123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379 |
- #
- # Tests of spherical Bessel functions.
- #
- import numpy as np
- from numpy.testing import (assert_almost_equal, assert_allclose,
- assert_array_almost_equal, suppress_warnings)
- import pytest
- from numpy import sin, cos, sinh, cosh, exp, inf, nan, r_, pi
- from scipy.special import spherical_jn, spherical_yn, spherical_in, spherical_kn
- from scipy.integrate import quad
- class TestSphericalJn:
- def test_spherical_jn_exact(self):
- # https://dlmf.nist.gov/10.49.E3
- # Note: exact expression is numerically stable only for small
- # n or z >> n.
- x = np.array([0.12, 1.23, 12.34, 123.45, 1234.5])
- assert_allclose(spherical_jn(2, x),
- (-1/x + 3/x**3)*sin(x) - 3/x**2*cos(x))
- def test_spherical_jn_recurrence_complex(self):
- # https://dlmf.nist.gov/10.51.E1
- n = np.array([1, 2, 3, 7, 12])
- x = 1.1 + 1.5j
- assert_allclose(spherical_jn(n - 1, x) + spherical_jn(n + 1, x),
- (2*n + 1)/x*spherical_jn(n, x))
- def test_spherical_jn_recurrence_real(self):
- # https://dlmf.nist.gov/10.51.E1
- n = np.array([1, 2, 3, 7, 12])
- x = 0.12
- assert_allclose(spherical_jn(n - 1, x) + spherical_jn(n + 1,x),
- (2*n + 1)/x*spherical_jn(n, x))
- def test_spherical_jn_inf_real(self):
- # https://dlmf.nist.gov/10.52.E3
- n = 6
- x = np.array([-inf, inf])
- assert_allclose(spherical_jn(n, x), np.array([0, 0]))
- def test_spherical_jn_inf_complex(self):
- # https://dlmf.nist.gov/10.52.E3
- n = 7
- x = np.array([-inf + 0j, inf + 0j, inf*(1+1j)])
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning, "invalid value encountered in multiply")
- assert_allclose(spherical_jn(n, x), np.array([0, 0, inf*(1+1j)]))
- def test_spherical_jn_large_arg_1(self):
- # https://github.com/scipy/scipy/issues/2165
- # Reference value computed using mpmath, via
- # besselj(n + mpf(1)/2, z)*sqrt(pi/(2*z))
- assert_allclose(spherical_jn(2, 3350.507), -0.00029846226538040747)
- def test_spherical_jn_large_arg_2(self):
- # https://github.com/scipy/scipy/issues/1641
- # Reference value computed using mpmath, via
- # besselj(n + mpf(1)/2, z)*sqrt(pi/(2*z))
- assert_allclose(spherical_jn(2, 10000), 3.0590002633029811e-05)
- def test_spherical_jn_at_zero(self):
- # https://dlmf.nist.gov/10.52.E1
- # But note that n = 0 is a special case: j0 = sin(x)/x -> 1
- n = np.array([0, 1, 2, 5, 10, 100])
- x = 0
- assert_allclose(spherical_jn(n, x), np.array([1, 0, 0, 0, 0, 0]))
- class TestSphericalYn:
- def test_spherical_yn_exact(self):
- # https://dlmf.nist.gov/10.49.E5
- # Note: exact expression is numerically stable only for small
- # n or z >> n.
- x = np.array([0.12, 1.23, 12.34, 123.45, 1234.5])
- assert_allclose(spherical_yn(2, x),
- (1/x - 3/x**3)*cos(x) - 3/x**2*sin(x))
- def test_spherical_yn_recurrence_real(self):
- # https://dlmf.nist.gov/10.51.E1
- n = np.array([1, 2, 3, 7, 12])
- x = 0.12
- assert_allclose(spherical_yn(n - 1, x) + spherical_yn(n + 1,x),
- (2*n + 1)/x*spherical_yn(n, x))
- def test_spherical_yn_recurrence_complex(self):
- # https://dlmf.nist.gov/10.51.E1
- n = np.array([1, 2, 3, 7, 12])
- x = 1.1 + 1.5j
- assert_allclose(spherical_yn(n - 1, x) + spherical_yn(n + 1, x),
- (2*n + 1)/x*spherical_yn(n, x))
- def test_spherical_yn_inf_real(self):
- # https://dlmf.nist.gov/10.52.E3
- n = 6
- x = np.array([-inf, inf])
- assert_allclose(spherical_yn(n, x), np.array([0, 0]))
- def test_spherical_yn_inf_complex(self):
- # https://dlmf.nist.gov/10.52.E3
- n = 7
- x = np.array([-inf + 0j, inf + 0j, inf*(1+1j)])
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning, "invalid value encountered in multiply")
- assert_allclose(spherical_yn(n, x), np.array([0, 0, inf*(1+1j)]))
- def test_spherical_yn_at_zero(self):
- # https://dlmf.nist.gov/10.52.E2
- n = np.array([0, 1, 2, 5, 10, 100])
- x = 0
- assert_allclose(spherical_yn(n, x), np.full(n.shape, -inf))
- def test_spherical_yn_at_zero_complex(self):
- # Consistently with numpy:
- # >>> -np.cos(0)/0
- # -inf
- # >>> -np.cos(0+0j)/(0+0j)
- # (-inf + nan*j)
- n = np.array([0, 1, 2, 5, 10, 100])
- x = 0 + 0j
- assert_allclose(spherical_yn(n, x), np.full(n.shape, nan))
- class TestSphericalJnYnCrossProduct:
- def test_spherical_jn_yn_cross_product_1(self):
- # https://dlmf.nist.gov/10.50.E3
- n = np.array([1, 5, 8])
- x = np.array([0.1, 1, 10])
- left = (spherical_jn(n + 1, x) * spherical_yn(n, x) -
- spherical_jn(n, x) * spherical_yn(n + 1, x))
- right = 1/x**2
- assert_allclose(left, right)
- def test_spherical_jn_yn_cross_product_2(self):
- # https://dlmf.nist.gov/10.50.E3
- n = np.array([1, 5, 8])
- x = np.array([0.1, 1, 10])
- left = (spherical_jn(n + 2, x) * spherical_yn(n, x) -
- spherical_jn(n, x) * spherical_yn(n + 2, x))
- right = (2*n + 3)/x**3
- assert_allclose(left, right)
- class TestSphericalIn:
- def test_spherical_in_exact(self):
- # https://dlmf.nist.gov/10.49.E9
- x = np.array([0.12, 1.23, 12.34, 123.45])
- assert_allclose(spherical_in(2, x),
- (1/x + 3/x**3)*sinh(x) - 3/x**2*cosh(x))
- def test_spherical_in_recurrence_real(self):
- # https://dlmf.nist.gov/10.51.E4
- n = np.array([1, 2, 3, 7, 12])
- x = 0.12
- assert_allclose(spherical_in(n - 1, x) - spherical_in(n + 1,x),
- (2*n + 1)/x*spherical_in(n, x))
- def test_spherical_in_recurrence_complex(self):
- # https://dlmf.nist.gov/10.51.E1
- n = np.array([1, 2, 3, 7, 12])
- x = 1.1 + 1.5j
- assert_allclose(spherical_in(n - 1, x) - spherical_in(n + 1,x),
- (2*n + 1)/x*spherical_in(n, x))
- def test_spherical_in_inf_real(self):
- # https://dlmf.nist.gov/10.52.E3
- n = 5
- x = np.array([-inf, inf])
- assert_allclose(spherical_in(n, x), np.array([-inf, inf]))
- def test_spherical_in_inf_complex(self):
- # https://dlmf.nist.gov/10.52.E5
- # Ideally, i1n(n, 1j*inf) = 0 and i1n(n, (1+1j)*inf) = (1+1j)*inf, but
- # this appears impossible to achieve because C99 regards any complex
- # value with at least one infinite part as a complex infinity, so
- # 1j*inf cannot be distinguished from (1+1j)*inf. Therefore, nan is
- # the correct return value.
- n = 7
- x = np.array([-inf + 0j, inf + 0j, inf*(1+1j)])
- assert_allclose(spherical_in(n, x), np.array([-inf, inf, nan]))
- def test_spherical_in_at_zero(self):
- # https://dlmf.nist.gov/10.52.E1
- # But note that n = 0 is a special case: i0 = sinh(x)/x -> 1
- n = np.array([0, 1, 2, 5, 10, 100])
- x = 0
- assert_allclose(spherical_in(n, x), np.array([1, 0, 0, 0, 0, 0]))
- class TestSphericalKn:
- def test_spherical_kn_exact(self):
- # https://dlmf.nist.gov/10.49.E13
- x = np.array([0.12, 1.23, 12.34, 123.45])
- assert_allclose(spherical_kn(2, x),
- pi/2*exp(-x)*(1/x + 3/x**2 + 3/x**3))
- def test_spherical_kn_recurrence_real(self):
- # https://dlmf.nist.gov/10.51.E4
- n = np.array([1, 2, 3, 7, 12])
- x = 0.12
- assert_allclose((-1)**(n - 1)*spherical_kn(n - 1, x) - (-1)**(n + 1)*spherical_kn(n + 1,x),
- (-1)**n*(2*n + 1)/x*spherical_kn(n, x))
- def test_spherical_kn_recurrence_complex(self):
- # https://dlmf.nist.gov/10.51.E4
- n = np.array([1, 2, 3, 7, 12])
- x = 1.1 + 1.5j
- assert_allclose((-1)**(n - 1)*spherical_kn(n - 1, x) - (-1)**(n + 1)*spherical_kn(n + 1,x),
- (-1)**n*(2*n + 1)/x*spherical_kn(n, x))
- def test_spherical_kn_inf_real(self):
- # https://dlmf.nist.gov/10.52.E6
- n = 5
- x = np.array([-inf, inf])
- assert_allclose(spherical_kn(n, x), np.array([-inf, 0]))
- def test_spherical_kn_inf_complex(self):
- # https://dlmf.nist.gov/10.52.E6
- # The behavior at complex infinity depends on the sign of the real
- # part: if Re(z) >= 0, then the limit is 0; if Re(z) < 0, then it's
- # z*inf. This distinction cannot be captured, so we return nan.
- n = 7
- x = np.array([-inf + 0j, inf + 0j, inf*(1+1j)])
- assert_allclose(spherical_kn(n, x), np.array([-inf, 0, nan]))
- def test_spherical_kn_at_zero(self):
- # https://dlmf.nist.gov/10.52.E2
- n = np.array([0, 1, 2, 5, 10, 100])
- x = 0
- assert_allclose(spherical_kn(n, x), np.full(n.shape, inf))
- def test_spherical_kn_at_zero_complex(self):
- # https://dlmf.nist.gov/10.52.E2
- n = np.array([0, 1, 2, 5, 10, 100])
- x = 0 + 0j
- assert_allclose(spherical_kn(n, x), np.full(n.shape, nan))
- class SphericalDerivativesTestCase:
- def fundamental_theorem(self, n, a, b):
- integral, tolerance = quad(lambda z: self.df(n, z), a, b)
- assert_allclose(integral,
- self.f(n, b) - self.f(n, a),
- atol=tolerance)
- @pytest.mark.slow
- def test_fundamental_theorem_0(self):
- self.fundamental_theorem(0, 3.0, 15.0)
- @pytest.mark.slow
- def test_fundamental_theorem_7(self):
- self.fundamental_theorem(7, 0.5, 1.2)
- class TestSphericalJnDerivatives(SphericalDerivativesTestCase):
- def f(self, n, z):
- return spherical_jn(n, z)
- def df(self, n, z):
- return spherical_jn(n, z, derivative=True)
- def test_spherical_jn_d_zero(self):
- n = np.array([0, 1, 2, 3, 7, 15])
- assert_allclose(spherical_jn(n, 0, derivative=True),
- np.array([0, 1/3, 0, 0, 0, 0]))
- class TestSphericalYnDerivatives(SphericalDerivativesTestCase):
- def f(self, n, z):
- return spherical_yn(n, z)
- def df(self, n, z):
- return spherical_yn(n, z, derivative=True)
- class TestSphericalInDerivatives(SphericalDerivativesTestCase):
- def f(self, n, z):
- return spherical_in(n, z)
- def df(self, n, z):
- return spherical_in(n, z, derivative=True)
- def test_spherical_in_d_zero(self):
- n = np.array([1, 2, 3, 7, 15])
- assert_allclose(spherical_in(n, 0, derivative=True),
- np.zeros(5))
- class TestSphericalKnDerivatives(SphericalDerivativesTestCase):
- def f(self, n, z):
- return spherical_kn(n, z)
- def df(self, n, z):
- return spherical_kn(n, z, derivative=True)
- class TestSphericalOld:
- # These are tests from the TestSpherical class of test_basic.py,
- # rewritten to use spherical_* instead of sph_* but otherwise unchanged.
- def test_sph_in(self):
- # This test reproduces test_basic.TestSpherical.test_sph_in.
- i1n = np.empty((2,2))
- x = 0.2
- i1n[0][0] = spherical_in(0, x)
- i1n[0][1] = spherical_in(1, x)
- i1n[1][0] = spherical_in(0, x, derivative=True)
- i1n[1][1] = spherical_in(1, x, derivative=True)
- inp0 = (i1n[0][1])
- inp1 = (i1n[0][0] - 2.0/0.2 * i1n[0][1])
- assert_array_almost_equal(i1n[0],np.array([1.0066800127054699381,
- 0.066933714568029540839]),12)
- assert_array_almost_equal(i1n[1],[inp0,inp1],12)
- def test_sph_in_kn_order0(self):
- x = 1.
- sph_i0 = np.empty((2,))
- sph_i0[0] = spherical_in(0, x)
- sph_i0[1] = spherical_in(0, x, derivative=True)
- sph_i0_expected = np.array([np.sinh(x)/x,
- np.cosh(x)/x-np.sinh(x)/x**2])
- assert_array_almost_equal(r_[sph_i0], sph_i0_expected)
- sph_k0 = np.empty((2,))
- sph_k0[0] = spherical_kn(0, x)
- sph_k0[1] = spherical_kn(0, x, derivative=True)
- sph_k0_expected = np.array([0.5*pi*exp(-x)/x,
- -0.5*pi*exp(-x)*(1/x+1/x**2)])
- assert_array_almost_equal(r_[sph_k0], sph_k0_expected)
- def test_sph_jn(self):
- s1 = np.empty((2,3))
- x = 0.2
- s1[0][0] = spherical_jn(0, x)
- s1[0][1] = spherical_jn(1, x)
- s1[0][2] = spherical_jn(2, x)
- s1[1][0] = spherical_jn(0, x, derivative=True)
- s1[1][1] = spherical_jn(1, x, derivative=True)
- s1[1][2] = spherical_jn(2, x, derivative=True)
- s10 = -s1[0][1]
- s11 = s1[0][0]-2.0/0.2*s1[0][1]
- s12 = s1[0][1]-3.0/0.2*s1[0][2]
- assert_array_almost_equal(s1[0],[0.99334665397530607731,
- 0.066400380670322230863,
- 0.0026590560795273856680],12)
- assert_array_almost_equal(s1[1],[s10,s11,s12],12)
- def test_sph_kn(self):
- kn = np.empty((2,3))
- x = 0.2
- kn[0][0] = spherical_kn(0, x)
- kn[0][1] = spherical_kn(1, x)
- kn[0][2] = spherical_kn(2, x)
- kn[1][0] = spherical_kn(0, x, derivative=True)
- kn[1][1] = spherical_kn(1, x, derivative=True)
- kn[1][2] = spherical_kn(2, x, derivative=True)
- kn0 = -kn[0][1]
- kn1 = -kn[0][0]-2.0/0.2*kn[0][1]
- kn2 = -kn[0][1]-3.0/0.2*kn[0][2]
- assert_array_almost_equal(kn[0],[6.4302962978445670140,
- 38.581777787067402086,
- 585.15696310385559829],12)
- assert_array_almost_equal(kn[1],[kn0,kn1,kn2],9)
- def test_sph_yn(self):
- sy1 = spherical_yn(2, 0.2)
- sy2 = spherical_yn(0, 0.2)
- assert_almost_equal(sy1,-377.52483,5) # previous values in the system
- assert_almost_equal(sy2,-4.9003329,5)
- sphpy = (spherical_yn(0, 0.2) - 2*spherical_yn(2, 0.2))/3
- sy3 = spherical_yn(1, 0.2, derivative=True)
- assert_almost_equal(sy3,sphpy,4) # compare correct derivative val. (correct =-system val).
|