(loc=5, scale=10, size=500, random_state=rng)
- >>> stats.ttest_ind(rvs1, rvs2)
- Ttest_indResult(statistic=-0.4390847099199348, pvalue=0.6606952038870015)
- >>> stats.ttest_ind(rvs1, rvs2, equal_var=False)
- Ttest_indResult(statistic=-0.4390847099199348, pvalue=0.6606952553131064)
- `ttest_ind` underestimates p for unequal variances:
- >>> rvs3 = stats.norm.rvs(loc=5, scale=20, size=500, random_state=rng)
- >>> stats.ttest_ind(rvs1, rvs3)
- Ttest_indResult(statistic=-1.6370984482905417, pvalue=0.1019251574705033)
- >>> stats.ttest_ind(rvs1, rvs3, equal_var=False)
- Ttest_indResult(statistic=-1.637098448290542, pvalue=0.10202110497954867)
- When ``n1 != n2``, the equal variance t-statistic is no longer equal to the
- unequal variance t-statistic:
- >>> rvs4 = stats.norm.rvs(loc=5, scale=20, size=100, random_state=rng)
- >>> stats.ttest_ind(rvs1, rvs4)
- Ttest_indResult(statistic=-1.9481646859513422, pvalue=0.05186270935842703)
- >>> stats.ttest_ind(rvs1, rvs4, equal_var=False)
- Ttest_indResult(statistic=-1.3146566100751664, pvalue=0.1913495266513811)
- T-test with different means, variance, and n:
- >>> rvs5 = stats.norm.rvs(loc=8, scale=20, size=100, random_state=rng)
- >>> stats.ttest_ind(rvs1, rvs5)
- Ttest_indResult(statistic=-2.8415950600298774, pvalue=0.0046418707568707885)
- >>> stats.ttest_ind(rvs1, rvs5, equal_var=False)
- Ttest_indResult(statistic=-1.8686598649188084, pvalue=0.06434714193919686)
- When performing a permutation test, more permutations typically yields
- more accurate results. Use a ``np.random.Generator`` to ensure
- reproducibility:
- >>> stats.ttest_ind(rvs1, rvs5, permutations=10000,
- ... random_state=rng)
- Ttest_indResult(statistic=-2.8415950600298774, pvalue=0.0052994700529947)
- Take these two samples, one of which has an extreme tail.
- >>> a = (56, 128.6, 12, 123.8, 64.34, 78, 763.3)
- >>> b = (1.1, 2.9, 4.2)
- Use the `trim` keyword to perform a trimmed (Yuen) t-test. For example,
- using 20% trimming, ``trim=.2``, the test will reduce the impact of one
- (``np.floor(trim*len(a))``) element from each tail of sample `a`. It will
- have no effect on sample `b` because ``np.floor(trim*len(b))`` is 0.
- >>> stats.ttest_ind(a, b, trim=.2)
- Ttest_indResult(statistic=3.4463884028073513,
- pvalue=0.01369338726499547)
- """
- if not (0 <= trim < .5):
- raise ValueError("Trimming percentage should be 0 <= `trim` < .5.")
- a, b, axis = _chk2_asarray(a, b, axis)
- # check both a and b
- cna, npa = _contains_nan(a, nan_policy)
- cnb, npb = _contains_nan(b, nan_policy)
- contains_nan = cna or cnb
- if npa == 'omit' or npb == 'omit':
- nan_policy = 'omit'
- if contains_nan and nan_policy == 'omit':
- if permutations or trim != 0:
- raise ValueError("nan-containing/masked inputs with "
- "nan_policy='omit' are currently not "
- "supported by permutation tests or "
- "trimmed tests.")
- a = ma.masked_invalid(a)
- b = ma.masked_invalid(b)
- return mstats_basic.ttest_ind(a, b, axis, equal_var, alternative)
- if a.size == 0 or b.size == 0:
- return _ttest_nans(a, b, axis, Ttest_indResult)
- if permutations is not None and permutations != 0:
- if trim != 0:
- raise ValueError("Permutations are currently not supported "
- "with trimming.")
- if permutations < 0 or (np.isfinite(permutations) and
- int(permutations) != permutations):
- raise ValueError("Permutations must be a non-negative integer.")
- res = _permutation_ttest(a, b, permutations=permutations,
- axis=axis, equal_var=equal_var,
- nan_policy=nan_policy,
- random_state=random_state,
- alternative=alternative)
- else:
- n1 = a.shape[axis]
- n2 = b.shape[axis]
- if trim == 0:
- v1 = _var(a, axis, ddof=1)
- v2 = _var(b, axis, ddof=1)
- m1 = np.mean(a, axis)
- m2 = np.mean(b, axis)
- else:
- v1, m1, n1 = _ttest_trim_var_mean_len(a, trim, axis)
- v2, m2, n2 = _ttest_trim_var_mean_len(b, trim, axis)
- if equal_var:
- df, denom = _equal_var_ttest_denom(v1, n1, v2, n2)
- else:
- df, denom = _unequal_var_ttest_denom(v1, n1, v2, n2)
- res = _ttest_ind_from_stats(m1, m2, denom, df, alternative)
- return Ttest_indResult(*res)
- def _ttest_trim_var_mean_len(a, trim, axis):
- """Variance, mean, and length of winsorized input along specified axis"""
- # for use with `ttest_ind` when trimming.
- # further calculations in this test assume that the inputs are sorted.
- # From [4] Section 1 "Let x_1, ..., x_n be n ordered observations..."
- a = np.sort(a, axis=axis)
- # `g` is the number of elements to be replaced on each tail, converted
- # from a percentage amount of trimming
- n = a.shape[axis]
- g = int(n * trim)
- # Calculate the Winsorized variance of the input samples according to
- # specified `g`
- v = _calculate_winsorized_variance(a, g, axis)
- # the total number of elements in the trimmed samples
- n -= 2 * g
- # calculate the g-times trimmed mean, as defined in [4] (1-1)
- m = trim_mean(a, trim, axis=axis)
- return v, m, n
- def _calculate_winsorized_variance(a, g, axis):
- """Calculates g-times winsorized variance along specified axis"""
- # it is expected that the input `a` is sorted along the correct axis
- if g == 0:
- return _var(a, ddof=1, axis=axis)
- # move the intended axis to the end that way it is easier to manipulate
- a_win = np.moveaxis(a, axis, -1)
- # save where NaNs are for later use.
- nans_indices = np.any(np.isnan(a_win), axis=-1)
- # Winsorization and variance calculation are done in one step in [4]
- # (1-3), but here winsorization is done first; replace the left and
- # right sides with the repeating value. This can be see in effect in (
- # 1-3) in [4], where the leftmost and rightmost tails are replaced with
- # `(g + 1) * x_{g + 1}` on the left and `(g + 1) * x_{n - g}` on the
- # right. Zero-indexing turns `g + 1` to `g`, and `n - g` to `- g - 1` in
- # array indexing.
- a_win[..., :g] = a_win[..., [g]]
- a_win[..., -g:] = a_win[..., [-g - 1]]
- # Determine the variance. In [4], the degrees of freedom is expressed as
- # `h - 1`, where `h = n - 2g` (unnumbered equations in Section 1, end of
- # page 369, beginning of page 370). This is converted to NumPy's format,
- # `n - ddof` for use with `np.var`. The result is converted to an
- # array to accommodate indexing later.
- var_win = np.asarray(_var(a_win, ddof=(2 * g + 1), axis=-1))
- # with `nan_policy='propagate'`, NaNs may be completely trimmed out
- # because they were sorted into the tail of the array. In these cases,
- # replace computed variances with `np.nan`.
- var_win[nans_indices] = np.nan
- return var_win
- def _permutation_distribution_t(data, permutations, size_a, equal_var,
- random_state=None):
- """Generation permutation distribution of t statistic"""
- random_state = check_random_state(random_state)
- # prepare permutation indices
- size = data.shape[-1]
- # number of distinct combinations
- n_max = special.comb(size, size_a)
- if permutations < n_max:
- perm_generator = (random_state.permutation(size)
- for i in range(permutations))
- else:
- permutations = n_max
- perm_generator = (np.concatenate(z)
- for z in _all_partitions(size_a, size-size_a))
- t_stat = []
- for indices in _batch_generator(perm_generator, batch=50):
- # get one batch from perm_generator at a time as a list
- indices = np.array(indices)
- # generate permutations
- data_perm = data[..., indices]
- # move axis indexing permutations to position 0 to broadcast
- # nicely with t_stat_observed, which doesn't have this dimension
- data_perm = np.moveaxis(data_perm, -2, 0)
- a = data_perm[..., :size_a]
- b = data_perm[..., size_a:]
- t_stat.append(_calc_t_stat(a, b, equal_var))
- t_stat = np.concatenate(t_stat, axis=0)
- return t_stat, permutations, n_max
- def _calc_t_stat(a, b, equal_var, axis=-1):
- """Calculate the t statistic along the given dimension."""
- na = a.shape[axis]
- nb = b.shape[axis]
- avg_a = np.mean(a, axis=axis)
- avg_b = np.mean(b, axis=axis)
- var_a = _var(a, axis=axis, ddof=1)
- var_b = _var(b, axis=axis, ddof=1)
- if not equal_var:
- denom = _unequal_var_ttest_denom(var_a, na, var_b, nb)[1]
- else:
- denom = _equal_var_ttest_denom(var_a, na, var_b, nb)[1]
- return (avg_a-avg_b)/denom
- def _permutation_ttest(a, b, permutations, axis=0, equal_var=True,
- nan_policy='propagate', random_state=None,
- alternative="two-sided"):
- """
- Calculates the T-test for the means of TWO INDEPENDENT samples of scores
- using permutation methods.
- This test is similar to `stats.ttest_ind`, except it doesn't rely on an
- approximate normality assumption since it uses a permutation test.
- This function is only called from ttest_ind when permutations is not None.
- Parameters
- ----------
- a, b : array_like
- The arrays must be broadcastable, except along the dimension
- corresponding to `axis` (the zeroth, by default).
- axis : int, optional
- The axis over which to operate on a and b.
- permutations : int, optional
- Number of permutations used to calculate p-value. If greater than or
- equal to the number of distinct permutations, perform an exact test.
- equal_var : bool, optional
- If False, an equal variance (Welch's) t-test is conducted. Otherwise,
- an ordinary t-test is conducted.
- random_state : {None, int, `numpy.random.Generator`}, optional
- If `seed` is None the `numpy.random.Generator` singleton is used.
- If `seed` is an int, a new ``Generator`` instance is used,
- seeded with `seed`.
- If `seed` is already a ``Generator`` instance then that instance is
- used.
- Pseudorandom number generator state used for generating random
- permutations.
- Returns
- -------
- statistic : float or array
- The calculated t-statistic.
- pvalue : float or array
- The p-value.
- """
- random_state = check_random_state(random_state)
- t_stat_observed = _calc_t_stat(a, b, equal_var, axis=axis)
- na = a.shape[axis]
- mat = _broadcast_concatenate((a, b), axis=axis)
- mat = np.moveaxis(mat, axis, -1)
- t_stat, permutations, n_max = _permutation_distribution_t(
- mat, permutations, size_a=na, equal_var=equal_var,
- random_state=random_state)
- compare = {"less": np.less_equal,
- "greater": np.greater_equal,
- "two-sided": lambda x, y: (x <= -np.abs(y)) | (x >= np.abs(y))}
- # Calculate the p-values
- cmps = compare[alternative](t_stat, t_stat_observed)
- # Randomized test p-value calculation should use biased estimate; see e.g.
- # https://www.degruyter.com/document/doi/10.2202/1544-6115.1585/
- adjustment = 1 if n_max > permutations else 0
- pvalues = (cmps.sum(axis=0) + adjustment) / (permutations + adjustment)
- # nans propagate naturally in statistic calculation, but need to be
- # propagated manually into pvalues
- if nan_policy == 'propagate' and np.isnan(t_stat_observed).any():
- if np.ndim(pvalues) == 0:
- pvalues = np.float64(np.nan)
- else:
- pvalues[np.isnan(t_stat_observed)] = np.nan
- return (t_stat_observed, pvalues)
- def _get_len(a, axis, msg):
- try:
- n = a.shape[axis]
- except IndexError:
- raise np.AxisError(axis, a.ndim, msg) from None
- return n
- @_axis_nan_policy_factory(pack_TtestResult, default_axis=0, n_samples=2,
- result_to_tuple=unpack_TtestResult, n_outputs=6,
- paired=True)
- def ttest_rel(a, b, axis=0, nan_policy='propagate', alternative="two-sided"):
- """Calculate the t-test on TWO RELATED samples of scores, a and b.
- This is a test for the null hypothesis that two related or
- repeated samples have identical average (expected) values.
- Parameters
- ----------
- a, b : array_like
- The arrays must have the same shape.
- axis : int or None, optional
- Axis along which to compute test. If None, compute over the whole
- arrays, `a`, and `b`.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': returns nan
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- alternative : {'two-sided', 'less', 'greater'}, optional
- Defines the alternative hypothesis.
- The following options are available (default is 'two-sided'):
- * 'two-sided': the means of the distributions underlying the samples
- are unequal.
- * 'less': the mean of the distribution underlying the first sample
- is less than the mean of the distribution underlying the second
- sample.
- * 'greater': the mean of the distribution underlying the first
- sample is greater than the mean of the distribution underlying
- the second sample.
- .. versionadded:: 1.6.0
- Returns
- -------
- result : `~scipy.stats._result_classes.TtestResult`
- An object with the following attributes:
- statistic : float or array
- The t-statistic.
- pvalue : float or array
- The p-value associated with the given alternative.
- df : float or array
- The number of degrees of freedom used in calculation of the
- t-statistic; this is one less than the size of the sample
- (``a.shape[axis]``).
- .. versionadded:: 1.10.0
- The object also has the following method:
- confidence_interval(confidence_level=0.95)
- Computes a confidence interval around the difference in
- population means for the given confidence level.
- The confidence interval is returned in a ``namedtuple`` with
- fields `low` and `high`.
- .. versionadded:: 1.10.0
- Notes
- -----
- Examples for use are scores of the same set of student in
- different exams, or repeated sampling from the same units. The
- test measures whether the average score differs significantly
- across samples (e.g. exams). If we observe a large p-value, for
- example greater than 0.05 or 0.1 then we cannot reject the null
- hypothesis of identical average scores. If the p-value is smaller
- than the threshold, e.g. 1%, 5% or 10%, then we reject the null
- hypothesis of equal averages. Small p-values are associated with
- large t-statistics.
- The t-statistic is calculated as ``np.mean(a - b)/se``, where ``se`` is the
- standard error. Therefore, the t-statistic will be positive when the sample
- mean of ``a - b`` is greater than zero and negative when the sample mean of
- ``a - b`` is less than zero.
- References
- ----------
- https://en.wikipedia.org/wiki/T-test#Dependent_t-test_for_paired_samples
- Examples
- --------
- >>> import numpy as np
- >>> from scipy import stats
- >>> rng = np.random.default_rng()
- >>> rvs1 = stats.norm.rvs(loc=5, scale=10, size=500, random_state=rng)
- >>> rvs2 = (stats.norm.rvs(loc=5, scale=10, size=500, random_state=rng)
- ... + stats.norm.rvs(scale=0.2, size=500, random_state=rng))
- >>> stats.ttest_rel(rvs1, rvs2)
- TtestResult(statistic=-0.4549717054410304, pvalue=0.6493274702088672, df=499) # noqa
- >>> rvs3 = (stats.norm.rvs(loc=8, scale=10, size=500, random_state=rng)
- ... + stats.norm.rvs(scale=0.2, size=500, random_state=rng))
- >>> stats.ttest_rel(rvs1, rvs3)
- TtestResult(statistic=-5.879467544540889, pvalue=7.540777129099917e-09, df=499) # noqa
- """
- a, b, axis = _chk2_asarray(a, b, axis)
- na = _get_len(a, axis, "first argument")
- nb = _get_len(b, axis, "second argument")
- if na != nb:
- raise ValueError('unequal length arrays')
- if na == 0 or nb == 0:
- # _axis_nan_policy decorator ensures this only happens with 1d input
- return TtestResult(np.nan, np.nan, df=np.nan, alternative=np.nan,
- standard_error=np.nan, estimate=np.nan)
- n = a.shape[axis]
- df = n - 1
- d = (a - b).astype(np.float64)
- v = _var(d, axis, ddof=1)
- dm = np.mean(d, axis)
- denom = np.sqrt(v / n)
- with np.errstate(divide='ignore', invalid='ignore'):
- t = np.divide(dm, denom)
- t, prob = _ttest_finish(df, t, alternative)
- # when nan_policy='omit', `df` can be different for different axis-slices
- df = np.broadcast_to(df, t.shape)[()]
- # _axis_nan_policy decorator doesn't play well with strings
- alternative_num = {"less": -1, "two-sided": 0, "greater": 1}[alternative]
- return TtestResult(t, prob, df=df, alternative=alternative_num,
- standard_error=denom, estimate=dm)
- # Map from names to lambda_ values used in power_divergence().
- _power_div_lambda_names = {
- "pearson": 1,
- "log-likelihood": 0,
- "freeman-tukey": -0.5,
- "mod-log-likelihood": -1,
- "neyman": -2,
- "cressie-read": 2/3,
- }
- def _count(a, axis=None):
- """Count the number of non-masked elements of an array.
- This function behaves like `np.ma.count`, but is much faster
- for ndarrays.
- """
- if hasattr(a, 'count'):
- num = a.count(axis=axis)
- if isinstance(num, np.ndarray) and num.ndim == 0:
- # In some cases, the `count` method returns a scalar array (e.g.
- # np.array(3)), but we want a plain integer.
- num = int(num)
- else:
- if axis is None:
- num = a.size
- else:
- num = a.shape[axis]
- return num
- def _m_broadcast_to(a, shape):
- if np.ma.isMaskedArray(a):
- return np.ma.masked_array(np.broadcast_to(a, shape),
- mask=np.broadcast_to(a.mask, shape))
- return np.broadcast_to(a, shape, subok=True)
- Power_divergenceResult = namedtuple('Power_divergenceResult',
- ('statistic', 'pvalue'))
- def power_divergence(f_obs, f_exp=None, ddof=0, axis=0, lambda_=None):
- """Cressie-Read power divergence statistic and goodness of fit test.
- This function tests the null hypothesis that the categorical data
- has the given frequencies, using the Cressie-Read power divergence
- statistic.
- Parameters
- ----------
- f_obs : array_like
- Observed frequencies in each category.
- f_exp : array_like, optional
- Expected frequencies in each category. By default the categories are
- assumed to be equally likely.
- ddof : int, optional
- "Delta degrees of freedom": adjustment to the degrees of freedom
- for the p-value. The p-value is computed using a chi-squared
- distribution with ``k - 1 - ddof`` degrees of freedom, where `k`
- is the number of observed frequencies. The default value of `ddof`
- is 0.
- axis : int or None, optional
- The axis of the broadcast result of `f_obs` and `f_exp` along which to
- apply the test. If axis is None, all values in `f_obs` are treated
- as a single data set. Default is 0.
- lambda_ : float or str, optional
- The power in the Cressie-Read power divergence statistic. The default
- is 1. For convenience, `lambda_` may be assigned one of the following
- strings, in which case the corresponding numerical value is used:
- * ``"pearson"`` (value 1)
- Pearson's chi-squared statistic. In this case, the function is
- equivalent to `chisquare`.
- * ``"log-likelihood"`` (value 0)
- Log-likelihood ratio. Also known as the G-test [3]_.
- * ``"freeman-tukey"`` (value -1/2)
- Freeman-Tukey statistic.
- * ``"mod-log-likelihood"`` (value -1)
- Modified log-likelihood ratio.
- * ``"neyman"`` (value -2)
- Neyman's statistic.
- * ``"cressie-read"`` (value 2/3)
- The power recommended in [5]_.
- Returns
- -------
- statistic : float or ndarray
- The Cressie-Read power divergence test statistic. The value is
- a float if `axis` is None or if` `f_obs` and `f_exp` are 1-D.
- pvalue : float or ndarray
- The p-value of the test. The value is a float if `ddof` and the
- return value `stat` are scalars.
- See Also
- --------
- chisquare
- Notes
- -----
- This test is invalid when the observed or expected frequencies in each
- category are too small. A typical rule is that all of the observed
- and expected frequencies should be at least 5.
- Also, the sum of the observed and expected frequencies must be the same
- for the test to be valid; `power_divergence` raises an error if the sums
- do not agree within a relative tolerance of ``1e-8``.
- When `lambda_` is less than zero, the formula for the statistic involves
- dividing by `f_obs`, so a warning or error may be generated if any value
- in `f_obs` is 0.
- Similarly, a warning or error may be generated if any value in `f_exp` is
- zero when `lambda_` >= 0.
- The default degrees of freedom, k-1, are for the case when no parameters
- of the distribution are estimated. If p parameters are estimated by
- efficient maximum likelihood then the correct degrees of freedom are
- k-1-p. If the parameters are estimated in a different way, then the
- dof can be between k-1-p and k-1. However, it is also possible that
- the asymptotic distribution is not a chisquare, in which case this
- test is not appropriate.
- This function handles masked arrays. If an element of `f_obs` or `f_exp`
- is masked, then data at that position is ignored, and does not count
- towards the size of the data set.
- .. versionadded:: 0.13.0
- References
- ----------
- .. [1] Lowry, Richard. "Concepts and Applications of Inferential
- Statistics". Chapter 8.
- https://web.archive.org/web/20171015035606/http://faculty.vassar.edu/lowry/ch8pt1.html
- .. [2] "Chi-squared test", https://en.wikipedia.org/wiki/Chi-squared_test
- .. [3] "G-test", https://en.wikipedia.org/wiki/G-test
- .. [4] Sokal, R. R. and Rohlf, F. J. "Biometry: the principles and
- practice of statistics in biological research", New York: Freeman
- (1981)
- .. [5] Cressie, N. and Read, T. R. C., "Multinomial Goodness-of-Fit
- Tests", J. Royal Stat. Soc. Series B, Vol. 46, No. 3 (1984),
- pp. 440-464.
- Examples
- --------
- (See `chisquare` for more examples.)
- When just `f_obs` is given, it is assumed that the expected frequencies
- are uniform and given by the mean of the observed frequencies. Here we
- perform a G-test (i.e. use the log-likelihood ratio statistic):
- >>> import numpy as np
- >>> from scipy.stats import power_divergence
- >>> power_divergence([16, 18, 16, 14, 12, 12], lambda_='log-likelihood')
- (2.006573162632538, 0.84823476779463769)
- The expected frequencies can be given with the `f_exp` argument:
- >>> power_divergence([16, 18, 16, 14, 12, 12],
- ... f_exp=[16, 16, 16, 16, 16, 8],
- ... lambda_='log-likelihood')
- (3.3281031458963746, 0.6495419288047497)
- When `f_obs` is 2-D, by default the test is applied to each column.
- >>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
- >>> obs.shape
- (6, 2)
- >>> power_divergence(obs, lambda_="log-likelihood")
- (array([ 2.00657316, 6.77634498]), array([ 0.84823477, 0.23781225]))
- By setting ``axis=None``, the test is applied to all data in the array,
- which is equivalent to applying the test to the flattened array.
- >>> power_divergence(obs, axis=None)
- (23.31034482758621, 0.015975692534127565)
- >>> power_divergence(obs.ravel())
- (23.31034482758621, 0.015975692534127565)
- `ddof` is the change to make to the default degrees of freedom.
- >>> power_divergence([16, 18, 16, 14, 12, 12], ddof=1)
- (2.0, 0.73575888234288467)
- The calculation of the p-values is done by broadcasting the
- test statistic with `ddof`.
- >>> power_divergence([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
- (2.0, array([ 0.84914504, 0.73575888, 0.5724067 ]))
- `f_obs` and `f_exp` are also broadcast. In the following, `f_obs` has
- shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting
- `f_obs` and `f_exp` has shape (2, 6). To compute the desired chi-squared
- statistics, we must use ``axis=1``:
- >>> power_divergence([16, 18, 16, 14, 12, 12],
- ... f_exp=[[16, 16, 16, 16, 16, 8],
- ... [8, 20, 20, 16, 12, 12]],
- ... axis=1)
- (array([ 3.5 , 9.25]), array([ 0.62338763, 0.09949846]))
- """
- # Convert the input argument `lambda_` to a numerical value.
- if isinstance(lambda_, str):
- if lambda_ not in _power_div_lambda_names:
- names = repr(list(_power_div_lambda_names.keys()))[1:-1]
- raise ValueError("invalid string for lambda_: {0!r}. "
- "Valid strings are {1}".format(lambda_, names))
- lambda_ = _power_div_lambda_names[lambda_]
- elif lambda_ is None:
- lambda_ = 1
- f_obs = np.asanyarray(f_obs)
- f_obs_float = f_obs.astype(np.float64)
- if f_exp is not None:
- f_exp = np.asanyarray(f_exp)
- bshape = _broadcast_shapes(f_obs_float.shape, f_exp.shape)
- f_obs_float = _m_broadcast_to(f_obs_float, bshape)
- f_exp = _m_broadcast_to(f_exp, bshape)
- rtol = 1e-8 # to pass existing tests
- with np.errstate(invalid='ignore'):
- f_obs_sum = f_obs_float.sum(axis=axis)
- f_exp_sum = f_exp.sum(axis=axis)
- relative_diff = (np.abs(f_obs_sum - f_exp_sum) /
- np.minimum(f_obs_sum, f_exp_sum))
- diff_gt_tol = (relative_diff > rtol).any()
- if diff_gt_tol:
- msg = (f"For each axis slice, the sum of the observed "
- f"frequencies must agree with the sum of the "
- f"expected frequencies to a relative tolerance "
- f"of {rtol}, but the percent differences are:\n"
- f"{relative_diff}")
- raise ValueError(msg)
- else:
- # Ignore 'invalid' errors so the edge case of a data set with length 0
- # is handled without spurious warnings.
- with np.errstate(invalid='ignore'):
- f_exp = f_obs.mean(axis=axis, keepdims=True)
- # `terms` is the array of terms that are summed along `axis` to create
- # the test statistic. We use some specialized code for a few special
- # cases of lambda_.
- if lambda_ == 1:
- # Pearson's chi-squared statistic
- terms = (f_obs_float - f_exp)**2 / f_exp
- elif lambda_ == 0:
- # Log-likelihood ratio (i.e. G-test)
- terms = 2.0 * special.xlogy(f_obs, f_obs / f_exp)
- elif lambda_ == -1:
- # Modified log-likelihood ratio
- terms = 2.0 * special.xlogy(f_exp, f_exp / f_obs)
- else:
- # General Cressie-Read power divergence.
- terms = f_obs * ((f_obs / f_exp)**lambda_ - 1)
- terms /= 0.5 * lambda_ * (lambda_ + 1)
- stat = terms.sum(axis=axis)
- num_obs = _count(terms, axis=axis)
- ddof = asarray(ddof)
- p = distributions.chi2.sf(stat, num_obs - 1 - ddof)
- return Power_divergenceResult(stat, p)
- def chisquare(f_obs, f_exp=None, ddof=0, axis=0):
- """Calculate a one-way chi-square test.
- The chi-square test tests the null hypothesis that the categorical data
- has the given frequencies.
- Parameters
- ----------
- f_obs : array_like
- Observed frequencies in each category.
- f_exp : array_like, optional
- Expected frequencies in each category. By default the categories are
- assumed to be equally likely.
- ddof : int, optional
- "Delta degrees of freedom": adjustment to the degrees of freedom
- for the p-value. The p-value is computed using a chi-squared
- distribution with ``k - 1 - ddof`` degrees of freedom, where `k`
- is the number of observed frequencies. The default value of `ddof`
- is 0.
- axis : int or None, optional
- The axis of the broadcast result of `f_obs` and `f_exp` along which to
- apply the test. If axis is None, all values in `f_obs` are treated
- as a single data set. Default is 0.
- Returns
- -------
- chisq : float or ndarray
- The chi-squared test statistic. The value is a float if `axis` is
- None or `f_obs` and `f_exp` are 1-D.
- p : float or ndarray
- The p-value of the test. The value is a float if `ddof` and the
- return value `chisq` are scalars.
- See Also
- --------
- scipy.stats.power_divergence
- scipy.stats.fisher_exact : Fisher exact test on a 2x2 contingency table.
- scipy.stats.barnard_exact : An unconditional exact test. An alternative
- to chi-squared test for small sample sizes.
- Notes
- -----
- This test is invalid when the observed or expected frequencies in each
- category are too small. A typical rule is that all of the observed
- and expected frequencies should be at least 5. According to [3]_, the
- total number of samples is recommended to be greater than 13,
- otherwise exact tests (such as Barnard's Exact test) should be used
- because they do not overreject.
- Also, the sum of the observed and expected frequencies must be the same
- for the test to be valid; `chisquare` raises an error if the sums do not
- agree within a relative tolerance of ``1e-8``.
- The default degrees of freedom, k-1, are for the case when no parameters
- of the distribution are estimated. If p parameters are estimated by
- efficient maximum likelihood then the correct degrees of freedom are
- k-1-p. If the parameters are estimated in a different way, then the
- dof can be between k-1-p and k-1. However, it is also possible that
- the asymptotic distribution is not chi-square, in which case this test
- is not appropriate.
- References
- ----------
- .. [1] Lowry, Richard. "Concepts and Applications of Inferential
- Statistics". Chapter 8.
- https://web.archive.org/web/20171022032306/http://vassarstats.net:80/textbook/ch8pt1.html
- .. [2] "Chi-squared test", https://en.wikipedia.org/wiki/Chi-squared_test
- .. [3] Pearson, Karl. "On the criterion that a given system of deviations from the probable
- in the case of a correlated system of variables is such that it can be reasonably
- supposed to have arisen from random sampling", Philosophical Magazine. Series 5. 50
- (1900), pp. 157-175.
- Examples
- --------
- When just `f_obs` is given, it is assumed that the expected frequencies
- are uniform and given by the mean of the observed frequencies.
- >>> import numpy as np
- >>> from scipy.stats import chisquare
- >>> chisquare([16, 18, 16, 14, 12, 12])
- (2.0, 0.84914503608460956)
- With `f_exp` the expected frequencies can be given.
- >>> chisquare([16, 18, 16, 14, 12, 12], f_exp=[16, 16, 16, 16, 16, 8])
- (3.5, 0.62338762774958223)
- When `f_obs` is 2-D, by default the test is applied to each column.
- >>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
- >>> obs.shape
- (6, 2)
- >>> chisquare(obs)
- (array([ 2. , 6.66666667]), array([ 0.84914504, 0.24663415]))
- By setting ``axis=None``, the test is applied to all data in the array,
- which is equivalent to applying the test to the flattened array.
- >>> chisquare(obs, axis=None)
- (23.31034482758621, 0.015975692534127565)
- >>> chisquare(obs.ravel())
- (23.31034482758621, 0.015975692534127565)
- `ddof` is the change to make to the default degrees of freedom.
- >>> chisquare([16, 18, 16, 14, 12, 12], ddof=1)
- (2.0, 0.73575888234288467)
- The calculation of the p-values is done by broadcasting the
- chi-squared statistic with `ddof`.
- >>> chisquare([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
- (2.0, array([ 0.84914504, 0.73575888, 0.5724067 ]))
- `f_obs` and `f_exp` are also broadcast. In the following, `f_obs` has
- shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting
- `f_obs` and `f_exp` has shape (2, 6). To compute the desired chi-squared
- statistics, we use ``axis=1``:
- >>> chisquare([16, 18, 16, 14, 12, 12],
- ... f_exp=[[16, 16, 16, 16, 16, 8], [8, 20, 20, 16, 12, 12]],
- ... axis=1)
- (array([ 3.5 , 9.25]), array([ 0.62338763, 0.09949846]))
- """
- return power_divergence(f_obs, f_exp=f_exp, ddof=ddof, axis=axis,
- lambda_="pearson")
- KstestResult = _make_tuple_bunch('KstestResult', ['statistic', 'pvalue'],
- ['statistic_location', 'statistic_sign'])
- def _compute_dplus(cdfvals, x):
- """Computes D+ as used in the Kolmogorov-Smirnov test.
- Parameters
- ----------
- cdfvals : array_like
- Sorted array of CDF values between 0 and 1
- x: array_like
- Sorted array of the stochastic variable itself
- Returns
- -------
- res: Pair with the following elements:
- - The maximum distance of the CDF values below Uniform(0, 1).
- - The location at which the maximum is reached.
- """
- n = len(cdfvals)
- dplus = (np.arange(1.0, n + 1) / n - cdfvals)
- amax = dplus.argmax()
- loc_max = x[amax]
- return (dplus[amax], loc_max)
- def _compute_dminus(cdfvals, x):
- """Computes D- as used in the Kolmogorov-Smirnov test.
- Parameters
- ----------
- cdfvals : array_like
- Sorted array of CDF values between 0 and 1
- x: array_like
- Sorted array of the stochastic variable itself
- Returns
- -------
- res: Pair with the following elements:
- - Maximum distance of the CDF values above Uniform(0, 1)
- - The location at which the maximum is reached.
- """
- n = len(cdfvals)
- dminus = (cdfvals - np.arange(0.0, n)/n)
- amax = dminus.argmax()
- loc_max = x[amax]
- return (dminus[amax], loc_max)
- @_rename_parameter("mode", "method")
- def ks_1samp(x, cdf, args=(), alternative='two-sided', method='auto'):
- """
- Performs the one-sample Kolmogorov-Smirnov test for goodness of fit.
- This test compares the underlying distribution F(x) of a sample
- against a given continuous distribution G(x). See Notes for a description
- of the available null and alternative hypotheses.
- Parameters
- ----------
- x : array_like
- a 1-D array of observations of iid random variables.
- cdf : callable
- callable used to calculate the cdf.
- args : tuple, sequence, optional
- Distribution parameters, used with `cdf`.
- alternative : {'two-sided', 'less', 'greater'}, optional
- Defines the null and alternative hypotheses. Default is 'two-sided'.
- Please see explanations in the Notes below.
- method : {'auto', 'exact', 'approx', 'asymp'}, optional
- Defines the distribution used for calculating the p-value.
- The following options are available (default is 'auto'):
- * 'auto' : selects one of the other options.
- * 'exact' : uses the exact distribution of test statistic.
- * 'approx' : approximates the two-sided probability with twice
- the one-sided probability
- * 'asymp': uses asymptotic distribution of test statistic
- Returns
- -------
- res: KstestResult
- An object containing attributes:
- statistic : float
- KS test statistic, either D+, D-, or D (the maximum of the two)
- pvalue : float
- One-tailed or two-tailed p-value.
- statistic_location : float
- Value of `x` corresponding with the KS statistic; i.e., the
- distance between the empirical distribution function and the
- hypothesized cumulative distribution function is measured at this
- observation.
- statistic_sign : int
- +1 if the KS statistic is the maximum positive difference between
- the empirical distribution function and the hypothesized cumulative
- distribution function (D+); -1 if the KS statistic is the maximum
- negative difference (D-).
- See Also
- --------
- ks_2samp, kstest
- Notes
- -----
- There are three options for the null and corresponding alternative
- hypothesis that can be selected using the `alternative` parameter.
- - `two-sided`: The null hypothesis is that the two distributions are
- identical, F(x)=G(x) for all x; the alternative is that they are not
- identical.
- - `less`: The null hypothesis is that F(x) >= G(x) for all x; the
- alternative is that F(x) < G(x) for at least one x.
- - `greater`: The null hypothesis is that F(x) <= G(x) for all x; the
- alternative is that F(x) > G(x) for at least one x.
- Note that the alternative hypotheses describe the *CDFs* of the
- underlying distributions, not the observed values. For example,
- suppose x1 ~ F and x2 ~ G. If F(x) > G(x) for all x, the values in
- x1 tend to be less than those in x2.
- Examples
- --------
- Suppose we wish to test the null hypothesis that a sample is distributed
- according to the standard normal.
- We choose a confidence level of 95%; that is, we will reject the null
- hypothesis in favor of the alternative if the p-value is less than 0.05.
- When testing uniformly distributed data, we would expect the
- null hypothesis to be rejected.
- >>> import numpy as np
- >>> from scipy import stats
- >>> rng = np.random.default_rng()
- >>> stats.ks_1samp(stats.uniform.rvs(size=100, random_state=rng),
- ... stats.norm.cdf)
- KstestResult(statistic=0.5001899973268688, pvalue=1.1616392184763533e-23)
- Indeed, the p-value is lower than our threshold of 0.05, so we reject the
- null hypothesis in favor of the default "two-sided" alternative: the data
- are *not* distributed according to the standard normal.
- When testing random variates from the standard normal distribution, we
- expect the data to be consistent with the null hypothesis most of the time.
- >>> x = stats.norm.rvs(size=100, random_state=rng)
- >>> stats.ks_1samp(x, stats.norm.cdf)
- KstestResult(statistic=0.05345882212970396, pvalue=0.9227159037744717)
- As expected, the p-value of 0.92 is not below our threshold of 0.05, so
- we cannot reject the null hypothesis.
- Suppose, however, that the random variates are distributed according to
- a normal distribution that is shifted toward greater values. In this case,
- the cumulative density function (CDF) of the underlying distribution tends
- to be *less* than the CDF of the standard normal. Therefore, we would
- expect the null hypothesis to be rejected with ``alternative='less'``:
- >>> x = stats.norm.rvs(size=100, loc=0.5, random_state=rng)
- >>> stats.ks_1samp(x, stats.norm.cdf, alternative='less')
- KstestResult(statistic=0.17482387821055168, pvalue=0.001913921057766743)
- and indeed, with p-value smaller than our threshold, we reject the null
- hypothesis in favor of the alternative.
- """
- mode = method
- alternative = {'t': 'two-sided', 'g': 'greater', 'l': 'less'}.get(
- alternative.lower()[0], alternative)
- if alternative not in ['two-sided', 'greater', 'less']:
- raise ValueError("Unexpected alternative %s" % alternative)
- if np.ma.is_masked(x):
- x = x.compressed()
- N = len(x)
- x = np.sort(x)
- cdfvals = cdf(x, *args)
- if alternative == 'greater':
- Dplus, d_location = _compute_dplus(cdfvals, x)
- return KstestResult(Dplus, distributions.ksone.sf(Dplus, N),
- statistic_location=d_location,
- statistic_sign=1)
- if alternative == 'less':
- Dminus, d_location = _compute_dminus(cdfvals, x)
- return KstestResult(Dminus, distributions.ksone.sf(Dminus, N),
- statistic_location=d_location,
- statistic_sign=-1)
- # alternative == 'two-sided':
- Dplus, dplus_location = _compute_dplus(cdfvals, x)
- Dminus, dminus_location = _compute_dminus(cdfvals, x)
- if Dplus > Dminus:
- D = Dplus
- d_location = dplus_location
- d_sign = 1
- else:
- D = Dminus
- d_location = dminus_location
- d_sign = -1
- if mode == 'auto': # Always select exact
- mode = 'exact'
- if mode == 'exact':
- prob = distributions.kstwo.sf(D, N)
- elif mode == 'asymp':
- prob = distributions.kstwobign.sf(D * np.sqrt(N))
- else:
- # mode == 'approx'
- prob = 2 * distributions.ksone.sf(D, N)
- prob = np.clip(prob, 0, 1)
- return KstestResult(D, prob,
- statistic_location=d_location,
- statistic_sign=d_sign)
- Ks_2sampResult = KstestResult
- def _compute_prob_outside_square(n, h):
- """
- Compute the proportion of paths that pass outside the two diagonal lines.
- Parameters
- ----------
- n : integer
- n > 0
- h : integer
- 0 <= h <= n
- Returns
- -------
- p : float
- The proportion of paths that pass outside the lines x-y = +/-h.
- """
- # Compute Pr(D_{n,n} >= h/n)
- # Prob = 2 * ( binom(2n, n-h) - binom(2n, n-2a) + binom(2n, n-3a) - ... )
- # / binom(2n, n)
- # This formulation exhibits subtractive cancellation.
- # Instead divide each term by binom(2n, n), then factor common terms
- # and use a Horner-like algorithm
- # P = 2 * A0 * (1 - A1*(1 - A2*(1 - A3*(1 - A4*(...)))))
- P = 0.0
- k = int(np.floor(n / h))
- while k >= 0:
- p1 = 1.0
- # Each of the Ai terms has numerator and denominator with
- # h simple terms.
- for j in range(h):
- p1 = (n - k * h - j) * p1 / (n + k * h + j + 1)
- P = p1 * (1.0 - P)
- k -= 1
- return 2 * P
- def _count_paths_outside_method(m, n, g, h):
- """Count the number of paths that pass outside the specified diagonal.
- Parameters
- ----------
- m : integer
- m > 0
- n : integer
- n > 0
- g : integer
- g is greatest common divisor of m and n
- h : integer
- 0 <= h <= lcm(m,n)
- Returns
- -------
- p : float
- The number of paths that go low.
- The calculation may overflow - check for a finite answer.
- Notes
- -----
- Count the integer lattice paths from (0, 0) to (m, n), which at some
- point (x, y) along the path, satisfy:
- m*y <= n*x - h*g
- The paths make steps of size +1 in either positive x or positive y
- directions.
- We generally follow Hodges' treatment of Drion/Gnedenko/Korolyuk.
- Hodges, J.L. Jr.,
- "The Significance Probability of the Smirnov Two-Sample Test,"
- Arkiv fiur Matematik, 3, No. 43 (1958), 469-86.
- """
- # Compute #paths which stay lower than x/m-y/n = h/lcm(m,n)
- # B(x, y) = #{paths from (0,0) to (x,y) without
- # previously crossing the boundary}
- # = binom(x, y) - #{paths which already reached the boundary}
- # Multiply by the number of path extensions going from (x, y) to (m, n)
- # Sum.
- # Probability is symmetrical in m, n. Computation below assumes m >= n.
- if m < n:
- m, n = n, m
- mg = m // g
- ng = n // g
- # Not every x needs to be considered.
- # xj holds the list of x values to be checked.
- # Wherever n*x/m + ng*h crosses an integer
- lxj = n + (mg-h)//mg
- xj = [(h + mg * j + ng-1)//ng for j in range(lxj)]
- # B is an array just holding a few values of B(x,y), the ones needed.
- # B[j] == B(x_j, j)
- if lxj == 0:
- return special.binom(m + n, n)
- B = np.zeros(lxj)
- B[0] = 1
- # Compute the B(x, y) terms
- for j in range(1, lxj):
- Bj = special.binom(xj[j] + j, j)
- for i in range(j):
- bin = special.binom(xj[j] - xj[i] + j - i, j-i)
- Bj -= bin * B[i]
- B[j] = Bj
- # Compute the number of path extensions...
- num_paths = 0
- for j in range(lxj):
- bin = special.binom((m-xj[j]) + (n - j), n-j)
- term = B[j] * bin
- num_paths += term
- return num_paths
- def _attempt_exact_2kssamp(n1, n2, g, d, alternative):
- """Attempts to compute the exact 2sample probability.
- n1, n2 are the sample sizes
- g is the gcd(n1, n2)
- d is the computed max difference in ECDFs
- Returns (success, d, probability)
- """
- lcm = (n1 // g) * n2
- h = int(np.round(d * lcm))
- d = h * 1.0 / lcm
- if h == 0:
- return True, d, 1.0
- saw_fp_error, prob = False, np.nan
- try:
- with np.errstate(invalid="raise", over="raise"):
- if alternative == 'two-sided':
- if n1 == n2:
- prob = _compute_prob_outside_square(n1, h)
- else:
- prob = _compute_outer_prob_inside_method(n1, n2, g, h)
- else:
- if n1 == n2:
- # prob = binom(2n, n-h) / binom(2n, n)
- # Evaluating in that form incurs roundoff errors
- # from special.binom. Instead calculate directly
- jrange = np.arange(h)
- prob = np.prod((n1 - jrange) / (n1 + jrange + 1.0))
- else:
- with np.errstate(over='raise'):
- num_paths = _count_paths_outside_method(n1, n2, g, h)
- bin = special.binom(n1 + n2, n1)
- if num_paths > bin or np.isinf(bin):
- saw_fp_error = True
- else:
- prob = num_paths / bin
- except (FloatingPointError, OverflowError):
- saw_fp_error = True
- if saw_fp_error:
- return False, d, np.nan
- if not (0 <= prob <= 1):
- return False, d, prob
- return True, d, prob
- @_rename_parameter("mode", "method")
- def ks_2samp(data1, data2, alternative='two-sided', method='auto'):
- """
- Performs the two-sample Kolmogorov-Smirnov test for goodness of fit.
- This test compares the underlying continuous distributions F(x) and G(x)
- of two independent samples. See Notes for a description of the available
- null and alternative hypotheses.
- Parameters
- ----------
- data1, data2 : array_like, 1-Dimensional
- Two arrays of sample observations assumed to be drawn from a continuous
- distribution, sample sizes can be different.
- alternative : {'two-sided', 'less', 'greater'}, optional
- Defines the null and alternative hypotheses. Default is 'two-sided'.
- Please see explanations in the Notes below.
- method : {'auto', 'exact', 'asymp'}, optional
- Defines the method used for calculating the p-value.
- The following options are available (default is 'auto'):
- * 'auto' : use 'exact' for small size arrays, 'asymp' for large
- * 'exact' : use exact distribution of test statistic
- * 'asymp' : use asymptotic distribution of test statistic
- Returns
- -------
- res: KstestResult
- An object containing attributes:
- statistic : float
- KS test statistic.
- pvalue : float
- One-tailed or two-tailed p-value.
- statistic_location : float
- Value from `data1` or `data2` corresponding with the KS statistic;
- i.e., the distance between the empirical distribution functions is
- measured at this observation.
- statistic_sign : int
- +1 if the empirical distribution function of `data1` exceeds
- the empirical distribution function of `data2` at
- `statistic_location`, otherwise -1.
- See Also
- --------
- kstest, ks_1samp, epps_singleton_2samp, anderson_ksamp
- Notes
- -----
- There are three options for the null and corresponding alternative
- hypothesis that can be selected using the `alternative` parameter.
- - `less`: The null hypothesis is that F(x) >= G(x) for all x; the
- alternative is that F(x) < G(x) for at least one x. The statistic
- is the magnitude of the minimum (most negative) difference between the
- empirical distribution functions of the samples.
- - `greater`: The null hypothesis is that F(x) <= G(x) for all x; the
- alternative is that F(x) > G(x) for at least one x. The statistic
- is the maximum (most positive) difference between the empirical
- distribution functions of the samples.
- - `two-sided`: The null hypothesis is that the two distributions are
- identical, F(x)=G(x) for all x; the alternative is that they are not
- identical. The statistic is the maximum absolute difference between the
- empirical distribution functions of the samples.
- Note that the alternative hypotheses describe the *CDFs* of the
- underlying distributions, not the observed values of the data. For example,
- suppose x1 ~ F and x2 ~ G. If F(x) > G(x) for all x, the values in
- x1 tend to be less than those in x2.
- If the KS statistic is large, then the p-value will be small, and this may
- be taken as evidence against the null hypothesis in favor of the
- alternative.
- If ``method='exact'``, `ks_2samp` attempts to compute an exact p-value,
- that is, the probability under the null hypothesis of obtaining a test
- statistic value as extreme as the value computed from the data.
- If ``method='asymp'``, the asymptotic Kolmogorov-Smirnov distribution is
- used to compute an approximate p-value.
- If ``method='auto'``, an exact p-value computation is attempted if both
- sample sizes are less than 10000; otherwise, the asymptotic method is used.
- In any case, if an exact p-value calculation is attempted and fails, a
- warning will be emitted, and the asymptotic p-value will be returned.
- The 'two-sided' 'exact' computation computes the complementary probability
- and then subtracts from 1. As such, the minimum probability it can return
- is about 1e-16. While the algorithm itself is exact, numerical
- errors may accumulate for large sample sizes. It is most suited to
- situations in which one of the sample sizes is only a few thousand.
- We generally follow Hodges' treatment of Drion/Gnedenko/Korolyuk [1]_.
- References
- ----------
- .. [1] Hodges, J.L. Jr., "The Significance Probability of the Smirnov
- Two-Sample Test," Arkiv fiur Matematik, 3, No. 43 (1958), 469-86.
- Examples
- --------
- Suppose we wish to test the null hypothesis that two samples were drawn
- from the same distribution.
- We choose a confidence level of 95%; that is, we will reject the null
- hypothesis in favor of the alternative if the p-value is less than 0.05.
- If the first sample were drawn from a uniform distribution and the second
- were drawn from the standard normal, we would expect the null hypothesis
- to be rejected.
- >>> import numpy as np
- >>> from scipy import stats
- >>> rng = np.random.default_rng()
- >>> sample1 = stats.uniform.rvs(size=100, random_state=rng)
- >>> sample2 = stats.norm.rvs(size=110, random_state=rng)
- >>> stats.ks_2samp(sample1, sample2)
- KstestResult(statistic=0.5454545454545454, pvalue=7.37417839555191e-15)
- Indeed, the p-value is lower than our threshold of 0.05, so we reject the
- null hypothesis in favor of the default "two-sided" alternative: the data
- were *not* drawn from the same distribution.
- When both samples are drawn from the same distribution, we expect the data
- to be consistent with the null hypothesis most of the time.
- >>> sample1 = stats.norm.rvs(size=105, random_state=rng)
- >>> sample2 = stats.norm.rvs(size=95, random_state=rng)
- >>> stats.ks_2samp(sample1, sample2)
- KstestResult(statistic=0.10927318295739348, pvalue=0.5438289009927495)
- As expected, the p-value of 0.54 is not below our threshold of 0.05, so
- we cannot reject the null hypothesis.
- Suppose, however, that the first sample were drawn from
- a normal distribution shifted toward greater values. In this case,
- the cumulative density function (CDF) of the underlying distribution tends
- to be *less* than the CDF underlying the second sample. Therefore, we would
- expect the null hypothesis to be rejected with ``alternative='less'``:
- >>> sample1 = stats.norm.rvs(size=105, loc=0.5, random_state=rng)
- >>> stats.ks_2samp(sample1, sample2, alternative='less')
- KstestResult(statistic=0.4055137844611529, pvalue=3.5474563068855554e-08)
- and indeed, with p-value smaller than our threshold, we reject the null
- hypothesis in favor of the alternative.
- """
- mode = method
- if mode not in ['auto', 'exact', 'asymp']:
- raise ValueError(f'Invalid value for mode: {mode}')
- alternative = {'t': 'two-sided', 'g': 'greater', 'l': 'less'}.get(
- alternative.lower()[0], alternative)
- if alternative not in ['two-sided', 'less', 'greater']:
- raise ValueError(f'Invalid value for alternative: {alternative}')
- MAX_AUTO_N = 10000 # 'auto' will attempt to be exact if n1,n2 <= MAX_AUTO_N
- if np.ma.is_masked(data1):
- data1 = data1.compressed()
- if np.ma.is_masked(data2):
- data2 = data2.compressed()
- data1 = np.sort(data1)
- data2 = np.sort(data2)
- n1 = data1.shape[0]
- n2 = data2.shape[0]
- if min(n1, n2) == 0:
- raise ValueError('Data passed to ks_2samp must not be empty')
- data_all = np.concatenate([data1, data2])
- # using searchsorted solves equal data problem
- cdf1 = np.searchsorted(data1, data_all, side='right') / n1
- cdf2 = np.searchsorted(data2, data_all, side='right') / n2
- cddiffs = cdf1 - cdf2
- # Identify the location of the statistic
- argminS = np.argmin(cddiffs)
- argmaxS = np.argmax(cddiffs)
- loc_minS = data_all[argminS]
- loc_maxS = data_all[argmaxS]
- # Ensure sign of minS is not negative.
- minS = np.clip(-cddiffs[argminS], 0, 1)
- maxS = cddiffs[argmaxS]
- if alternative == 'less' or (alternative == 'two-sided' and minS > maxS):
- d = minS
- d_location = loc_minS
- d_sign = -1
- else:
- d = maxS
- d_location = loc_maxS
- d_sign = 1
- g = gcd(n1, n2)
- n1g = n1 // g
- n2g = n2 // g
- prob = -np.inf
- if mode == 'auto':
- mode = 'exact' if max(n1, n2) <= MAX_AUTO_N else 'asymp'
- elif mode == 'exact':
- # If lcm(n1, n2) is too big, switch from exact to asymp
- if n1g >= np.iinfo(np.int32).max / n2g:
- mode = 'asymp'
- warnings.warn(
- f"Exact ks_2samp calculation not possible with samples sizes "
- f"{n1} and {n2}. Switching to 'asymp'.", RuntimeWarning,
- stacklevel=3)
- if mode == 'exact':
- success, d, prob = _attempt_exact_2kssamp(n1, n2, g, d, alternative)
- if not success:
- mode = 'asymp'
- warnings.warn(f"ks_2samp: Exact calculation unsuccessful. "
- f"Switching to method={mode}.", RuntimeWarning,
- stacklevel=3)
- if mode == 'asymp':
- # The product n1*n2 is large. Use Smirnov's asymptoptic formula.
- # Ensure float to avoid overflow in multiplication
- # sorted because the one-sided formula is not symmetric in n1, n2
- m, n = sorted([float(n1), float(n2)], reverse=True)
- en = m * n / (m + n)
- if alternative == 'two-sided':
- prob = distributions.kstwo.sf(d, np.round(en))
- else:
- z = np.sqrt(en) * d
- # Use Hodges' suggested approximation Eqn 5.3
- # Requires m to be the larger of (n1, n2)
- expt = -2 * z**2 - 2 * z * (m + 2*n)/np.sqrt(m*n*(m+n))/3.0
- prob = np.exp(expt)
- prob = np.clip(prob, 0, 1)
- return KstestResult(d, prob, statistic_location=d_location,
- statistic_sign=d_sign)
- def _parse_kstest_args(data1, data2, args, N):
- # kstest allows many different variations of arguments.
- # Pull out the parsing into a separate function
- # (xvals, yvals, ) # 2sample
- # (xvals, cdf function,..)
- # (xvals, name of distribution, ...)
- # (name of distribution, name of distribution, ...)
- # Returns xvals, yvals, cdf
- # where cdf is a cdf function, or None
- # and yvals is either an array_like of values, or None
- # and xvals is array_like.
- rvsfunc, cdf = None, None
- if isinstance(data1, str):
- rvsfunc = getattr(distributions, data1).rvs
- elif callable(data1):
- rvsfunc = data1
- if isinstance(data2, str):
- cdf = getattr(distributions, data2).cdf
- data2 = None
- elif callable(data2):
- cdf = data2
- data2 = None
- data1 = np.sort(rvsfunc(*args, size=N) if rvsfunc else data1)
- return data1, data2, cdf
- @_rename_parameter("mode", "method")
- def kstest(rvs, cdf, args=(), N=20, alternative='two-sided', method='auto'):
- """
- Performs the (one-sample or two-sample) Kolmogorov-Smirnov test for
- goodness of fit.
- The one-sample test compares the underlying distribution F(x) of a sample
- against a given distribution G(x). The two-sample test compares the
- underlying distributions of two independent samples. Both tests are valid
- only for continuous distributions.
- Parameters
- ----------
- rvs : str, array_like, or callable
- If an array, it should be a 1-D array of observations of random
- variables.
- If a callable, it should be a function to generate random variables;
- it is required to have a keyword argument `size`.
- If a string, it should be the name of a distribution in `scipy.stats`,
- which will be used to generate random variables.
- cdf : str, array_like or callable
- If array_like, it should be a 1-D array of observations of random
- variables, and the two-sample test is performed
- (and rvs must be array_like).
- If a callable, that callable is used to calculate the cdf.
- If a string, it should be the name of a distribution in `scipy.stats`,
- which will be used as the cdf function.
- args : tuple, sequence, optional
- Distribution parameters, used if `rvs` or `cdf` are strings or
- callables.
- N : int, optional
- Sample size if `rvs` is string or callable. Default is 20.
- alternative : {'two-sided', 'less', 'greater'}, optional
- Defines the null and alternative hypotheses. Default is 'two-sided'.
- Please see explanations in the Notes below.
- method : {'auto', 'exact', 'approx', 'asymp'}, optional
- Defines the distribution used for calculating the p-value.
- The following options are available (default is 'auto'):
- * 'auto' : selects one of the other options.
- * 'exact' : uses the exact distribution of test statistic.
- * 'approx' : approximates the two-sided probability with twice the
- one-sided probability
- * 'asymp': uses asymptotic distribution of test statistic
- Returns
- -------
- res: KstestResult
- An object containing attributes:
- statistic : float
- KS test statistic, either D+, D-, or D (the maximum of the two)
- pvalue : float
- One-tailed or two-tailed p-value.
- statistic_location : float
- In a one-sample test, this is the value of `rvs`
- corresponding with the KS statistic; i.e., the distance between
- the empirical distribution function and the hypothesized cumulative
- distribution function is measured at this observation.
- In a two-sample test, this is the value from `rvs` or `cdf`
- corresponding with the KS statistic; i.e., the distance between
- the empirical distribution functions is measured at this
- observation.
- statistic_sign : int
- In a one-sample test, this is +1 if the KS statistic is the
- maximum positive difference between the empirical distribution
- function and the hypothesized cumulative distribution function
- (D+); it is -1 if the KS statistic is the maximum negative
- difference (D-).
- In a two-sample test, this is +1 if the empirical distribution
- function of `rvs` exceeds the empirical distribution
- function of `cdf` at `statistic_location`, otherwise -1.
- See Also
- --------
- ks_1samp, ks_2samp
- Notes
- -----
- There are three options for the null and corresponding alternative
- hypothesis that can be selected using the `alternative` parameter.
- - `two-sided`: The null hypothesis is that the two distributions are
- identical, F(x)=G(x) for all x; the alternative is that they are not
- identical.
- - `less`: The null hypothesis is that F(x) >= G(x) for all x; the
- alternative is that F(x) < G(x) for at least one x.
- - `greater`: The null hypothesis is that F(x) <= G(x) for all x; the
- alternative is that F(x) > G(x) for at least one x.
- Note that the alternative hypotheses describe the *CDFs* of the
- underlying distributions, not the observed values. For example,
- suppose x1 ~ F and x2 ~ G. If F(x) > G(x) for all x, the values in
- x1 tend to be less than those in x2.
- Examples
- --------
- Suppose we wish to test the null hypothesis that a sample is distributed
- according to the standard normal.
- We choose a confidence level of 95%; that is, we will reject the null
- hypothesis in favor of the alternative if the p-value is less than 0.05.
- When testing uniformly distributed data, we would expect the
- null hypothesis to be rejected.
- >>> import numpy as np
- >>> from scipy import stats
- >>> rng = np.random.default_rng()
- >>> stats.kstest(stats.uniform.rvs(size=100, random_state=rng),
- ... stats.norm.cdf)
- KstestResult(statistic=0.5001899973268688, pvalue=1.1616392184763533e-23)
- Indeed, the p-value is lower than our threshold of 0.05, so we reject the
- null hypothesis in favor of the default "two-sided" alternative: the data
- are *not* distributed according to the standard normal.
- When testing random variates from the standard normal distribution, we
- expect the data to be consistent with the null hypothesis most of the time.
- >>> x = stats.norm.rvs(size=100, random_state=rng)
- >>> stats.kstest(x, stats.norm.cdf)
- KstestResult(statistic=0.05345882212970396, pvalue=0.9227159037744717)
- As expected, the p-value of 0.92 is not below our threshold of 0.05, so
- we cannot reject the null hypothesis.
- Suppose, however, that the random variates are distributed according to
- a normal distribution that is shifted toward greater values. In this case,
- the cumulative density function (CDF) of the underlying distribution tends
- to be *less* than the CDF of the standard normal. Therefore, we would
- expect the null hypothesis to be rejected with ``alternative='less'``:
- >>> x = stats.norm.rvs(size=100, loc=0.5, random_state=rng)
- >>> stats.kstest(x, stats.norm.cdf, alternative='less')
- KstestResult(statistic=0.17482387821055168, pvalue=0.001913921057766743)
- and indeed, with p-value smaller than our threshold, we reject the null
- hypothesis in favor of the alternative.
- For convenience, the previous test can be performed using the name of the
- distribution as the second argument.
- >>> stats.kstest(x, "norm", alternative='less')
- KstestResult(statistic=0.17482387821055168, pvalue=0.001913921057766743)
- The examples above have all been one-sample tests identical to those
- performed by `ks_1samp`. Note that `kstest` can also perform two-sample
- tests identical to those performed by `ks_2samp`. For example, when two
- samples are drawn from the same distribution, we expect the data to be
- consistent with the null hypothesis most of the time.
- >>> sample1 = stats.laplace.rvs(size=105, random_state=rng)
- >>> sample2 = stats.laplace.rvs(size=95, random_state=rng)
- >>> stats.kstest(sample1, sample2)
- KstestResult(statistic=0.11779448621553884, pvalue=0.4494256912629795)
- As expected, the p-value of 0.45 is not below our threshold of 0.05, so
- we cannot reject the null hypothesis.
- """
- # to not break compatibility with existing code
- if alternative == 'two_sided':
- alternative = 'two-sided'
- if alternative not in ['two-sided', 'greater', 'less']:
- raise ValueError("Unexpected alternative %s" % alternative)
- xvals, yvals, cdf = _parse_kstest_args(rvs, cdf, args, N)
- if cdf:
- return ks_1samp(xvals, cdf, args=args, alternative=alternative,
- method=method)
- return ks_2samp(xvals, yvals, alternative=alternative, method=method)
- def tiecorrect(rankvals):
- """Tie correction factor for Mann-Whitney U and Kruskal-Wallis H tests.
- Parameters
- ----------
- rankvals : array_like
- A 1-D sequence of ranks. Typically this will be the array
- returned by `~scipy.stats.rankdata`.
- Returns
- -------
- factor : float
- Correction factor for U or H.
- See Also
- --------
- rankdata : Assign ranks to the data
- mannwhitneyu : Mann-Whitney rank test
- kruskal : Kruskal-Wallis H test
- References
- ----------
- .. [1] Siegel, S. (1956) Nonparametric Statistics for the Behavioral
- Sciences. New York: McGraw-Hill.
- Examples
- --------
- >>> from scipy.stats import tiecorrect, rankdata
- >>> tiecorrect([1, 2.5, 2.5, 4])
- 0.9
- >>> ranks = rankdata([1, 3, 2, 4, 5, 7, 2, 8, 4])
- >>> ranks
- array([ 1. , 4. , 2.5, 5.5, 7. , 8. , 2.5, 9. , 5.5])
- >>> tiecorrect(ranks)
- 0.9833333333333333
- """
- arr = np.sort(rankvals)
- idx = np.nonzero(np.r_[True, arr[1:] != arr[:-1], True])[0]
- cnt = np.diff(idx).astype(np.float64)
- size = np.float64(arr.size)
- return 1.0 if size < 2 else 1.0 - (cnt**3 - cnt).sum() / (size**3 - size)
- RanksumsResult = namedtuple('RanksumsResult', ('statistic', 'pvalue'))
- @_axis_nan_policy_factory(RanksumsResult, n_samples=2)
- def ranksums(x, y, alternative='two-sided'):
- """Compute the Wilcoxon rank-sum statistic for two samples.
- The Wilcoxon rank-sum test tests the null hypothesis that two sets
- of measurements are drawn from the same distribution. The alternative
- hypothesis is that values in one sample are more likely to be
- larger than the values in the other sample.
- This test should be used to compare two samples from continuous
- distributions. It does not handle ties between measurements
- in x and y. For tie-handling and an optional continuity correction
- see `scipy.stats.mannwhitneyu`.
- Parameters
- ----------
- x,y : array_like
- The data from the two samples.
- alternative : {'two-sided', 'less', 'greater'}, optional
- Defines the alternative hypothesis. Default is 'two-sided'.
- The following options are available:
- * 'two-sided': one of the distributions (underlying `x` or `y`) is
- stochastically greater than the other.
- * 'less': the distribution underlying `x` is stochastically less
- than the distribution underlying `y`.
- * 'greater': the distribution underlying `x` is stochastically greater
- than the distribution underlying `y`.
- .. versionadded:: 1.7.0
- Returns
- -------
- statistic : float
- The test statistic under the large-sample approximation that the
- rank sum statistic is normally distributed.
- pvalue : float
- The p-value of the test.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Wilcoxon_rank-sum_test
- Examples
- --------
- We can test the hypothesis that two independent unequal-sized samples are
- drawn from the same distribution with computing the Wilcoxon rank-sum
- statistic.
- >>> import numpy as np
- >>> from scipy.stats import ranksums
- >>> rng = np.random.default_rng()
- >>> sample1 = rng.uniform(-1, 1, 200)
- >>> sample2 = rng.uniform(-0.5, 1.5, 300) # a shifted distribution
- >>> ranksums(sample1, sample2)
- RanksumsResult(statistic=-7.887059, pvalue=3.09390448e-15) # may vary
- >>> ranksums(sample1, sample2, alternative='less')
- RanksumsResult(statistic=-7.750585297581713, pvalue=4.573497606342543e-15) # may vary
- >>> ranksums(sample1, sample2, alternative='greater')
- RanksumsResult(statistic=-7.750585297581713, pvalue=0.9999999999999954) # may vary
- The p-value of less than ``0.05`` indicates that this test rejects the
- hypothesis at the 5% significance level.
- """
- x, y = map(np.asarray, (x, y))
- n1 = len(x)
- n2 = len(y)
- alldata = np.concatenate((x, y))
- ranked = rankdata(alldata)
- x = ranked[:n1]
- s = np.sum(x, axis=0)
- expected = n1 * (n1+n2+1) / 2.0
- z = (s - expected) / np.sqrt(n1*n2*(n1+n2+1)/12.0)
- z, prob = _normtest_finish(z, alternative)
- return RanksumsResult(z, prob)
- KruskalResult = namedtuple('KruskalResult', ('statistic', 'pvalue'))
- @_axis_nan_policy_factory(KruskalResult, n_samples=None)
- def kruskal(*samples, nan_policy='propagate'):
- """Compute the Kruskal-Wallis H-test for independent samples.
- The Kruskal-Wallis H-test tests the null hypothesis that the population
- median of all of the groups are equal. It is a non-parametric version of
- ANOVA. The test works on 2 or more independent samples, which may have
- different sizes. Note that rejecting the null hypothesis does not
- indicate which of the groups differs. Post hoc comparisons between
- groups are required to determine which groups are different.
- Parameters
- ----------
- sample1, sample2, ... : array_like
- Two or more arrays with the sample measurements can be given as
- arguments. Samples must be one-dimensional.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': returns nan
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- Returns
- -------
- statistic : float
- The Kruskal-Wallis H statistic, corrected for ties.
- pvalue : float
- The p-value for the test using the assumption that H has a chi
- square distribution. The p-value returned is the survival function of
- the chi square distribution evaluated at H.
- See Also
- --------
- f_oneway : 1-way ANOVA.
- mannwhitneyu : Mann-Whitney rank test on two samples.
- friedmanchisquare : Friedman test for repeated measurements.
- Notes
- -----
- Due to the assumption that H has a chi square distribution, the number
- of samples in each group must not be too small. A typical rule is
- that each sample must have at least 5 measurements.
- References
- ----------
- .. [1] W. H. Kruskal & W. W. Wallis, "Use of Ranks in
- One-Criterion Variance Analysis", Journal of the American Statistical
- Association, Vol. 47, Issue 260, pp. 583-621, 1952.
- .. [2] https://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance
- Examples
- --------
- >>> from scipy import stats
- >>> x = [1, 3, 5, 7, 9]
- >>> y = [2, 4, 6, 8, 10]
- >>> stats.kruskal(x, y)
- KruskalResult(statistic=0.2727272727272734, pvalue=0.6015081344405895)
- >>> x = [1, 1, 1]
- >>> y = [2, 2, 2]
- >>> z = [2, 2]
- >>> stats.kruskal(x, y, z)
- KruskalResult(statistic=7.0, pvalue=0.0301973834223185)
- """
- samples = list(map(np.asarray, samples))
- num_groups = len(samples)
- if num_groups < 2:
- raise ValueError("Need at least two groups in stats.kruskal()")
- for sample in samples:
- if sample.size == 0:
- return KruskalResult(np.nan, np.nan)
- elif sample.ndim != 1:
- raise ValueError("Samples must be one-dimensional.")
- n = np.asarray(list(map(len, samples)))
- if nan_policy not in ('propagate', 'raise', 'omit'):
- raise ValueError("nan_policy must be 'propagate', 'raise' or 'omit'")
- contains_nan = False
- for sample in samples:
- cn = _contains_nan(sample, nan_policy)
- if cn[0]:
- contains_nan = True
- break
- if contains_nan and nan_policy == 'omit':
- for sample in samples:
- sample = ma.masked_invalid(sample)
- return mstats_basic.kruskal(*samples)
- if contains_nan and nan_policy == 'propagate':
- return KruskalResult(np.nan, np.nan)
- alldata = np.concatenate(samples)
- ranked = rankdata(alldata)
- ties = tiecorrect(ranked)
- if ties == 0:
- raise ValueError('All numbers are identical in kruskal')
- # Compute sum^2/n for each group and sum
- j = np.insert(np.cumsum(n), 0, 0)
- ssbn = 0
- for i in range(num_groups):
- ssbn += _square_of_sums(ranked[j[i]:j[i+1]]) / n[i]
- totaln = np.sum(n, dtype=float)
- h = 12.0 / (totaln * (totaln + 1)) * ssbn - 3 * (totaln + 1)
- df = num_groups - 1
- h /= ties
- return KruskalResult(h, distributions.chi2.sf(h, df))
- FriedmanchisquareResult = namedtuple('FriedmanchisquareResult',
- ('statistic', 'pvalue'))
- def friedmanchisquare(*samples):
- """Compute the Friedman test for repeated samples.
- The Friedman test tests the null hypothesis that repeated samples of
- the same individuals have the same distribution. It is often used
- to test for consistency among samples obtained in different ways.
- For example, if two sampling techniques are used on the same set of
- individuals, the Friedman test can be used to determine if the two
- sampling techniques are consistent.
- Parameters
- ----------
- sample1, sample2, sample3... : array_like
- Arrays of observations. All of the arrays must have the same number
- of elements. At least three samples must be given.
- Returns
- -------
- statistic : float
- The test statistic, correcting for ties.
- pvalue : float
- The associated p-value assuming that the test statistic has a chi
- squared distribution.
- Notes
- -----
- Due to the assumption that the test statistic has a chi squared
- distribution, the p-value is only reliable for n > 10 and more than
- 6 repeated samples.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Friedman_test
- """
- k = len(samples)
- if k < 3:
- raise ValueError('At least 3 sets of samples must be given '
- 'for Friedman test, got {}.'.format(k))
- n = len(samples[0])
- for i in range(1, k):
- if len(samples[i]) != n:
- raise ValueError('Unequal N in friedmanchisquare. Aborting.')
- # Rank data
- data = np.vstack(samples).T
- data = data.astype(float)
- for i in range(len(data)):
- data[i] = rankdata(data[i])
- # Handle ties
- ties = 0
- for d in data:
- replist, repnum = find_repeats(array(d))
- for t in repnum:
- ties += t * (t*t - 1)
- c = 1 - ties / (k*(k*k - 1)*n)
- ssbn = np.sum(data.sum(axis=0)**2)
- chisq = (12.0 / (k*n*(k+1)) * ssbn - 3*n*(k+1)) / c
- return FriedmanchisquareResult(chisq, distributions.chi2.sf(chisq, k - 1))
- BrunnerMunzelResult = namedtuple('BrunnerMunzelResult',
- ('statistic', 'pvalue'))
- def brunnermunzel(x, y, alternative="two-sided", distribution="t",
- nan_policy='propagate'):
- """Compute the Brunner-Munzel test on samples x and y.
- The Brunner-Munzel test is a nonparametric test of the null hypothesis that
- when values are taken one by one from each group, the probabilities of
- getting large values in both groups are equal.
- Unlike the Wilcoxon-Mann-Whitney's U test, this does not require the
- assumption of equivariance of two groups. Note that this does not assume
- the distributions are same. This test works on two independent samples,
- which may have different sizes.
- Parameters
- ----------
- x, y : array_like
- Array of samples, should be one-dimensional.
- alternative : {'two-sided', 'less', 'greater'}, optional
- Defines the alternative hypothesis.
- The following options are available (default is 'two-sided'):
- * 'two-sided'
- * 'less': one-sided
- * 'greater': one-sided
- distribution : {'t', 'normal'}, optional
- Defines how to get the p-value.
- The following options are available (default is 't'):
- * 't': get the p-value by t-distribution
- * 'normal': get the p-value by standard normal distribution.
- nan_policy : {'propagate', 'raise', 'omit'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': returns nan
- * 'raise': throws an error
- * 'omit': performs the calculations ignoring nan values
- Returns
- -------
- statistic : float
- The Brunner-Munzer W statistic.
- pvalue : float
- p-value assuming an t distribution. One-sided or
- two-sided, depending on the choice of `alternative` and `distribution`.
- See Also
- --------
- mannwhitneyu : Mann-Whitney rank test on two samples.
- Notes
- -----
- Brunner and Munzel recommended to estimate the p-value by t-distribution
- when the size of data is 50 or less. If the size is lower than 10, it would
- be better to use permuted Brunner Munzel test (see [2]_).
- References
- ----------
- .. [1] Brunner, E. and Munzel, U. "The nonparametric Benhrens-Fisher
- problem: Asymptotic theory and a small-sample approximation".
- Biometrical Journal. Vol. 42(2000): 17-25.
- .. [2] Neubert, K. and Brunner, E. "A studentized permutation test for the
- non-parametric Behrens-Fisher problem". Computational Statistics and
- Data Analysis. Vol. 51(2007): 5192-5204.
- Examples
- --------
- >>> from scipy import stats
- >>> x1 = [1,2,1,1,1,1,1,1,1,1,2,4,1,1]
- >>> x2 = [3,3,4,3,1,2,3,1,1,5,4]
- >>> w, p_value = stats.brunnermunzel(x1, x2)
- >>> w
- 3.1374674823029505
- >>> p_value
- 0.0057862086661515377
- """
- x = np.asarray(x)
- y = np.asarray(y)
- # check both x and y
- cnx, npx = _contains_nan(x, nan_policy)
- cny, npy = _contains_nan(y, nan_policy)
- contains_nan = cnx or cny
- if npx == "omit" or npy == "omit":
- nan_policy = "omit"
- if contains_nan and nan_policy == "propagate":
- return BrunnerMunzelResult(np.nan, np.nan)
- elif contains_nan and nan_policy == "omit":
- x = ma.masked_invalid(x)
- y = ma.masked_invalid(y)
- return mstats_basic.brunnermunzel(x, y, alternative, distribution)
- nx = len(x)
- ny = len(y)
- if nx == 0 or ny == 0:
- return BrunnerMunzelResult(np.nan, np.nan)
- rankc = rankdata(np.concatenate((x, y)))
- rankcx = rankc[0:nx]
- rankcy = rankc[nx:nx+ny]
- rankcx_mean = np.mean(rankcx)
- rankcy_mean = np.mean(rankcy)
- rankx = rankdata(x)
- ranky = rankdata(y)
- rankx_mean = np.mean(rankx)
- ranky_mean = np.mean(ranky)
- Sx = np.sum(np.power(rankcx - rankx - rankcx_mean + rankx_mean, 2.0))
- Sx /= nx - 1
- Sy = np.sum(np.power(rankcy - ranky - rankcy_mean + ranky_mean, 2.0))
- Sy /= ny - 1
- wbfn = nx * ny * (rankcy_mean - rankcx_mean)
- wbfn /= (nx + ny) * np.sqrt(nx * Sx + ny * Sy)
- if distribution == "t":
- df_numer = np.power(nx * Sx + ny * Sy, 2.0)
- df_denom = np.power(nx * Sx, 2.0) / (nx - 1)
- df_denom += np.power(ny * Sy, 2.0) / (ny - 1)
- df = df_numer / df_denom
- if (df_numer == 0) and (df_denom == 0):
- message = ("p-value cannot be estimated with `distribution='t' "
- "because degrees of freedom parameter is undefined "
- "(0/0). Try using `distribution='normal'")
- warnings.warn(message, RuntimeWarning)
- p = distributions.t.cdf(wbfn, df)
- elif distribution == "normal":
- p = distributions.norm.cdf(wbfn)
- else:
- raise ValueError(
- "distribution should be 't' or 'normal'")
- if alternative == "greater":
- pass
- elif alternative == "less":
- p = 1 - p
- elif alternative == "two-sided":
- p = 2 * np.min([p, 1-p])
- else:
- raise ValueError(
- "alternative should be 'less', 'greater' or 'two-sided'")
- return BrunnerMunzelResult(wbfn, p)
- def combine_pvalues(pvalues, method='fisher', weights=None):
- """
- Combine p-values from independent tests that bear upon the same hypothesis.
- These methods are intended only for combining p-values from hypothesis
- tests based upon continuous distributions.
- Each method assumes that under the null hypothesis, the p-values are
- sampled independently and uniformly from the interval [0, 1]. A test
- statistic (different for each method) is computed and a combined
- p-value is calculated based upon the distribution of this test statistic
- under the null hypothesis.
- Parameters
- ----------
- pvalues : array_like, 1-D
- Array of p-values assumed to come from independent tests based on
- continuous distributions.
- method : {'fisher', 'pearson', 'tippett', 'stouffer', 'mudholkar_george'}
- Name of method to use to combine p-values.
- The available methods are (see Notes for details):
- * 'fisher': Fisher's method (Fisher's combined probability test)
- * 'pearson': Pearson's method
- * 'mudholkar_george': Mudholkar's and George's method
- * 'tippett': Tippett's method
- * 'stouffer': Stouffer's Z-score method
- weights : array_like, 1-D, optional
- Optional array of weights used only for Stouffer's Z-score method.
- Returns
- -------
- res : SignificanceResult
- An object containing attributes:
- statistic : float
- The statistic calculated by the specified method.
- pvalue : float
- The combined p-value.
- Notes
- -----
- If this function is applied to tests with a discrete statistics such as
- any rank test or contingency-table test, it will yield systematically
- wrong results, e.g. Fisher's method will systematically overestimate the
- p-value [1]_. This problem becomes less severe for large sample sizes
- when the discrete distributions become approximately continuous.
- The differences between the methods can be best illustrated by their
- statistics and what aspects of a combination of p-values they emphasise
- when considering significance [2]_. For example, methods emphasising large
- p-values are more sensitive to strong false and true negatives; conversely
- methods focussing on small p-values are sensitive to positives.
- * The statistics of Fisher's method (also known as Fisher's combined
- probability test) [3]_ is :math:`-2\\sum_i \\log(p_i)`, which is
- equivalent (as a test statistics) to the product of individual p-values:
- :math:`\\prod_i p_i`. Under the null hypothesis, this statistics follows
- a :math:`\\chi^2` distribution. This method emphasises small p-values.
- * Pearson's method uses :math:`-2\\sum_i\\log(1-p_i)`, which is equivalent
- to :math:`\\prod_i \\frac{1}{1-p_i}` [2]_.
- It thus emphasises large p-values.
- * Mudholkar and George compromise between Fisher's and Pearson's method by
- averaging their statistics [4]_. Their method emphasises extreme
- p-values, both close to 1 and 0.
- * Stouffer's method [5]_ uses Z-scores and the statistic:
- :math:`\\sum_i \\Phi^{-1} (p_i)`, where :math:`\\Phi` is the CDF of the
- standard normal distribution. The advantage of this method is that it is
- straightforward to introduce weights, which can make Stouffer's method
- more powerful than Fisher's method when the p-values are from studies
- of different size [6]_ [7]_.
- * Tippett's method uses the smallest p-value as a statistic.
- (Mind that this minimum is not the combined p-value.)
- Fisher's method may be extended to combine p-values from dependent tests
- [8]_. Extensions such as Brown's method and Kost's method are not currently
- implemented.
- .. versionadded:: 0.15.0
- References
- ----------
- .. [1] Kincaid, W. M., "The Combination of Tests Based on Discrete
- Distributions." Journal of the American Statistical Association 57,
- no. 297 (1962), 10-19.
- .. [2] Heard, N. and Rubin-Delanchey, P. "Choosing between methods of
- combining p-values." Biometrika 105.1 (2018): 239-246.
- .. [3] https://en.wikipedia.org/wiki/Fisher%27s_method
- .. [4] George, E. O., and G. S. Mudholkar. "On the convolution of logistic
- random variables." Metrika 30.1 (1983): 1-13.
- .. [5] https://en.wikipedia.org/wiki/Fisher%27s_method#Relation_to_Stouffer.27s_Z-score_method
- .. [6] Whitlock, M. C. "Combining probability from independent tests: the
- weighted Z-method is superior to Fisher's approach." Journal of
- Evolutionary Biology 18, no. 5 (2005): 1368-1373.
- .. [7] Zaykin, Dmitri V. "Optimally weighted Z-test is a powerful method
- for combining probabilities in meta-analysis." Journal of
- Evolutionary Biology 24, no. 8 (2011): 1836-1841.
- .. [8] https://en.wikipedia.org/wiki/Extensions_of_Fisher%27s_method
- """
- pvalues = np.asarray(pvalues)
- if pvalues.ndim != 1:
- raise ValueError("pvalues is not 1-D")
- if method == 'fisher':
- statistic = -2 * np.sum(np.log(pvalues))
- pval = distributions.chi2.sf(statistic, 2 * len(pvalues))
- elif method == 'pearson':
- statistic = 2 * np.sum(np.log1p(-pvalues))
- pval = distributions.chi2.cdf(-statistic, 2 * len(pvalues))
- elif method == 'mudholkar_george':
- normalizing_factor = np.sqrt(3/len(pvalues))/np.pi
- statistic = -np.sum(np.log(pvalues)) + np.sum(np.log1p(-pvalues))
- nu = 5 * len(pvalues) + 4
- approx_factor = np.sqrt(nu / (nu - 2))
- pval = distributions.t.sf(statistic * normalizing_factor
- * approx_factor, nu)
- elif method == 'tippett':
- statistic = np.min(pvalues)
- pval = distributions.beta.cdf(statistic, 1, len(pvalues))
- elif method == 'stouffer':
- if weights is None:
- weights = np.ones_like(pvalues)
- elif len(weights) != len(pvalues):
- raise ValueError("pvalues and weights must be of the same size.")
- weights = np.asarray(weights)
- if weights.ndim != 1:
- raise ValueError("weights is not 1-D")
- Zi = distributions.norm.isf(pvalues)
- statistic = np.dot(weights, Zi) / np.linalg.norm(weights)
- pval = distributions.norm.sf(statistic)
- else:
- raise ValueError(
- f"Invalid method {method!r}. Valid methods are 'fisher', "
- "'pearson', 'mudholkar_george', 'tippett', and 'stouffer'"
- )
- return SignificanceResult(statistic, pval)
- #####################################
- # STATISTICAL DISTANCES #
- #####################################
- def wasserstein_distance(u_values, v_values, u_weights=None, v_weights=None):
- r"""
- Compute the first Wasserstein distance between two 1D distributions.
- This distance is also known as the earth mover's distance, since it can be
- seen as the minimum amount of "work" required to transform :math:`u` into
- :math:`v`, where "work" is measured as the amount of distribution weight
- that must be moved, multiplied by the distance it has to be moved.
- .. versionadded:: 1.0.0
- Parameters
- ----------
- u_values, v_values : array_like
- Values observed in the (empirical) distribution.
- u_weights, v_weights : array_like, optional
- Weight for each value. If unspecified, each value is assigned the same
- weight.
- `u_weights` (resp. `v_weights`) must have the same length as
- `u_values` (resp. `v_values`). If the weight sum differs from 1, it
- must still be positive and finite so that the weights can be normalized
- to sum to 1.
- Returns
- -------
- distance : float
- The computed distance between the distributions.
- Notes
- -----
- The first Wasserstein distance between the distributions :math:`u` and
- :math:`v` is:
- .. math::
- l_1 (u, v) = \inf_{\pi \in \Gamma (u, v)} \int_{\mathbb{R} \times
- \mathbb{R}} |x-y| \mathrm{d} \pi (x, y)
- where :math:`\Gamma (u, v)` is the set of (probability) distributions on
- :math:`\mathbb{R} \times \mathbb{R}` whose marginals are :math:`u` and
- :math:`v` on the first and second factors respectively.
- If :math:`U` and :math:`V` are the respective CDFs of :math:`u` and
- :math:`v`, this distance also equals to:
- .. math::
- l_1(u, v) = \int_{-\infty}^{+\infty} |U-V|
- See [2]_ for a proof of the equivalence of both definitions.
- The input distributions can be empirical, therefore coming from samples
- whose values are effectively inputs of the function, or they can be seen as
- generalized functions, in which case they are weighted sums of Dirac delta
- functions located at the specified values.
- References
- ----------
- .. [1] "Wasserstein metric", https://en.wikipedia.org/wiki/Wasserstein_metric
- .. [2] Ramdas, Garcia, Cuturi "On Wasserstein Two Sample Testing and Related
- Families of Nonparametric Tests" (2015). :arXiv:`1509.02237`.
- Examples
- --------
- >>> from scipy.stats import wasserstein_distance
- >>> wasserstein_distance([0, 1, 3], [5, 6, 8])
- 5.0
- >>> wasserstein_distance([0, 1], [0, 1], [3, 1], [2, 2])
- 0.25
- >>> wasserstein_distance([3.4, 3.9, 7.5, 7.8], [4.5, 1.4],
- ... [1.4, 0.9, 3.1, 7.2], [3.2, 3.5])
- 4.0781331438047861
- """
- return _cdf_distance(1, u_values, v_values, u_weights, v_weights)
- def energy_distance(u_values, v_values, u_weights=None, v_weights=None):
- r"""Compute the energy distance between two 1D distributions.
- .. versionadded:: 1.0.0
- Parameters
- ----------
- u_values, v_values : array_like
- Values observed in the (empirical) distribution.
- u_weights, v_weights : array_like, optional
- Weight for each value. If unspecified, each value is assigned the same
- weight.
- `u_weights` (resp. `v_weights`) must have the same length as
- `u_values` (resp. `v_values`). If the weight sum differs from 1, it
- must still be positive and finite so that the weights can be normalized
- to sum to 1.
- Returns
- -------
- distance : float
- The computed distance between the distributions.
- Notes
- -----
- The energy distance between two distributions :math:`u` and :math:`v`, whose
- respective CDFs are :math:`U` and :math:`V`, equals to:
- .. math::
- D(u, v) = \left( 2\mathbb E|X - Y| - \mathbb E|X - X'| -
- \mathbb E|Y - Y'| \right)^{1/2}
- where :math:`X` and :math:`X'` (resp. :math:`Y` and :math:`Y'`) are
- independent random variables whose probability distribution is :math:`u`
- (resp. :math:`v`).
- Sometimes the square of this quantity is referred to as the "energy
- distance" (e.g. in [2]_, [4]_), but as noted in [1]_ and [3]_, only the
- definition above satisfies the axioms of a distance function (metric).
- As shown in [2]_, for one-dimensional real-valued variables, the energy
- distance is linked to the non-distribution-free version of the Cramér-von
- Mises distance:
- .. math::
- D(u, v) = \sqrt{2} l_2(u, v) = \left( 2 \int_{-\infty}^{+\infty} (U-V)^2
- \right)^{1/2}
- Note that the common Cramér-von Mises criterion uses the distribution-free
- version of the distance. See [2]_ (section 2), for more details about both
- versions of the distance.
- The input distributions can be empirical, therefore coming from samples
- whose values are effectively inputs of the function, or they can be seen as
- generalized functions, in which case they are weighted sums of Dirac delta
- functions located at the specified values.
- References
- ----------
- .. [1] Rizzo, Szekely "Energy distance." Wiley Interdisciplinary Reviews:
- Computational Statistics, 8(1):27-38 (2015).
- .. [2] Szekely "E-statistics: The energy of statistical samples." Bowling
- Green State University, Department of Mathematics and Statistics,
- Technical Report 02-16 (2002).
- .. [3] "Energy distance", https://en.wikipedia.org/wiki/Energy_distance
- .. [4] Bellemare, Danihelka, Dabney, Mohamed, Lakshminarayanan, Hoyer,
- Munos "The Cramer Distance as a Solution to Biased Wasserstein
- Gradients" (2017). :arXiv:`1705.10743`.
- Examples
- --------
- >>> from scipy.stats import energy_distance
- >>> energy_distance([0], [2])
- 2.0000000000000004
- >>> energy_distance([0, 8], [0, 8], [3, 1], [2, 2])
- 1.0000000000000002
- >>> energy_distance([0.7, 7.4, 2.4, 6.8], [1.4, 8. ],
- ... [2.1, 4.2, 7.4, 8. ], [7.6, 8.8])
- 0.88003340976158217
- """
- return np.sqrt(2) * _cdf_distance(2, u_values, v_values,
- u_weights, v_weights)
- def _cdf_distance(p, u_values, v_values, u_weights=None, v_weights=None):
- r"""
- Compute, between two one-dimensional distributions :math:`u` and
- :math:`v`, whose respective CDFs are :math:`U` and :math:`V`, the
- statistical distance that is defined as:
- .. math::
- l_p(u, v) = \left( \int_{-\infty}^{+\infty} |U-V|^p \right)^{1/p}
- p is a positive parameter; p = 1 gives the Wasserstein distance, p = 2
- gives the energy distance.
- Parameters
- ----------
- u_values, v_values : array_like
- Values observed in the (empirical) distribution.
- u_weights, v_weights : array_like, optional
- Weight for each value. If unspecified, each value is assigned the same
- weight.
- `u_weights` (resp. `v_weights`) must have the same length as
- `u_values` (resp. `v_values`). If the weight sum differs from 1, it
- must still be positive and finite so that the weights can be normalized
- to sum to 1.
- Returns
- -------
- distance : float
- The computed distance between the distributions.
- Notes
- -----
- The input distributions can be empirical, therefore coming from samples
- whose values are effectively inputs of the function, or they can be seen as
- generalized functions, in which case they are weighted sums of Dirac delta
- functions located at the specified values.
- References
- ----------
- .. [1] Bellemare, Danihelka, Dabney, Mohamed, Lakshminarayanan, Hoyer,
- Munos "The Cramer Distance as a Solution to Biased Wasserstein
- Gradients" (2017). :arXiv:`1705.10743`.
- """
- u_values, u_weights = _validate_distribution(u_values, u_weights)
- v_values, v_weights = _validate_distribution(v_values, v_weights)
- u_sorter = np.argsort(u_values)
- v_sorter = np.argsort(v_values)
- all_values = np.concatenate((u_values, v_values))
- all_values.sort(kind='mergesort')
- # Compute the differences between pairs of successive values of u and v.
- deltas = np.diff(all_values)
- # Get the respective positions of the values of u and v among the values of
- # both distributions.
- u_cdf_indices = u_values[u_sorter].searchsorted(all_values[:-1], 'right')
- v_cdf_indices = v_values[v_sorter].searchsorted(all_values[:-1], 'right')
- # Calculate the CDFs of u and v using their weights, if specified.
- if u_weights is None:
- u_cdf = u_cdf_indices / u_values.size
- else:
- u_sorted_cumweights = np.concatenate(([0],
- np.cumsum(u_weights[u_sorter])))
- u_cdf = u_sorted_cumweights[u_cdf_indices] / u_sorted_cumweights[-1]
- if v_weights is None:
- v_cdf = v_cdf_indices / v_values.size
- else:
- v_sorted_cumweights = np.concatenate(([0],
- np.cumsum(v_weights[v_sorter])))
- v_cdf = v_sorted_cumweights[v_cdf_indices] / v_sorted_cumweights[-1]
- # Compute the value of the integral based on the CDFs.
- # If p = 1 or p = 2, we avoid using np.power, which introduces an overhead
- # of about 15%.
- if p == 1:
- return np.sum(np.multiply(np.abs(u_cdf - v_cdf), deltas))
- if p == 2:
- return np.sqrt(np.sum(np.multiply(np.square(u_cdf - v_cdf), deltas)))
- return np.power(np.sum(np.multiply(np.power(np.abs(u_cdf - v_cdf), p),
- deltas)), 1/p)
- def _validate_distribution(values, weights):
- """
- Validate the values and weights from a distribution input of `cdf_distance`
- and return them as ndarray objects.
- Parameters
- ----------
- values : array_like
- Values observed in the (empirical) distribution.
- weights : array_like
- Weight for each value.
- Returns
- -------
- values : ndarray
- Values as ndarray.
- weights : ndarray
- Weights as ndarray.
- """
- # Validate the value array.
- values = np.asarray(values, dtype=float)
- if len(values) == 0:
- raise ValueError("Distribution can't be empty.")
- # Validate the weight array, if specified.
- if weights is not None:
- weights = np.asarray(weights, dtype=float)
- if len(weights) != len(values):
- raise ValueError('Value and weight array-likes for the same '
- 'empirical distribution must be of the same size.')
- if np.any(weights < 0):
- raise ValueError('All weights must be non-negative.')
- if not 0 < np.sum(weights) < np.inf:
- raise ValueError('Weight array-like sum must be positive and '
- 'finite. Set as None for an equal distribution of '
- 'weight.')
- return values, weights
- return values, None
- #####################################
- # SUPPORT FUNCTIONS #
- #####################################
- RepeatedResults = namedtuple('RepeatedResults', ('values', 'counts'))
- def find_repeats(arr):
- """Find repeats and repeat counts.
- Parameters
- ----------
- arr : array_like
- Input array. This is cast to float64.
- Returns
- -------
- values : ndarray
- The unique values from the (flattened) input that are repeated.
- counts : ndarray
- Number of times the corresponding 'value' is repeated.
- Notes
- -----
- In numpy >= 1.9 `numpy.unique` provides similar functionality. The main
- difference is that `find_repeats` only returns repeated values.
- Examples
- --------
- >>> from scipy import stats
- >>> stats.find_repeats([2, 1, 2, 3, 2, 2, 5])
- RepeatedResults(values=array([2.]), counts=array([4]))
- >>> stats.find_repeats([[10, 20, 1, 2], [5, 5, 4, 4]])
- RepeatedResults(values=array([4., 5.]), counts=array([2, 2]))
- """
- # Note: always copies.
- return RepeatedResults(*_find_repeats(np.array(arr, dtype=np.float64)))
- def _sum_of_squares(a, axis=0):
- """Square each element of the input array, and return the sum(s) of that.
- Parameters
- ----------
- a : array_like
- Input array.
- axis : int or None, optional
- Axis along which to calculate. Default is 0. If None, compute over
- the whole array `a`.
- Returns
- -------
- sum_of_squares : ndarray
- The sum along the given axis for (a**2).
- See Also
- --------
- _square_of_sums : The square(s) of the sum(s) (the opposite of
- `_sum_of_squares`).
- """
- a, axis = _chk_asarray(a, axis)
- return np.sum(a*a, axis)
- def _square_of_sums(a, axis=0):
- """Sum elements of the input array, and return the square(s) of that sum.
- Parameters
- ----------
- a : array_like
- Input array.
- axis : int or None, optional
- Axis along which to calculate. Default is 0. If None, compute over
- the whole array `a`.
- Returns
- -------
- square_of_sums : float or ndarray
- The square of the sum over `axis`.
- See Also
- --------
- _sum_of_squares : The sum of squares (the opposite of `square_of_sums`).
- """
- a, axis = _chk_asarray(a, axis)
- s = np.sum(a, axis)
- if not np.isscalar(s):
- return s.astype(float) * s
- else:
- return float(s) * s
- def rankdata(a, method='average', *, axis=None, nan_policy='propagate'):
- """Assign ranks to data, dealing with ties appropriately.
- By default (``axis=None``), the data array is first flattened, and a flat
- array of ranks is returned. Separately reshape the rank array to the
- shape of the data array if desired (see Examples).
- Ranks begin at 1. The `method` argument controls how ranks are assigned
- to equal values. See [1]_ for further discussion of ranking methods.
- Parameters
- ----------
- a : array_like
- The array of values to be ranked.
- method : {'average', 'min', 'max', 'dense', 'ordinal'}, optional
- The method used to assign ranks to tied elements.
- The following methods are available (default is 'average'):
- * 'average': The average of the ranks that would have been assigned to
- all the tied values is assigned to each value.
- * 'min': The minimum of the ranks that would have been assigned to all
- the tied values is assigned to each value. (This is also
- referred to as "competition" ranking.)
- * 'max': The maximum of the ranks that would have been assigned to all
- the tied values is assigned to each value.
- * 'dense': Like 'min', but the rank of the next highest element is
- assigned the rank immediately after those assigned to the tied
- elements.
- * 'ordinal': All values are given a distinct rank, corresponding to
- the order that the values occur in `a`.
- axis : {None, int}, optional
- Axis along which to perform the ranking. If ``None``, the data array
- is first flattened.
- nan_policy : {'propagate', 'omit', 'raise'}, optional
- Defines how to handle when input contains nan.
- The following options are available (default is 'propagate'):
- * 'propagate': propagates nans through the rank calculation
- * 'omit': performs the calculations ignoring nan values
- * 'raise': raises an error
- .. note::
- When `nan_policy` is 'propagate', the output is an array of *all*
- nans because ranks relative to nans in the input are undefined.
- When `nan_policy` is 'omit', nans in `a` are ignored when ranking
- the other values, and the corresponding locations of the output
- are nan.
- .. versionadded:: 1.10
- Returns
- -------
- ranks : ndarray
- An array of size equal to the size of `a`, containing rank
- scores.
- References
- ----------
- .. [1] "Ranking", https://en.wikipedia.org/wiki/Ranking
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.stats import rankdata
- >>> rankdata([0, 2, 3, 2])
- array([ 1. , 2.5, 4. , 2.5])
- >>> rankdata([0, 2, 3, 2], method='min')
- array([ 1, 2, 4, 2])
- >>> rankdata([0, 2, 3, 2], method='max')
- array([ 1, 3, 4, 3])
- >>> rankdata([0, 2, 3, 2], method='dense')
- array([ 1, 2, 3, 2])
- >>> rankdata([0, 2, 3, 2], method='ordinal')
- array([ 1, 2, 4, 3])
- >>> rankdata([[0, 2], [3, 2]]).reshape(2,2)
- array([[1. , 2.5],
- [4. , 2.5]])
- >>> rankdata([[0, 2, 2], [3, 2, 5]], axis=1)
- array([[1. , 2.5, 2.5],
- [2. , 1. , 3. ]])
- >>> rankdata([0, 2, 3, np.nan, -2, np.nan], nan_policy="propagate")
- array([nan, nan, nan, nan, nan, nan])
- >>> rankdata([0, 2, 3, np.nan, -2, np.nan], nan_policy="omit")
- array([ 2., 3., 4., nan, 1., nan])
- """
- if method not in ('average', 'min', 'max', 'dense', 'ordinal'):
- raise ValueError('unknown method "{0}"'.format(method))
- a = np.asarray(a)
- if axis is not None:
- if a.size == 0:
- # The return values of `normalize_axis_index` are ignored. The
- # call validates `axis`, even though we won't use it.
- # use scipy._lib._util._normalize_axis_index when available
- np.core.multiarray.normalize_axis_index(axis, a.ndim)
- dt = np.float64 if method == 'average' else np.int_
- return np.empty(a.shape, dtype=dt)
- return np.apply_along_axis(rankdata, axis, a, method,
- nan_policy=nan_policy)
- arr = np.ravel(a)
- contains_nan, nan_policy = _contains_nan(arr, nan_policy)
- nan_indexes = None
- if contains_nan:
- if nan_policy == 'omit':
- nan_indexes = np.isnan(arr)
- if nan_policy == 'propagate':
- return np.full_like(arr, np.nan)
- algo = 'mergesort' if method == 'ordinal' else 'quicksort'
- sorter = np.argsort(arr, kind=algo)
- inv = np.empty(sorter.size, dtype=np.intp)
- inv[sorter] = np.arange(sorter.size, dtype=np.intp)
- if method == 'ordinal':
- result = inv + 1
- arr = arr[sorter]
- obs = np.r_[True, arr[1:] != arr[:-1]]
- dense = obs.cumsum()[inv]
- if method == 'dense':
- result = dense
- # cumulative counts of each unique value
- count = np.r_[np.nonzero(obs)[0], len(obs)]
- if method == 'max':
- result = count[dense]
- if method == 'min':
- result = count[dense - 1] + 1
- if method == 'average':
- result = .5 * (count[dense] + count[dense - 1] + 1)
- if nan_indexes is not None:
- result = result.astype('float64')
- result[nan_indexes] = np.nan
- return result
- def expectile(a, alpha=0.5, *, weights=None):
- r"""Compute the expectile at the specified level.
- Expectiles are a generalization of the expectation in the same way as
- quantiles are a generalization of the median. The expectile at level
- `alpha = 0.5` is the mean (average). See Notes for more details.
- Parameters
- ----------
- a : array_like
- Array containing numbers whose expectile is desired.
- alpha : float, default: 0.5
- The level of the expectile; e.g., `alpha=0.5` gives the mean.
- weights : array_like, optional
- An array of weights associated with the values in `a`.
- The `weights` must be broadcastable to the same shape as `a`.
- Default is None, which gives each value a weight of 1.0.
- An integer valued weight element acts like repeating the corresponding
- observation in `a` that many times. See Notes for more details.
- Returns
- -------
- expectile : ndarray
- The empirical expectile at level `alpha`.
- See Also
- --------
- numpy.mean : Arithmetic average
- numpy.quantile : Quantile
- Notes
- -----
- In general, the expectile at level :math:`\alpha` of a random variable
- :math:`X` with cumulative distribution function (CDF) :math:`F` is given
- by the unique solution :math:`t` of:
- .. math::
- \alpha E((X - t)_+) = (1 - \alpha) E((t - X)_+) \,.
- Here, :math:`(x)_+ = \max(0, x)` is the positive part of :math:`x`.
- This equation can be equivalently written as:
- .. math::
- \alpha \int_t^\infty (x - t)\mathrm{d}F(x)
- = (1 - \alpha) \int_{-\infty}^t (t - x)\mathrm{d}F(x) \,.
- The empirical expectile at level :math:`\alpha` (`alpha`) of a sample
- :math:`a_i` (the array `a`) is defined by plugging in the empirical CDF of
- `a`. Given sample or case weights :math:`w` (the array `weights`), it
- reads :math:`F_a(x) = \frac{1}{\sum_i a_i} \sum_i w_i 1_{a_i \leq x}`
- with indicator function :math:`1_{A}`. This leads to the definition of the
- empirical expectile at level `alpha` as the unique solution :math:`t` of:
- .. math::
- \alpha \sum_{i=1}^n w_i (a_i - t)_+ =
- (1 - \alpha) \sum_{i=1}^n w_i (t - a_i)_+ \,.
- For :math:`\alpha=0.5`, this simplifies to the weighted average.
- Furthermore, the larger :math:`\alpha`, the larger the value of the
- expectile.
- As a final remark, the expectile at level :math:`\alpha` can also be
- written as a minimization problem. One often used choice is
- .. math::
- \operatorname{argmin}_t
- E(\lvert 1_{t\geq X} - \alpha\rvert(t - X)^2) \,.
- References
- ----------
- .. [1] W. K. Newey and J. L. Powell (1987), "Asymmetric Least Squares
- Estimation and Testing," Econometrica, 55, 819-847.
- .. [2] T. Gneiting (2009). "Making and Evaluating Point Forecasts,"
- Journal of the American Statistical Association, 106, 746 - 762.
- :doi:`10.48550/arXiv.0912.0902`
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.stats import expectile
- >>> a = [1, 4, 2, -1]
- >>> expectile(a, alpha=0.5) == np.mean(a)
- True
- >>> expectile(a, alpha=0.2)
- 0.42857142857142855
- >>> expectile(a, alpha=0.8)
- 2.5714285714285716
- >>> weights = [1, 3, 1, 1]
- """
- if alpha < 0 or alpha > 1:
- raise ValueError(
- "The expectile level alpha must be in the range [0, 1]."
- )
- a = np.asarray(a)
- if weights is not None:
- weights = np.broadcast_to(weights, a.shape)
- # This is the empirical equivalent of Eq. (13) with identification
- # function from Table 9 (omitting a factor of 2) in [2] (their y is our
- # data a, their x is our t)
- def first_order(t):
- return np.average(np.abs((a <= t) - alpha) * (t - a), weights=weights)
- if alpha >= 0.5:
- x0 = np.average(a, weights=weights)
- x1 = np.amax(a)
- else:
- x1 = np.average(a, weights=weights)
- x0 = np.amin(a)
- if x0 == x1:
- # a has a single unique element
- return x0
- # Note that the expectile is the unique solution, so no worries about
- # finding a wrong root.
- res = root_scalar(first_order, x0=x0, x1=x1)
- return res.root
|