123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596 |
- # Compute the two-sided one-sample Kolmogorov-Smirnov Prob(Dn <= d) where:
- # D_n = sup_x{|F_n(x) - F(x)|},
- # F_n(x) is the empirical CDF for a sample of size n {x_i: i=1,...,n},
- # F(x) is the CDF of a probability distribution.
- #
- # Exact methods:
- # Prob(D_n >= d) can be computed via a matrix algorithm of Durbin[1]
- # or a recursion algorithm due to Pomeranz[2].
- # Marsaglia, Tsang & Wang[3] gave a computation-efficient way to perform
- # the Durbin algorithm.
- # D_n >= d <==> D_n+ >= d or D_n- >= d (the one-sided K-S statistics), hence
- # Prob(D_n >= d) = 2*Prob(D_n+ >= d) - Prob(D_n+ >= d and D_n- >= d).
- # For d > 0.5, the latter intersection probability is 0.
- #
- # Approximate methods:
- # For d close to 0.5, ignoring that intersection term may still give a
- # reasonable approximation.
- # Li-Chien[4] and Korolyuk[5] gave an asymptotic formula extending
- # Kolmogorov's initial asymptotic, suitable for large d. (See
- # scipy.special.kolmogorov for that asymptotic)
- # Pelz-Good[6] used the functional equation for Jacobi theta functions to
- # transform the Li-Chien/Korolyuk formula produce a computational formula
- # suitable for small d.
- #
- # Simard and L'Ecuyer[7] provided an algorithm to decide when to use each of
- # the above approaches and it is that which is used here.
- #
- # Other approaches:
- # Carvalho[8] optimizes Durbin's matrix algorithm for large values of d.
- # Moscovich and Nadler[9] use FFTs to compute the convolutions.
- # References:
- # [1] Durbin J (1968).
- # "The Probability that the Sample Distribution Function Lies Between Two
- # Parallel Straight Lines."
- # Annals of Mathematical Statistics, 39, 398-411.
- # [2] Pomeranz J (1974).
- # "Exact Cumulative Distribution of the Kolmogorov-Smirnov Statistic for
- # Small Samples (Algorithm 487)."
- # Communications of the ACM, 17(12), 703-704.
- # [3] Marsaglia G, Tsang WW, Wang J (2003).
- # "Evaluating Kolmogorov's Distribution."
- # Journal of Statistical Software, 8(18), 1-4.
- # [4] LI-CHIEN, C. (1956).
- # "On the exact distribution of the statistics of A. N. Kolmogorov and
- # their asymptotic expansion."
- # Acta Matematica Sinica, 6, 55-81.
- # [5] KOROLYUK, V. S. (1960).
- # "Asymptotic analysis of the distribution of the maximum deviation in
- # the Bernoulli scheme."
- # Theor. Probability Appl., 4, 339-366.
- # [6] Pelz W, Good IJ (1976).
- # "Approximating the Lower Tail-areas of the Kolmogorov-Smirnov One-sample
- # Statistic."
- # Journal of the Royal Statistical Society, Series B, 38(2), 152-156.
- # [7] Simard, R., L'Ecuyer, P. (2011)
- # "Computing the Two-Sided Kolmogorov-Smirnov Distribution",
- # Journal of Statistical Software, Vol 39, 11, 1-18.
- # [8] Carvalho, Luis (2015)
- # "An Improved Evaluation of Kolmogorov's Distribution"
- # Journal of Statistical Software, Code Snippets; Vol 65(3), 1-8.
- # [9] Amit Moscovich, Boaz Nadler (2017)
- # "Fast calculation of boundary crossing probabilities for Poisson
- # processes",
- # Statistics & Probability Letters, Vol 123, 177-182.
- import numpy as np
- import scipy.special
- import scipy.special._ufuncs as scu
- from scipy._lib._finite_differences import _derivative
- _E128 = 128
- _EP128 = np.ldexp(np.longdouble(1), _E128)
- _EM128 = np.ldexp(np.longdouble(1), -_E128)
- _SQRT2PI = np.sqrt(2 * np.pi)
- _LOG_2PI = np.log(2 * np.pi)
- _MIN_LOG = -708
- _SQRT3 = np.sqrt(3)
- _PI_SQUARED = np.pi ** 2
- _PI_FOUR = np.pi ** 4
- _PI_SIX = np.pi ** 6
- # [Lifted from _loggamma.pxd.] If B_m are the Bernoulli numbers,
- # then Stirling coeffs are B_{2j}/(2j)/(2j-1) for j=8,...1.
- _STIRLING_COEFFS = [-2.955065359477124183e-2, 6.4102564102564102564e-3,
- -1.9175269175269175269e-3, 8.4175084175084175084e-4,
- -5.952380952380952381e-4, 7.9365079365079365079e-4,
- -2.7777777777777777778e-3, 8.3333333333333333333e-2]
- def _log_nfactorial_div_n_pow_n(n):
- # Computes n! / n**n
- # = (n-1)! / n**(n-1)
- # Uses Stirling's approximation, but removes n*log(n) up-front to
- # avoid subtractive cancellation.
- # = log(n)/2 - n + log(sqrt(2pi)) + sum B_{2j}/(2j)/(2j-1)/n**(2j-1)
- rn = 1.0/n
- return np.log(n)/2 - n + _LOG_2PI/2 + rn * np.polyval(_STIRLING_COEFFS, rn/n)
- def _clip_prob(p):
- """clips a probability to range 0<=p<=1."""
- return np.clip(p, 0.0, 1.0)
- def _select_and_clip_prob(cdfprob, sfprob, cdf=True):
- """Selects either the CDF or SF, and then clips to range 0<=p<=1."""
- p = np.where(cdf, cdfprob, sfprob)
- return _clip_prob(p)
- def _kolmogn_DMTW(n, d, cdf=True):
- r"""Computes the Kolmogorov CDF: Pr(D_n <= d) using the MTW approach to
- the Durbin matrix algorithm.
- Durbin (1968); Marsaglia, Tsang, Wang (2003). [1], [3].
- """
- # Write d = (k-h)/n, where k is positive integer and 0 <= h < 1
- # Generate initial matrix H of size m*m where m=(2k-1)
- # Compute k-th row of (n!/n^n) * H^n, scaling intermediate results.
- # Requires memory O(m^2) and computation O(m^2 log(n)).
- # Most suitable for small m.
- if d >= 1.0:
- return _select_and_clip_prob(1.0, 0.0, cdf)
- nd = n * d
- if nd <= 0.5:
- return _select_and_clip_prob(0.0, 1.0, cdf)
- k = int(np.ceil(nd))
- h = k - nd
- m = 2 * k - 1
- H = np.zeros([m, m])
- # Initialize: v is first column (and last row) of H
- # v[j] = (1-h^(j+1)/(j+1)! (except for v[-1])
- # w[j] = 1/(j)!
- # q = k-th row of H (actually i!/n^i*H^i)
- intm = np.arange(1, m + 1)
- v = 1.0 - h ** intm
- w = np.empty(m)
- fac = 1.0
- for j in intm:
- w[j - 1] = fac
- fac /= j # This might underflow. Isn't a problem.
- v[j - 1] *= fac
- tt = max(2 * h - 1.0, 0)**m - 2*h**m
- v[-1] = (1.0 + tt) * fac
- for i in range(1, m):
- H[i - 1:, i] = w[:m - i + 1]
- H[:, 0] = v
- H[-1, :] = np.flip(v, axis=0)
- Hpwr = np.eye(np.shape(H)[0]) # Holds intermediate powers of H
- nn = n
- expnt = 0 # Scaling of Hpwr
- Hexpnt = 0 # Scaling of H
- while nn > 0:
- if nn % 2:
- Hpwr = np.matmul(Hpwr, H)
- expnt += Hexpnt
- H = np.matmul(H, H)
- Hexpnt *= 2
- # Scale as needed.
- if np.abs(H[k - 1, k - 1]) > _EP128:
- H /= _EP128
- Hexpnt += _E128
- nn = nn // 2
- p = Hpwr[k - 1, k - 1]
- # Multiply by n!/n^n
- for i in range(1, n + 1):
- p = i * p / n
- if np.abs(p) < _EM128:
- p *= _EP128
- expnt -= _E128
- # unscale
- if expnt != 0:
- p = np.ldexp(p, expnt)
- return _select_and_clip_prob(p, 1.0-p, cdf)
- def _pomeranz_compute_j1j2(i, n, ll, ceilf, roundf):
- """Compute the endpoints of the interval for row i."""
- if i == 0:
- j1, j2 = -ll - ceilf - 1, ll + ceilf - 1
- else:
- # i + 1 = 2*ip1div2 + ip1mod2
- ip1div2, ip1mod2 = divmod(i + 1, 2)
- if ip1mod2 == 0: # i is odd
- if ip1div2 == n + 1:
- j1, j2 = n - ll - ceilf - 1, n + ll + ceilf - 1
- else:
- j1, j2 = ip1div2 - 1 - ll - roundf - 1, ip1div2 + ll - 1 + ceilf - 1
- else:
- j1, j2 = ip1div2 - 1 - ll - 1, ip1div2 + ll + roundf - 1
- return max(j1 + 2, 0), min(j2, n)
- def _kolmogn_Pomeranz(n, x, cdf=True):
- r"""Computes Pr(D_n <= d) using the Pomeranz recursion algorithm.
- Pomeranz (1974) [2]
- """
- # V is n*(2n+2) matrix.
- # Each row is convolution of the previous row and probabilities from a
- # Poisson distribution.
- # Desired CDF probability is n! V[n-1, 2n+1] (final entry in final row).
- # Only two rows are needed at any given stage:
- # - Call them V0 and V1.
- # - Swap each iteration
- # Only a few (contiguous) entries in each row can be non-zero.
- # - Keep track of start and end (j1 and j2 below)
- # - V0s and V1s track the start in the two rows
- # Scale intermediate results as needed.
- # Only a few different Poisson distributions can occur
- t = n * x
- ll = int(np.floor(t))
- f = 1.0 * (t - ll) # fractional part of t
- g = min(f, 1.0 - f)
- ceilf = (1 if f > 0 else 0)
- roundf = (1 if f > 0.5 else 0)
- npwrs = 2 * (ll + 1) # Maximum number of powers needed in convolutions
- gpower = np.empty(npwrs) # gpower = (g/n)^m/m!
- twogpower = np.empty(npwrs) # twogpower = (2g/n)^m/m!
- onem2gpower = np.empty(npwrs) # onem2gpower = ((1-2g)/n)^m/m!
- # gpower etc are *almost* Poisson probs, just missing normalizing factor.
- gpower[0] = 1.0
- twogpower[0] = 1.0
- onem2gpower[0] = 1.0
- expnt = 0
- g_over_n, two_g_over_n, one_minus_two_g_over_n = g/n, 2*g/n, (1 - 2*g)/n
- for m in range(1, npwrs):
- gpower[m] = gpower[m - 1] * g_over_n / m
- twogpower[m] = twogpower[m - 1] * two_g_over_n / m
- onem2gpower[m] = onem2gpower[m - 1] * one_minus_two_g_over_n / m
- V0 = np.zeros([npwrs])
- V1 = np.zeros([npwrs])
- V1[0] = 1 # first row
- V0s, V1s = 0, 0 # start indices of the two rows
- j1, j2 = _pomeranz_compute_j1j2(0, n, ll, ceilf, roundf)
- for i in range(1, 2 * n + 2):
- # Preserve j1, V1, V1s, V0s from last iteration
- k1 = j1
- V0, V1 = V1, V0
- V0s, V1s = V1s, V0s
- V1.fill(0.0)
- j1, j2 = _pomeranz_compute_j1j2(i, n, ll, ceilf, roundf)
- if i == 1 or i == 2 * n + 1:
- pwrs = gpower
- else:
- pwrs = (twogpower if i % 2 else onem2gpower)
- ln2 = j2 - k1 + 1
- if ln2 > 0:
- conv = np.convolve(V0[k1 - V0s:k1 - V0s + ln2], pwrs[:ln2])
- conv_start = j1 - k1 # First index to use from conv
- conv_len = j2 - j1 + 1 # Number of entries to use from conv
- V1[:conv_len] = conv[conv_start:conv_start + conv_len]
- # Scale to avoid underflow.
- if 0 < np.max(V1) < _EM128:
- V1 *= _EP128
- expnt -= _E128
- V1s = V0s + j1 - k1
- # multiply by n!
- ans = V1[n - V1s]
- for m in range(1, n + 1):
- if np.abs(ans) > _EP128:
- ans *= _EM128
- expnt += _E128
- ans *= m
- # Undo any intermediate scaling
- if expnt != 0:
- ans = np.ldexp(ans, expnt)
- ans = _select_and_clip_prob(ans, 1.0 - ans, cdf)
- return ans
- def _kolmogn_PelzGood(n, x, cdf=True):
- """Computes the Pelz-Good approximation to Prob(Dn <= x) with 0<=x<=1.
- Start with Li-Chien, Korolyuk approximation:
- Prob(Dn <= x) ~ K0(z) + K1(z)/sqrt(n) + K2(z)/n + K3(z)/n**1.5
- where z = x*sqrt(n).
- Transform each K_(z) using Jacobi theta functions into a form suitable
- for small z.
- Pelz-Good (1976). [6]
- """
- if x <= 0.0:
- return _select_and_clip_prob(0.0, 1.0, cdf=cdf)
- if x >= 1.0:
- return _select_and_clip_prob(1.0, 0.0, cdf=cdf)
- z = np.sqrt(n) * x
- zsquared, zthree, zfour, zsix = z**2, z**3, z**4, z**6
- qlog = -_PI_SQUARED / 8 / zsquared
- if qlog < _MIN_LOG: # z ~ 0.041743441416853426
- return _select_and_clip_prob(0.0, 1.0, cdf=cdf)
- q = np.exp(qlog)
- # Coefficients of terms in the sums for K1, K2 and K3
- k1a = -zsquared
- k1b = _PI_SQUARED / 4
- k2a = 6 * zsix + 2 * zfour
- k2b = (2 * zfour - 5 * zsquared) * _PI_SQUARED / 4
- k2c = _PI_FOUR * (1 - 2 * zsquared) / 16
- k3d = _PI_SIX * (5 - 30 * zsquared) / 64
- k3c = _PI_FOUR * (-60 * zsquared + 212 * zfour) / 16
- k3b = _PI_SQUARED * (135 * zfour - 96 * zsix) / 4
- k3a = -30 * zsix - 90 * z**8
- K0to3 = np.zeros(4)
- # Use a Horner scheme to evaluate sum c_i q^(i^2)
- # Reduces to a sum over odd integers.
- maxk = int(np.ceil(16 * z / np.pi))
- for k in range(maxk, 0, -1):
- m = 2 * k - 1
- msquared, mfour, msix = m**2, m**4, m**6
- qpower = np.power(q, 8 * k)
- coeffs = np.array([1.0,
- k1a + k1b*msquared,
- k2a + k2b*msquared + k2c*mfour,
- k3a + k3b*msquared + k3c*mfour + k3d*msix])
- K0to3 *= qpower
- K0to3 += coeffs
- K0to3 *= q
- K0to3 *= _SQRT2PI
- # z**10 > 0 as z > 0.04
- K0to3 /= np.array([z, 6 * zfour, 72 * z**7, 6480 * z**10])
- # Now do the other sum over the other terms, all integers k
- # K_2: (pi^2 k^2) q^(k^2),
- # K_3: (3pi^2 k^2 z^2 - pi^4 k^4)*q^(k^2)
- # Don't expect much subtractive cancellation so use direct calculation
- q = np.exp(-_PI_SQUARED / 2 / zsquared)
- ks = np.arange(maxk, 0, -1)
- ksquared = ks ** 2
- sqrt3z = _SQRT3 * z
- kspi = np.pi * ks
- qpwers = q ** ksquared
- k2extra = np.sum(ksquared * qpwers)
- k2extra *= _PI_SQUARED * _SQRT2PI/(-36 * zthree)
- K0to3[2] += k2extra
- k3extra = np.sum((sqrt3z + kspi) * (sqrt3z - kspi) * ksquared * qpwers)
- k3extra *= _PI_SQUARED * _SQRT2PI/(216 * zsix)
- K0to3[3] += k3extra
- powers_of_n = np.power(n * 1.0, np.arange(len(K0to3)) / 2.0)
- K0to3 /= powers_of_n
- if not cdf:
- K0to3 *= -1
- K0to3[0] += 1
- Ksum = sum(K0to3)
- return Ksum
- def _kolmogn(n, x, cdf=True):
- """Computes the CDF(or SF) for the two-sided Kolmogorov-Smirnov statistic.
- x must be of type float, n of type integer.
- Simard & L'Ecuyer (2011) [7].
- """
- if np.isnan(n):
- return n # Keep the same type of nan
- if int(n) != n or n <= 0:
- return np.nan
- if x >= 1.0:
- return _select_and_clip_prob(1.0, 0.0, cdf=cdf)
- if x <= 0.0:
- return _select_and_clip_prob(0.0, 1.0, cdf=cdf)
- t = n * x
- if t <= 1.0: # Ruben-Gambino: 1/2n <= x <= 1/n
- if t <= 0.5:
- return _select_and_clip_prob(0.0, 1.0, cdf=cdf)
- if n <= 140:
- prob = np.prod(np.arange(1, n+1) * (1.0/n) * (2*t - 1))
- else:
- prob = np.exp(_log_nfactorial_div_n_pow_n(n) + n * np.log(2*t-1))
- return _select_and_clip_prob(prob, 1.0 - prob, cdf=cdf)
- if t >= n - 1: # Ruben-Gambino
- prob = 2 * (1.0 - x)**n
- return _select_and_clip_prob(1 - prob, prob, cdf=cdf)
- if x >= 0.5: # Exact: 2 * smirnov
- prob = 2 * scipy.special.smirnov(n, x)
- return _select_and_clip_prob(1.0 - prob, prob, cdf=cdf)
- nxsquared = t * x
- if n <= 140:
- if nxsquared <= 0.754693:
- prob = _kolmogn_DMTW(n, x, cdf=True)
- return _select_and_clip_prob(prob, 1.0 - prob, cdf=cdf)
- if nxsquared <= 4:
- prob = _kolmogn_Pomeranz(n, x, cdf=True)
- return _select_and_clip_prob(prob, 1.0 - prob, cdf=cdf)
- # Now use Miller approximation of 2*smirnov
- prob = 2 * scipy.special.smirnov(n, x)
- return _select_and_clip_prob(1.0 - prob, prob, cdf=cdf)
- # Split CDF and SF as they have different cutoffs on nxsquared.
- if not cdf:
- if nxsquared >= 370.0:
- return 0.0
- if nxsquared >= 2.2:
- prob = 2 * scipy.special.smirnov(n, x)
- return _clip_prob(prob)
- # Fall through and compute the SF as 1.0-CDF
- if nxsquared >= 18.0:
- cdfprob = 1.0
- elif n <= 100000 and n * x**1.5 <= 1.4:
- cdfprob = _kolmogn_DMTW(n, x, cdf=True)
- else:
- cdfprob = _kolmogn_PelzGood(n, x, cdf=True)
- return _select_and_clip_prob(cdfprob, 1.0 - cdfprob, cdf=cdf)
- def _kolmogn_p(n, x):
- """Computes the PDF for the two-sided Kolmogorov-Smirnov statistic.
- x must be of type float, n of type integer.
- """
- if np.isnan(n):
- return n # Keep the same type of nan
- if int(n) != n or n <= 0:
- return np.nan
- if x >= 1.0 or x <= 0:
- return 0
- t = n * x
- if t <= 1.0:
- # Ruben-Gambino: n!/n^n * (2t-1)^n -> 2 n!/n^n * n^2 * (2t-1)^(n-1)
- if t <= 0.5:
- return 0.0
- if n <= 140:
- prd = np.prod(np.arange(1, n) * (1.0 / n) * (2 * t - 1))
- else:
- prd = np.exp(_log_nfactorial_div_n_pow_n(n) + (n-1) * np.log(2 * t - 1))
- return prd * 2 * n**2
- if t >= n - 1:
- # Ruben-Gambino : 1-2(1-x)**n -> 2n*(1-x)**(n-1)
- return 2 * (1.0 - x) ** (n-1) * n
- if x >= 0.5:
- return 2 * scipy.stats.ksone.pdf(x, n)
- # Just take a small delta.
- # Ideally x +/- delta would stay within [i/n, (i+1)/n] for some integer a.
- # as the CDF is a piecewise degree n polynomial.
- # It has knots at 1/n, 2/n, ... (n-1)/n
- # and is not a C-infinity function at the knots
- delta = x / 2.0**16
- delta = min(delta, x - 1.0/n)
- delta = min(delta, 0.5 - x)
- def _kk(_x):
- return kolmogn(n, _x)
- return _derivative(_kk, x, dx=delta, order=5)
- def _kolmogni(n, p, q):
- """Computes the PPF/ISF of kolmogn.
- n of type integer, n>= 1
- p is the CDF, q the SF, p+q=1
- """
- if np.isnan(n):
- return n # Keep the same type of nan
- if int(n) != n or n <= 0:
- return np.nan
- if p <= 0:
- return 1.0/n
- if q <= 0:
- return 1.0
- delta = np.exp((np.log(p) - scipy.special.loggamma(n+1))/n)
- if delta <= 1.0/n:
- return (delta + 1.0 / n) / 2
- x = -np.expm1(np.log(q/2.0)/n)
- if x >= 1 - 1.0/n:
- return x
- x1 = scu._kolmogci(p)/np.sqrt(n)
- x1 = min(x1, 1.0 - 1.0/n)
- _f = lambda x: _kolmogn(n, x) - p
- return scipy.optimize.brentq(_f, 1.0/n, x1, xtol=1e-14)
- def kolmogn(n, x, cdf=True):
- """Computes the CDF for the two-sided Kolmogorov-Smirnov distribution.
- The two-sided Kolmogorov-Smirnov distribution has as its CDF Pr(D_n <= x),
- for a sample of size n drawn from a distribution with CDF F(t), where
- D_n &= sup_t |F_n(t) - F(t)|, and
- F_n(t) is the Empirical Cumulative Distribution Function of the sample.
- Parameters
- ----------
- n : integer, array_like
- the number of samples
- x : float, array_like
- The K-S statistic, float between 0 and 1
- cdf : bool, optional
- whether to compute the CDF(default=true) or the SF.
- Returns
- -------
- cdf : ndarray
- CDF (or SF it cdf is False) at the specified locations.
- The return value has shape the result of numpy broadcasting n and x.
- """
- it = np.nditer([n, x, cdf, None],
- op_dtypes=[None, np.float64, np.bool_, np.float64])
- for _n, _x, _cdf, z in it:
- if np.isnan(_n):
- z[...] = _n
- continue
- if int(_n) != _n:
- raise ValueError(f'n is not integral: {_n}')
- z[...] = _kolmogn(int(_n), _x, cdf=_cdf)
- result = it.operands[-1]
- return result
- def kolmognp(n, x):
- """Computes the PDF for the two-sided Kolmogorov-Smirnov distribution.
- Parameters
- ----------
- n : integer, array_like
- the number of samples
- x : float, array_like
- The K-S statistic, float between 0 and 1
- Returns
- -------
- pdf : ndarray
- The PDF at the specified locations
- The return value has shape the result of numpy broadcasting n and x.
- """
- it = np.nditer([n, x, None])
- for _n, _x, z in it:
- if np.isnan(_n):
- z[...] = _n
- continue
- if int(_n) != _n:
- raise ValueError(f'n is not integral: {_n}')
- z[...] = _kolmogn_p(int(_n), _x)
- result = it.operands[-1]
- return result
- def kolmogni(n, q, cdf=True):
- """Computes the PPF(or ISF) for the two-sided Kolmogorov-Smirnov distribution.
- Parameters
- ----------
- n : integer, array_like
- the number of samples
- q : float, array_like
- Probabilities, float between 0 and 1
- cdf : bool, optional
- whether to compute the PPF(default=true) or the ISF.
- Returns
- -------
- ppf : ndarray
- PPF (or ISF if cdf is False) at the specified locations
- The return value has shape the result of numpy broadcasting n and x.
- """
- it = np.nditer([n, q, cdf, None])
- for _n, _q, _cdf, z in it:
- if np.isnan(_n):
- z[...] = _n
- continue
- if int(_n) != _n:
- raise ValueError(f'n is not integral: {_n}')
- _pcdf, _psf = (_q, 1-_q) if _cdf else (1-_q, _q)
- z[...] = _kolmogni(int(_n), _pcdf, _psf)
- result = it.operands[-1]
- return result
|