12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027 |
- """
- Test SciPy functions versus mpmath, if available.
- """
- import numpy as np
- from numpy.testing import assert_, assert_allclose
- from numpy import pi
- import pytest
- import itertools
- from scipy._lib import _pep440
- import scipy.special as sc
- from scipy.special._testutils import (
- MissingModule, check_version, FuncData,
- assert_func_equal)
- from scipy.special._mptestutils import (
- Arg, FixedArg, ComplexArg, IntArg, assert_mpmath_equal,
- nonfunctional_tooslow, trace_args, time_limited, exception_to_nan,
- inf_to_nan)
- from scipy.special._ufuncs import (
- _sinpi, _cospi, _lgam1p, _lanczos_sum_expg_scaled, _log1pmx,
- _igam_fac)
- try:
- import mpmath
- except ImportError:
- mpmath = MissingModule('mpmath')
- # ------------------------------------------------------------------------------
- # expi
- # ------------------------------------------------------------------------------
- @check_version(mpmath, '0.10')
- def test_expi_complex():
- dataset = []
- for r in np.logspace(-99, 2, 10):
- for p in np.linspace(0, 2*np.pi, 30):
- z = r*np.exp(1j*p)
- dataset.append((z, complex(mpmath.ei(z))))
- dataset = np.array(dataset, dtype=np.complex_)
- FuncData(sc.expi, dataset, 0, 1).check()
- # ------------------------------------------------------------------------------
- # expn
- # ------------------------------------------------------------------------------
- @check_version(mpmath, '0.19')
- def test_expn_large_n():
- # Test the transition to the asymptotic regime of n.
- dataset = []
- for n in [50, 51]:
- for x in np.logspace(0, 4, 200):
- with mpmath.workdps(100):
- dataset.append((n, x, float(mpmath.expint(n, x))))
- dataset = np.asarray(dataset)
- FuncData(sc.expn, dataset, (0, 1), 2, rtol=1e-13).check()
- # ------------------------------------------------------------------------------
- # hyp0f1
- # ------------------------------------------------------------------------------
- @check_version(mpmath, '0.19')
- def test_hyp0f1_gh5764():
- # Do a small and somewhat systematic test that runs quickly
- dataset = []
- axis = [-99.5, -9.5, -0.5, 0.5, 9.5, 99.5]
- for v in axis:
- for x in axis:
- for y in axis:
- z = x + 1j*y
- # mpmath computes the answer correctly at dps ~ 17 but
- # fails for 20 < dps < 120 (uses a different method);
- # set the dps high enough that this isn't an issue
- with mpmath.workdps(120):
- res = complex(mpmath.hyp0f1(v, z))
- dataset.append((v, z, res))
- dataset = np.array(dataset)
- FuncData(lambda v, z: sc.hyp0f1(v.real, z), dataset, (0, 1), 2,
- rtol=1e-13).check()
- @check_version(mpmath, '0.19')
- def test_hyp0f1_gh_1609():
- # this is a regression test for gh-1609
- vv = np.linspace(150, 180, 21)
- af = sc.hyp0f1(vv, 0.5)
- mf = np.array([mpmath.hyp0f1(v, 0.5) for v in vv])
- assert_allclose(af, mf.astype(float), rtol=1e-12)
- # ------------------------------------------------------------------------------
- # hyperu
- # ------------------------------------------------------------------------------
- @check_version(mpmath, '1.1.0')
- def test_hyperu_around_0():
- dataset = []
- # DLMF 13.2.14-15 test points.
- for n in np.arange(-5, 5):
- for b in np.linspace(-5, 5, 20):
- a = -n
- dataset.append((a, b, 0, float(mpmath.hyperu(a, b, 0))))
- a = -n + b - 1
- dataset.append((a, b, 0, float(mpmath.hyperu(a, b, 0))))
- # DLMF 13.2.16-22 test points.
- for a in [-10.5, -1.5, -0.5, 0, 0.5, 1, 10]:
- for b in [-1.0, -0.5, 0, 0.5, 1, 1.5, 2, 2.5]:
- dataset.append((a, b, 0, float(mpmath.hyperu(a, b, 0))))
- dataset = np.array(dataset)
- FuncData(sc.hyperu, dataset, (0, 1, 2), 3, rtol=1e-15, atol=5e-13).check()
- # ------------------------------------------------------------------------------
- # hyp2f1
- # ------------------------------------------------------------------------------
- @check_version(mpmath, '1.0.0')
- def test_hyp2f1_strange_points():
- pts = [
- (2, -1, -1, 0.7), # expected: 2.4
- (2, -2, -2, 0.7), # expected: 3.87
- ]
- pts += list(itertools.product([2, 1, -0.7, -1000], repeat=4))
- pts = [
- (a, b, c, x) for a, b, c, x in pts
- if b == c and round(b) == b and b < 0 and b != -1000
- ]
- kw = dict(eliminate=True)
- dataset = [p + (float(mpmath.hyp2f1(*p, **kw)),) for p in pts]
- dataset = np.array(dataset, dtype=np.float_)
- FuncData(sc.hyp2f1, dataset, (0,1,2,3), 4, rtol=1e-10).check()
- @check_version(mpmath, '0.13')
- def test_hyp2f1_real_some_points():
- pts = [
- (1, 2, 3, 0),
- (1./3, 2./3, 5./6, 27./32),
- (1./4, 1./2, 3./4, 80./81),
- (2,-2, -3, 3),
- (2, -3, -2, 3),
- (2, -1.5, -1.5, 3),
- (1, 2, 3, 0),
- (0.7235, -1, -5, 0.3),
- (0.25, 1./3, 2, 0.999),
- (0.25, 1./3, 2, -1),
- (2, 3, 5, 0.99),
- (3./2, -0.5, 3, 0.99),
- (2, 2.5, -3.25, 0.999),
- (-8, 18.016500331508873, 10.805295997850628, 0.90875647507000001),
- (-10, 900, -10.5, 0.99),
- (-10, 900, 10.5, 0.99),
- (-1, 2, 1, 1.0),
- (-1, 2, 1, -1.0),
- (-3, 13, 5, 1.0),
- (-3, 13, 5, -1.0),
- (0.5, 1 - 270.5, 1.5, 0.999**2), # from issue 1561
- ]
- dataset = [p + (float(mpmath.hyp2f1(*p)),) for p in pts]
- dataset = np.array(dataset, dtype=np.float_)
- with np.errstate(invalid='ignore'):
- FuncData(sc.hyp2f1, dataset, (0,1,2,3), 4, rtol=1e-10).check()
- @check_version(mpmath, '0.14')
- def test_hyp2f1_some_points_2():
- # Taken from mpmath unit tests -- this point failed for mpmath 0.13 but
- # was fixed in their SVN since then
- pts = [
- (112, (51,10), (-9,10), -0.99999),
- (10,-900,10.5,0.99),
- (10,-900,-10.5,0.99),
- ]
- def fev(x):
- if isinstance(x, tuple):
- return float(x[0]) / x[1]
- else:
- return x
- dataset = [tuple(map(fev, p)) + (float(mpmath.hyp2f1(*p)),) for p in pts]
- dataset = np.array(dataset, dtype=np.float_)
- FuncData(sc.hyp2f1, dataset, (0,1,2,3), 4, rtol=1e-10).check()
- @check_version(mpmath, '0.13')
- def test_hyp2f1_real_some():
- dataset = []
- for a in [-10, -5, -1.8, 1.8, 5, 10]:
- for b in [-2.5, -1, 1, 7.4]:
- for c in [-9, -1.8, 5, 20.4]:
- for z in [-10, -1.01, -0.99, 0, 0.6, 0.95, 1.5, 10]:
- try:
- v = float(mpmath.hyp2f1(a, b, c, z))
- except Exception:
- continue
- dataset.append((a, b, c, z, v))
- dataset = np.array(dataset, dtype=np.float_)
- with np.errstate(invalid='ignore'):
- FuncData(sc.hyp2f1, dataset, (0,1,2,3), 4, rtol=1e-9,
- ignore_inf_sign=True).check()
- @check_version(mpmath, '0.12')
- @pytest.mark.slow
- def test_hyp2f1_real_random():
- npoints = 500
- dataset = np.zeros((npoints, 5), np.float_)
- np.random.seed(1234)
- dataset[:, 0] = np.random.pareto(1.5, npoints)
- dataset[:, 1] = np.random.pareto(1.5, npoints)
- dataset[:, 2] = np.random.pareto(1.5, npoints)
- dataset[:, 3] = 2*np.random.rand(npoints) - 1
- dataset[:, 0] *= (-1)**np.random.randint(2, npoints)
- dataset[:, 1] *= (-1)**np.random.randint(2, npoints)
- dataset[:, 2] *= (-1)**np.random.randint(2, npoints)
- for ds in dataset:
- if mpmath.__version__ < '0.14':
- # mpmath < 0.14 fails for c too much smaller than a, b
- if abs(ds[:2]).max() > abs(ds[2]):
- ds[2] = abs(ds[:2]).max()
- ds[4] = float(mpmath.hyp2f1(*tuple(ds[:4])))
- FuncData(sc.hyp2f1, dataset, (0, 1, 2, 3), 4, rtol=1e-9).check()
- # ------------------------------------------------------------------------------
- # erf (complex)
- # ------------------------------------------------------------------------------
- @check_version(mpmath, '0.14')
- def test_erf_complex():
- # need to increase mpmath precision for this test
- old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec
- try:
- mpmath.mp.dps = 70
- x1, y1 = np.meshgrid(np.linspace(-10, 1, 31), np.linspace(-10, 1, 11))
- x2, y2 = np.meshgrid(np.logspace(-80, .8, 31), np.logspace(-80, .8, 11))
- points = np.r_[x1.ravel(),x2.ravel()] + 1j*np.r_[y1.ravel(), y2.ravel()]
- assert_func_equal(sc.erf, lambda x: complex(mpmath.erf(x)), points,
- vectorized=False, rtol=1e-13)
- assert_func_equal(sc.erfc, lambda x: complex(mpmath.erfc(x)), points,
- vectorized=False, rtol=1e-13)
- finally:
- mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec
- # ------------------------------------------------------------------------------
- # lpmv
- # ------------------------------------------------------------------------------
- @check_version(mpmath, '0.15')
- def test_lpmv():
- pts = []
- for x in [-0.99, -0.557, 1e-6, 0.132, 1]:
- pts.extend([
- (1, 1, x),
- (1, -1, x),
- (-1, 1, x),
- (-1, -2, x),
- (1, 1.7, x),
- (1, -1.7, x),
- (-1, 1.7, x),
- (-1, -2.7, x),
- (1, 10, x),
- (1, 11, x),
- (3, 8, x),
- (5, 11, x),
- (-3, 8, x),
- (-5, 11, x),
- (3, -8, x),
- (5, -11, x),
- (-3, -8, x),
- (-5, -11, x),
- (3, 8.3, x),
- (5, 11.3, x),
- (-3, 8.3, x),
- (-5, 11.3, x),
- (3, -8.3, x),
- (5, -11.3, x),
- (-3, -8.3, x),
- (-5, -11.3, x),
- ])
- def mplegenp(nu, mu, x):
- if mu == int(mu) and x == 1:
- # mpmath 0.17 gets this wrong
- if mu == 0:
- return 1
- else:
- return 0
- return mpmath.legenp(nu, mu, x)
- dataset = [p + (mplegenp(p[1], p[0], p[2]),) for p in pts]
- dataset = np.array(dataset, dtype=np.float_)
- def evf(mu, nu, x):
- return sc.lpmv(mu.astype(int), nu, x)
- with np.errstate(invalid='ignore'):
- FuncData(evf, dataset, (0,1,2), 3, rtol=1e-10, atol=1e-14).check()
- # ------------------------------------------------------------------------------
- # beta
- # ------------------------------------------------------------------------------
- @check_version(mpmath, '0.15')
- def test_beta():
- np.random.seed(1234)
- b = np.r_[np.logspace(-200, 200, 4),
- np.logspace(-10, 10, 4),
- np.logspace(-1, 1, 4),
- np.arange(-10, 11, 1),
- np.arange(-10, 11, 1) + 0.5,
- -1, -2.3, -3, -100.3, -10003.4]
- a = b
- ab = np.array(np.broadcast_arrays(a[:,None], b[None,:])).reshape(2, -1).T
- old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec
- try:
- mpmath.mp.dps = 400
- assert_func_equal(sc.beta,
- lambda a, b: float(mpmath.beta(a, b)),
- ab,
- vectorized=False,
- rtol=1e-10,
- ignore_inf_sign=True)
- assert_func_equal(
- sc.betaln,
- lambda a, b: float(mpmath.log(abs(mpmath.beta(a, b)))),
- ab,
- vectorized=False,
- rtol=1e-10)
- finally:
- mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec
- # ------------------------------------------------------------------------------
- # loggamma
- # ------------------------------------------------------------------------------
- LOGGAMMA_TAYLOR_RADIUS = 0.2
- @check_version(mpmath, '0.19')
- def test_loggamma_taylor_transition():
- # Make sure there isn't a big jump in accuracy when we move from
- # using the Taylor series to using the recurrence relation.
- r = LOGGAMMA_TAYLOR_RADIUS + np.array([-0.1, -0.01, 0, 0.01, 0.1])
- theta = np.linspace(0, 2*np.pi, 20)
- r, theta = np.meshgrid(r, theta)
- dz = r*np.exp(1j*theta)
- z = np.r_[1 + dz, 2 + dz].flatten()
- dataset = [(z0, complex(mpmath.loggamma(z0))) for z0 in z]
- dataset = np.array(dataset)
- FuncData(sc.loggamma, dataset, 0, 1, rtol=5e-14).check()
- @check_version(mpmath, '0.19')
- def test_loggamma_taylor():
- # Test around the zeros at z = 1, 2.
- r = np.logspace(-16, np.log10(LOGGAMMA_TAYLOR_RADIUS), 10)
- theta = np.linspace(0, 2*np.pi, 20)
- r, theta = np.meshgrid(r, theta)
- dz = r*np.exp(1j*theta)
- z = np.r_[1 + dz, 2 + dz].flatten()
- dataset = [(z0, complex(mpmath.loggamma(z0))) for z0 in z]
- dataset = np.array(dataset)
- FuncData(sc.loggamma, dataset, 0, 1, rtol=5e-14).check()
- # ------------------------------------------------------------------------------
- # rgamma
- # ------------------------------------------------------------------------------
- @check_version(mpmath, '0.19')
- @pytest.mark.slow
- def test_rgamma_zeros():
- # Test around the zeros at z = 0, -1, -2, ..., -169. (After -169 we
- # get values that are out of floating point range even when we're
- # within 0.1 of the zero.)
- # Can't use too many points here or the test takes forever.
- dx = np.r_[-np.logspace(-1, -13, 3), 0, np.logspace(-13, -1, 3)]
- dy = dx.copy()
- dx, dy = np.meshgrid(dx, dy)
- dz = dx + 1j*dy
- zeros = np.arange(0, -170, -1).reshape(1, 1, -1)
- z = (zeros + np.dstack((dz,)*zeros.size)).flatten()
- with mpmath.workdps(100):
- dataset = [(z0, complex(mpmath.rgamma(z0))) for z0 in z]
- dataset = np.array(dataset)
- FuncData(sc.rgamma, dataset, 0, 1, rtol=1e-12).check()
- # ------------------------------------------------------------------------------
- # digamma
- # ------------------------------------------------------------------------------
- @check_version(mpmath, '0.19')
- @pytest.mark.slow
- def test_digamma_roots():
- # Test the special-cased roots for digamma.
- root = mpmath.findroot(mpmath.digamma, 1.5)
- roots = [float(root)]
- root = mpmath.findroot(mpmath.digamma, -0.5)
- roots.append(float(root))
- roots = np.array(roots)
- # If we test beyond a radius of 0.24 mpmath will take forever.
- dx = np.r_[-0.24, -np.logspace(-1, -15, 10), 0, np.logspace(-15, -1, 10), 0.24]
- dy = dx.copy()
- dx, dy = np.meshgrid(dx, dy)
- dz = dx + 1j*dy
- z = (roots + np.dstack((dz,)*roots.size)).flatten()
- with mpmath.workdps(30):
- dataset = [(z0, complex(mpmath.digamma(z0))) for z0 in z]
- dataset = np.array(dataset)
- FuncData(sc.digamma, dataset, 0, 1, rtol=1e-14).check()
- @check_version(mpmath, '0.19')
- def test_digamma_negreal():
- # Test digamma around the negative real axis. Don't do this in
- # TestSystematic because the points need some jiggering so that
- # mpmath doesn't take forever.
- digamma = exception_to_nan(mpmath.digamma)
- x = -np.logspace(300, -30, 100)
- y = np.r_[-np.logspace(0, -3, 5), 0, np.logspace(-3, 0, 5)]
- x, y = np.meshgrid(x, y)
- z = (x + 1j*y).flatten()
- with mpmath.workdps(40):
- dataset = [(z0, complex(digamma(z0))) for z0 in z]
- dataset = np.asarray(dataset)
- FuncData(sc.digamma, dataset, 0, 1, rtol=1e-13).check()
- @check_version(mpmath, '0.19')
- def test_digamma_boundary():
- # Check that there isn't a jump in accuracy when we switch from
- # using the asymptotic series to the reflection formula.
- x = -np.logspace(300, -30, 100)
- y = np.array([-6.1, -5.9, 5.9, 6.1])
- x, y = np.meshgrid(x, y)
- z = (x + 1j*y).flatten()
- with mpmath.workdps(30):
- dataset = [(z0, complex(mpmath.digamma(z0))) for z0 in z]
- dataset = np.asarray(dataset)
- FuncData(sc.digamma, dataset, 0, 1, rtol=1e-13).check()
- # ------------------------------------------------------------------------------
- # gammainc
- # ------------------------------------------------------------------------------
- @check_version(mpmath, '0.19')
- @pytest.mark.slow
- def test_gammainc_boundary():
- # Test the transition to the asymptotic series.
- small = 20
- a = np.linspace(0.5*small, 2*small, 50)
- x = a.copy()
- a, x = np.meshgrid(a, x)
- a, x = a.flatten(), x.flatten()
- with mpmath.workdps(100):
- dataset = [(a0, x0, float(mpmath.gammainc(a0, b=x0, regularized=True)))
- for a0, x0 in zip(a, x)]
- dataset = np.array(dataset)
- FuncData(sc.gammainc, dataset, (0, 1), 2, rtol=1e-12).check()
- # ------------------------------------------------------------------------------
- # spence
- # ------------------------------------------------------------------------------
- @check_version(mpmath, '0.19')
- @pytest.mark.slow
- def test_spence_circle():
- # The trickiest region for spence is around the circle |z - 1| = 1,
- # so test that region carefully.
- def spence(z):
- return complex(mpmath.polylog(2, 1 - z))
- r = np.linspace(0.5, 1.5)
- theta = np.linspace(0, 2*pi)
- z = (1 + np.outer(r, np.exp(1j*theta))).flatten()
- dataset = np.asarray([(z0, spence(z0)) for z0 in z])
- FuncData(sc.spence, dataset, 0, 1, rtol=1e-14).check()
- # ------------------------------------------------------------------------------
- # sinpi and cospi
- # ------------------------------------------------------------------------------
- @check_version(mpmath, '0.19')
- def test_sinpi_zeros():
- eps = np.finfo(float).eps
- dx = np.r_[-np.logspace(0, -13, 3), 0, np.logspace(-13, 0, 3)]
- dy = dx.copy()
- dx, dy = np.meshgrid(dx, dy)
- dz = dx + 1j*dy
- zeros = np.arange(-100, 100, 1).reshape(1, 1, -1)
- z = (zeros + np.dstack((dz,)*zeros.size)).flatten()
- dataset = np.asarray([(z0, complex(mpmath.sinpi(z0)))
- for z0 in z])
- FuncData(_sinpi, dataset, 0, 1, rtol=2*eps).check()
- @check_version(mpmath, '0.19')
- def test_cospi_zeros():
- eps = np.finfo(float).eps
- dx = np.r_[-np.logspace(0, -13, 3), 0, np.logspace(-13, 0, 3)]
- dy = dx.copy()
- dx, dy = np.meshgrid(dx, dy)
- dz = dx + 1j*dy
- zeros = (np.arange(-100, 100, 1) + 0.5).reshape(1, 1, -1)
- z = (zeros + np.dstack((dz,)*zeros.size)).flatten()
- dataset = np.asarray([(z0, complex(mpmath.cospi(z0)))
- for z0 in z])
- FuncData(_cospi, dataset, 0, 1, rtol=2*eps).check()
- # ------------------------------------------------------------------------------
- # ellipj
- # ------------------------------------------------------------------------------
- @check_version(mpmath, '0.19')
- def test_dn_quarter_period():
- def dn(u, m):
- return sc.ellipj(u, m)[2]
- def mpmath_dn(u, m):
- return float(mpmath.ellipfun("dn", u=u, m=m))
- m = np.linspace(0, 1, 20)
- du = np.r_[-np.logspace(-1, -15, 10), 0, np.logspace(-15, -1, 10)]
- dataset = []
- for m0 in m:
- u0 = float(mpmath.ellipk(m0))
- for du0 in du:
- p = u0 + du0
- dataset.append((p, m0, mpmath_dn(p, m0)))
- dataset = np.asarray(dataset)
- FuncData(dn, dataset, (0, 1), 2, rtol=1e-10).check()
- # ------------------------------------------------------------------------------
- # Wright Omega
- # ------------------------------------------------------------------------------
- def _mpmath_wrightomega(z, dps):
- with mpmath.workdps(dps):
- z = mpmath.mpc(z)
- unwind = mpmath.ceil((z.imag - mpmath.pi)/(2*mpmath.pi))
- res = mpmath.lambertw(mpmath.exp(z), unwind)
- return res
- @pytest.mark.slow
- @check_version(mpmath, '0.19')
- def test_wrightomega_branch():
- x = -np.logspace(10, 0, 25)
- picut_above = [np.nextafter(np.pi, np.inf)]
- picut_below = [np.nextafter(np.pi, -np.inf)]
- npicut_above = [np.nextafter(-np.pi, np.inf)]
- npicut_below = [np.nextafter(-np.pi, -np.inf)]
- for i in range(50):
- picut_above.append(np.nextafter(picut_above[-1], np.inf))
- picut_below.append(np.nextafter(picut_below[-1], -np.inf))
- npicut_above.append(np.nextafter(npicut_above[-1], np.inf))
- npicut_below.append(np.nextafter(npicut_below[-1], -np.inf))
- y = np.hstack((picut_above, picut_below, npicut_above, npicut_below))
- x, y = np.meshgrid(x, y)
- z = (x + 1j*y).flatten()
- dataset = np.asarray([(z0, complex(_mpmath_wrightomega(z0, 25)))
- for z0 in z])
- FuncData(sc.wrightomega, dataset, 0, 1, rtol=1e-8).check()
- @pytest.mark.slow
- @check_version(mpmath, '0.19')
- def test_wrightomega_region1():
- # This region gets less coverage in the TestSystematic test
- x = np.linspace(-2, 1)
- y = np.linspace(1, 2*np.pi)
- x, y = np.meshgrid(x, y)
- z = (x + 1j*y).flatten()
- dataset = np.asarray([(z0, complex(_mpmath_wrightomega(z0, 25)))
- for z0 in z])
- FuncData(sc.wrightomega, dataset, 0, 1, rtol=1e-15).check()
- @pytest.mark.slow
- @check_version(mpmath, '0.19')
- def test_wrightomega_region2():
- # This region gets less coverage in the TestSystematic test
- x = np.linspace(-2, 1)
- y = np.linspace(-2*np.pi, -1)
- x, y = np.meshgrid(x, y)
- z = (x + 1j*y).flatten()
- dataset = np.asarray([(z0, complex(_mpmath_wrightomega(z0, 25)))
- for z0 in z])
- FuncData(sc.wrightomega, dataset, 0, 1, rtol=1e-15).check()
- # ------------------------------------------------------------------------------
- # lambertw
- # ------------------------------------------------------------------------------
- @pytest.mark.slow
- @check_version(mpmath, '0.19')
- def test_lambertw_smallz():
- x, y = np.linspace(-1, 1, 25), np.linspace(-1, 1, 25)
- x, y = np.meshgrid(x, y)
- z = (x + 1j*y).flatten()
- dataset = np.asarray([(z0, complex(mpmath.lambertw(z0)))
- for z0 in z])
- FuncData(sc.lambertw, dataset, 0, 1, rtol=1e-13).check()
- # ------------------------------------------------------------------------------
- # Systematic tests
- # ------------------------------------------------------------------------------
- HYPERKW = dict(maxprec=200, maxterms=200)
- @pytest.mark.slow
- @check_version(mpmath, '0.17')
- class TestSystematic:
- def test_airyai(self):
- # oscillating function, limit range
- assert_mpmath_equal(lambda z: sc.airy(z)[0],
- mpmath.airyai,
- [Arg(-1e8, 1e8)],
- rtol=1e-5)
- assert_mpmath_equal(lambda z: sc.airy(z)[0],
- mpmath.airyai,
- [Arg(-1e3, 1e3)])
- def test_airyai_complex(self):
- assert_mpmath_equal(lambda z: sc.airy(z)[0],
- mpmath.airyai,
- [ComplexArg()])
- def test_airyai_prime(self):
- # oscillating function, limit range
- assert_mpmath_equal(lambda z: sc.airy(z)[1], lambda z:
- mpmath.airyai(z, derivative=1),
- [Arg(-1e8, 1e8)],
- rtol=1e-5)
- assert_mpmath_equal(lambda z: sc.airy(z)[1], lambda z:
- mpmath.airyai(z, derivative=1),
- [Arg(-1e3, 1e3)])
- def test_airyai_prime_complex(self):
- assert_mpmath_equal(lambda z: sc.airy(z)[1], lambda z:
- mpmath.airyai(z, derivative=1),
- [ComplexArg()])
- def test_airybi(self):
- # oscillating function, limit range
- assert_mpmath_equal(lambda z: sc.airy(z)[2], lambda z:
- mpmath.airybi(z),
- [Arg(-1e8, 1e8)],
- rtol=1e-5)
- assert_mpmath_equal(lambda z: sc.airy(z)[2], lambda z:
- mpmath.airybi(z),
- [Arg(-1e3, 1e3)])
- def test_airybi_complex(self):
- assert_mpmath_equal(lambda z: sc.airy(z)[2], lambda z:
- mpmath.airybi(z),
- [ComplexArg()])
- def test_airybi_prime(self):
- # oscillating function, limit range
- assert_mpmath_equal(lambda z: sc.airy(z)[3], lambda z:
- mpmath.airybi(z, derivative=1),
- [Arg(-1e8, 1e8)],
- rtol=1e-5)
- assert_mpmath_equal(lambda z: sc.airy(z)[3], lambda z:
- mpmath.airybi(z, derivative=1),
- [Arg(-1e3, 1e3)])
- def test_airybi_prime_complex(self):
- assert_mpmath_equal(lambda z: sc.airy(z)[3], lambda z:
- mpmath.airybi(z, derivative=1),
- [ComplexArg()])
- def test_bei(self):
- assert_mpmath_equal(sc.bei,
- exception_to_nan(lambda z: mpmath.bei(0, z, **HYPERKW)),
- [Arg(-1e3, 1e3)])
- def test_ber(self):
- assert_mpmath_equal(sc.ber,
- exception_to_nan(lambda z: mpmath.ber(0, z, **HYPERKW)),
- [Arg(-1e3, 1e3)])
- def test_bernoulli(self):
- assert_mpmath_equal(lambda n: sc.bernoulli(int(n))[int(n)],
- lambda n: float(mpmath.bernoulli(int(n))),
- [IntArg(0, 13000)],
- rtol=1e-9, n=13000)
- def test_besseli(self):
- assert_mpmath_equal(sc.iv,
- exception_to_nan(lambda v, z: mpmath.besseli(v, z, **HYPERKW)),
- [Arg(-1e100, 1e100), Arg()],
- atol=1e-270)
- def test_besseli_complex(self):
- assert_mpmath_equal(lambda v, z: sc.iv(v.real, z),
- exception_to_nan(lambda v, z: mpmath.besseli(v, z, **HYPERKW)),
- [Arg(-1e100, 1e100), ComplexArg()])
- def test_besselj(self):
- assert_mpmath_equal(sc.jv,
- exception_to_nan(lambda v, z: mpmath.besselj(v, z, **HYPERKW)),
- [Arg(-1e100, 1e100), Arg(-1e3, 1e3)],
- ignore_inf_sign=True)
- # loss of precision at large arguments due to oscillation
- assert_mpmath_equal(sc.jv,
- exception_to_nan(lambda v, z: mpmath.besselj(v, z, **HYPERKW)),
- [Arg(-1e100, 1e100), Arg(-1e8, 1e8)],
- ignore_inf_sign=True,
- rtol=1e-5)
- def test_besselj_complex(self):
- assert_mpmath_equal(lambda v, z: sc.jv(v.real, z),
- exception_to_nan(lambda v, z: mpmath.besselj(v, z, **HYPERKW)),
- [Arg(), ComplexArg()])
- def test_besselk(self):
- assert_mpmath_equal(sc.kv,
- mpmath.besselk,
- [Arg(-200, 200), Arg(0, np.inf)],
- nan_ok=False, rtol=1e-12)
- def test_besselk_int(self):
- assert_mpmath_equal(sc.kn,
- mpmath.besselk,
- [IntArg(-200, 200), Arg(0, np.inf)],
- nan_ok=False, rtol=1e-12)
- def test_besselk_complex(self):
- assert_mpmath_equal(lambda v, z: sc.kv(v.real, z),
- exception_to_nan(lambda v, z: mpmath.besselk(v, z, **HYPERKW)),
- [Arg(-1e100, 1e100), ComplexArg()])
- def test_bessely(self):
- def mpbessely(v, x):
- r = float(mpmath.bessely(v, x, **HYPERKW))
- if abs(r) > 1e305:
- # overflowing to inf a bit earlier is OK
- r = np.inf * np.sign(r)
- if abs(r) == 0 and x == 0:
- # invalid result from mpmath, point x=0 is a divergence
- return np.nan
- return r
- assert_mpmath_equal(sc.yv,
- exception_to_nan(mpbessely),
- [Arg(-1e100, 1e100), Arg(-1e8, 1e8)],
- n=5000)
- def test_bessely_complex(self):
- def mpbessely(v, x):
- r = complex(mpmath.bessely(v, x, **HYPERKW))
- if abs(r) > 1e305:
- # overflowing to inf a bit earlier is OK
- with np.errstate(invalid='ignore'):
- r = np.inf * np.sign(r)
- return r
- assert_mpmath_equal(lambda v, z: sc.yv(v.real, z),
- exception_to_nan(mpbessely),
- [Arg(), ComplexArg()],
- n=15000)
- def test_bessely_int(self):
- def mpbessely(v, x):
- r = float(mpmath.bessely(v, x))
- if abs(r) == 0 and x == 0:
- # invalid result from mpmath, point x=0 is a divergence
- return np.nan
- return r
- assert_mpmath_equal(lambda v, z: sc.yn(int(v), z),
- exception_to_nan(mpbessely),
- [IntArg(-1000, 1000), Arg(-1e8, 1e8)])
- def test_beta(self):
- bad_points = []
- def beta(a, b, nonzero=False):
- if a < -1e12 or b < -1e12:
- # Function is defined here only at integers, but due
- # to loss of precision this is numerically
- # ill-defined. Don't compare values here.
- return np.nan
- if (a < 0 or b < 0) and (abs(float(a + b)) % 1) == 0:
- # close to a zero of the function: mpmath and scipy
- # will not round here the same, so the test needs to be
- # run with an absolute tolerance
- if nonzero:
- bad_points.append((float(a), float(b)))
- return np.nan
- return mpmath.beta(a, b)
- assert_mpmath_equal(sc.beta,
- lambda a, b: beta(a, b, nonzero=True),
- [Arg(), Arg()],
- dps=400,
- ignore_inf_sign=True)
- assert_mpmath_equal(sc.beta,
- beta,
- np.array(bad_points),
- dps=400,
- ignore_inf_sign=True,
- atol=1e-11)
- def test_betainc(self):
- assert_mpmath_equal(sc.betainc,
- time_limited()(exception_to_nan(lambda a, b, x: mpmath.betainc(a, b, 0, x, regularized=True))),
- [Arg(), Arg(), Arg()])
- def test_binom(self):
- bad_points = []
- def binomial(n, k, nonzero=False):
- if abs(k) > 1e8*(abs(n) + 1):
- # The binomial is rapidly oscillating in this region,
- # and the function is numerically ill-defined. Don't
- # compare values here.
- return np.nan
- if n < k and abs(float(n-k) - np.round(float(n-k))) < 1e-15:
- # close to a zero of the function: mpmath and scipy
- # will not round here the same, so the test needs to be
- # run with an absolute tolerance
- if nonzero:
- bad_points.append((float(n), float(k)))
- return np.nan
- return mpmath.binomial(n, k)
- assert_mpmath_equal(sc.binom,
- lambda n, k: binomial(n, k, nonzero=True),
- [Arg(), Arg()],
- dps=400)
- assert_mpmath_equal(sc.binom,
- binomial,
- np.array(bad_points),
- dps=400,
- atol=1e-14)
- def test_chebyt_int(self):
- assert_mpmath_equal(lambda n, x: sc.eval_chebyt(int(n), x),
- exception_to_nan(lambda n, x: mpmath.chebyt(n, x, **HYPERKW)),
- [IntArg(), Arg()], dps=50)
- @pytest.mark.xfail(run=False, reason="some cases in hyp2f1 not fully accurate")
- def test_chebyt(self):
- assert_mpmath_equal(sc.eval_chebyt,
- lambda n, x: time_limited()(exception_to_nan(mpmath.chebyt))(n, x, **HYPERKW),
- [Arg(-101, 101), Arg()], n=10000)
- def test_chebyu_int(self):
- assert_mpmath_equal(lambda n, x: sc.eval_chebyu(int(n), x),
- exception_to_nan(lambda n, x: mpmath.chebyu(n, x, **HYPERKW)),
- [IntArg(), Arg()], dps=50)
- @pytest.mark.xfail(run=False, reason="some cases in hyp2f1 not fully accurate")
- def test_chebyu(self):
- assert_mpmath_equal(sc.eval_chebyu,
- lambda n, x: time_limited()(exception_to_nan(mpmath.chebyu))(n, x, **HYPERKW),
- [Arg(-101, 101), Arg()])
- def test_chi(self):
- def chi(x):
- return sc.shichi(x)[1]
- assert_mpmath_equal(chi, mpmath.chi, [Arg()])
- # check asymptotic series cross-over
- assert_mpmath_equal(chi, mpmath.chi, [FixedArg([88 - 1e-9, 88, 88 + 1e-9])])
- def test_chi_complex(self):
- def chi(z):
- return sc.shichi(z)[1]
- # chi oscillates as Im[z] -> +- inf, so limit range
- assert_mpmath_equal(chi,
- mpmath.chi,
- [ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))],
- rtol=1e-12)
- def test_ci(self):
- def ci(x):
- return sc.sici(x)[1]
- # oscillating function: limit range
- assert_mpmath_equal(ci,
- mpmath.ci,
- [Arg(-1e8, 1e8)])
- def test_ci_complex(self):
- def ci(z):
- return sc.sici(z)[1]
- # ci oscillates as Re[z] -> +- inf, so limit range
- assert_mpmath_equal(ci,
- mpmath.ci,
- [ComplexArg(complex(-1e8, -np.inf), complex(1e8, np.inf))],
- rtol=1e-8)
- def test_cospi(self):
- eps = np.finfo(float).eps
- assert_mpmath_equal(_cospi,
- mpmath.cospi,
- [Arg()], nan_ok=False, rtol=2*eps)
- def test_cospi_complex(self):
- assert_mpmath_equal(_cospi,
- mpmath.cospi,
- [ComplexArg()], nan_ok=False, rtol=1e-13)
- def test_digamma(self):
- assert_mpmath_equal(sc.digamma,
- exception_to_nan(mpmath.digamma),
- [Arg()], rtol=1e-12, dps=50)
- def test_digamma_complex(self):
- # Test on a cut plane because mpmath will hang. See
- # test_digamma_negreal for tests on the negative real axis.
- def param_filter(z):
- return np.where((z.real < 0) & (np.abs(z.imag) < 1.12), False, True)
- assert_mpmath_equal(sc.digamma,
- exception_to_nan(mpmath.digamma),
- [ComplexArg()], rtol=1e-13, dps=40,
- param_filter=param_filter)
- def test_e1(self):
- assert_mpmath_equal(sc.exp1,
- mpmath.e1,
- [Arg()], rtol=1e-14)
- def test_e1_complex(self):
- # E_1 oscillates as Im[z] -> +- inf, so limit range
- assert_mpmath_equal(sc.exp1,
- mpmath.e1,
- [ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))],
- rtol=1e-11)
- # Check cross-over region
- assert_mpmath_equal(sc.exp1,
- mpmath.e1,
- (np.linspace(-50, 50, 171)[:, None] +
- np.r_[0, np.logspace(-3, 2, 61),
- -np.logspace(-3, 2, 11)]*1j).ravel(),
- rtol=1e-11)
- assert_mpmath_equal(sc.exp1,
- mpmath.e1,
- (np.linspace(-50, -35, 10000) + 0j),
- rtol=1e-11)
- def test_exprel(self):
- assert_mpmath_equal(sc.exprel,
- lambda x: mpmath.expm1(x)/x if x != 0 else mpmath.mpf('1.0'),
- [Arg(a=-np.log(np.finfo(np.double).max), b=np.log(np.finfo(np.double).max))])
- assert_mpmath_equal(sc.exprel,
- lambda x: mpmath.expm1(x)/x if x != 0 else mpmath.mpf('1.0'),
- np.array([1e-12, 1e-24, 0, 1e12, 1e24, np.inf]), rtol=1e-11)
- assert_(np.isinf(sc.exprel(np.inf)))
- assert_(sc.exprel(-np.inf) == 0)
- def test_expm1_complex(self):
- # Oscillates as a function of Im[z], so limit range to avoid loss of precision
- assert_mpmath_equal(sc.expm1,
- mpmath.expm1,
- [ComplexArg(complex(-np.inf, -1e7), complex(np.inf, 1e7))])
- def test_log1p_complex(self):
- assert_mpmath_equal(sc.log1p,
- lambda x: mpmath.log(x+1),
- [ComplexArg()], dps=60)
- def test_log1pmx(self):
- assert_mpmath_equal(_log1pmx,
- lambda x: mpmath.log(x + 1) - x,
- [Arg()], dps=60, rtol=1e-14)
- def test_ei(self):
- assert_mpmath_equal(sc.expi,
- mpmath.ei,
- [Arg()],
- rtol=1e-11)
- def test_ei_complex(self):
- # Ei oscillates as Im[z] -> +- inf, so limit range
- assert_mpmath_equal(sc.expi,
- mpmath.ei,
- [ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))],
- rtol=1e-9)
- def test_ellipe(self):
- assert_mpmath_equal(sc.ellipe,
- mpmath.ellipe,
- [Arg(b=1.0)])
- def test_ellipeinc(self):
- assert_mpmath_equal(sc.ellipeinc,
- mpmath.ellipe,
- [Arg(-1e3, 1e3), Arg(b=1.0)])
- def test_ellipeinc_largephi(self):
- assert_mpmath_equal(sc.ellipeinc,
- mpmath.ellipe,
- [Arg(), Arg()])
- def test_ellipf(self):
- assert_mpmath_equal(sc.ellipkinc,
- mpmath.ellipf,
- [Arg(-1e3, 1e3), Arg()])
- def test_ellipf_largephi(self):
- assert_mpmath_equal(sc.ellipkinc,
- mpmath.ellipf,
- [Arg(), Arg()])
- def test_ellipk(self):
- assert_mpmath_equal(sc.ellipk,
- mpmath.ellipk,
- [Arg(b=1.0)])
- assert_mpmath_equal(sc.ellipkm1,
- lambda m: mpmath.ellipk(1 - m),
- [Arg(a=0.0)],
- dps=400)
- def test_ellipkinc(self):
- def ellipkinc(phi, m):
- return mpmath.ellippi(0, phi, m)
- assert_mpmath_equal(sc.ellipkinc,
- ellipkinc,
- [Arg(-1e3, 1e3), Arg(b=1.0)],
- ignore_inf_sign=True)
- def test_ellipkinc_largephi(self):
- def ellipkinc(phi, m):
- return mpmath.ellippi(0, phi, m)
- assert_mpmath_equal(sc.ellipkinc,
- ellipkinc,
- [Arg(), Arg(b=1.0)],
- ignore_inf_sign=True)
- def test_ellipfun_sn(self):
- def sn(u, m):
- # mpmath doesn't get the zero at u = 0--fix that
- if u == 0:
- return 0
- else:
- return mpmath.ellipfun("sn", u=u, m=m)
- # Oscillating function --- limit range of first argument; the
- # loss of precision there is an expected numerical feature
- # rather than an actual bug
- assert_mpmath_equal(lambda u, m: sc.ellipj(u, m)[0],
- sn,
- [Arg(-1e6, 1e6), Arg(a=0, b=1)],
- rtol=1e-8)
- def test_ellipfun_cn(self):
- # see comment in ellipfun_sn
- assert_mpmath_equal(lambda u, m: sc.ellipj(u, m)[1],
- lambda u, m: mpmath.ellipfun("cn", u=u, m=m),
- [Arg(-1e6, 1e6), Arg(a=0, b=1)],
- rtol=1e-8)
- def test_ellipfun_dn(self):
- # see comment in ellipfun_sn
- assert_mpmath_equal(lambda u, m: sc.ellipj(u, m)[2],
- lambda u, m: mpmath.ellipfun("dn", u=u, m=m),
- [Arg(-1e6, 1e6), Arg(a=0, b=1)],
- rtol=1e-8)
- def test_erf(self):
- assert_mpmath_equal(sc.erf,
- lambda z: mpmath.erf(z),
- [Arg()])
- def test_erf_complex(self):
- assert_mpmath_equal(sc.erf,
- lambda z: mpmath.erf(z),
- [ComplexArg()], n=200)
- def test_erfc(self):
- assert_mpmath_equal(sc.erfc,
- exception_to_nan(lambda z: mpmath.erfc(z)),
- [Arg()], rtol=1e-13)
- def test_erfc_complex(self):
- assert_mpmath_equal(sc.erfc,
- exception_to_nan(lambda z: mpmath.erfc(z)),
- [ComplexArg()], n=200)
- def test_erfi(self):
- assert_mpmath_equal(sc.erfi,
- mpmath.erfi,
- [Arg()], n=200)
- def test_erfi_complex(self):
- assert_mpmath_equal(sc.erfi,
- mpmath.erfi,
- [ComplexArg()], n=200)
- def test_ndtr(self):
- assert_mpmath_equal(sc.ndtr,
- exception_to_nan(lambda z: mpmath.ncdf(z)),
- [Arg()], n=200)
- def test_ndtr_complex(self):
- assert_mpmath_equal(sc.ndtr,
- lambda z: mpmath.erfc(-z/np.sqrt(2.))/2.,
- [ComplexArg(a=complex(-10000, -10000), b=complex(10000, 10000))], n=400)
- def test_log_ndtr(self):
- assert_mpmath_equal(sc.log_ndtr,
- exception_to_nan(lambda z: mpmath.log(mpmath.ncdf(z))),
- [Arg()], n=600, dps=300, rtol=1e-13)
- def test_log_ndtr_complex(self):
- assert_mpmath_equal(sc.log_ndtr,
- exception_to_nan(lambda z: mpmath.log(mpmath.erfc(-z/np.sqrt(2.))/2.)),
- [ComplexArg(a=complex(-10000, -100),
- b=complex(10000, 100))], n=200, dps=300)
- def test_eulernum(self):
- assert_mpmath_equal(lambda n: sc.euler(n)[-1],
- mpmath.eulernum,
- [IntArg(1, 10000)], n=10000)
- def test_expint(self):
- assert_mpmath_equal(sc.expn,
- mpmath.expint,
- [IntArg(0, 200), Arg(0, np.inf)],
- rtol=1e-13, dps=160)
- def test_fresnels(self):
- def fresnels(x):
- return sc.fresnel(x)[0]
- assert_mpmath_equal(fresnels,
- mpmath.fresnels,
- [Arg()])
- def test_fresnelc(self):
- def fresnelc(x):
- return sc.fresnel(x)[1]
- assert_mpmath_equal(fresnelc,
- mpmath.fresnelc,
- [Arg()])
- def test_gamma(self):
- assert_mpmath_equal(sc.gamma,
- exception_to_nan(mpmath.gamma),
- [Arg()])
- def test_gamma_complex(self):
- assert_mpmath_equal(sc.gamma,
- exception_to_nan(mpmath.gamma),
- [ComplexArg()], rtol=5e-13)
- def test_gammainc(self):
- # Larger arguments are tested in test_data.py:test_local
- assert_mpmath_equal(sc.gammainc,
- lambda z, b: mpmath.gammainc(z, b=b, regularized=True),
- [Arg(0, 1e4, inclusive_a=False), Arg(0, 1e4)],
- nan_ok=False, rtol=1e-11)
- def test_gammaincc(self):
- # Larger arguments are tested in test_data.py:test_local
- assert_mpmath_equal(sc.gammaincc,
- lambda z, a: mpmath.gammainc(z, a=a, regularized=True),
- [Arg(0, 1e4, inclusive_a=False), Arg(0, 1e4)],
- nan_ok=False, rtol=1e-11)
- def test_gammaln(self):
- # The real part of loggamma is log(|gamma(z)|).
- def f(z):
- return mpmath.loggamma(z).real
- assert_mpmath_equal(sc.gammaln, exception_to_nan(f), [Arg()])
- @pytest.mark.xfail(run=False)
- def test_gegenbauer(self):
- assert_mpmath_equal(sc.eval_gegenbauer,
- exception_to_nan(mpmath.gegenbauer),
- [Arg(-1e3, 1e3), Arg(), Arg()])
- def test_gegenbauer_int(self):
- # Redefine functions to deal with numerical + mpmath issues
- def gegenbauer(n, a, x):
- # Avoid overflow at large `a` (mpmath would need an even larger
- # dps to handle this correctly, so just skip this region)
- if abs(a) > 1e100:
- return np.nan
- # Deal with n=0, n=1 correctly; mpmath 0.17 doesn't do these
- # always correctly
- if n == 0:
- r = 1.0
- elif n == 1:
- r = 2*a*x
- else:
- r = mpmath.gegenbauer(n, a, x)
- # Mpmath 0.17 gives wrong results (spurious zero) in some cases, so
- # compute the value by perturbing the result
- if float(r) == 0 and a < -1 and float(a) == int(float(a)):
- r = mpmath.gegenbauer(n, a + mpmath.mpf('1e-50'), x)
- if abs(r) < mpmath.mpf('1e-50'):
- r = mpmath.mpf('0.0')
- # Differing overflow thresholds in scipy vs. mpmath
- if abs(r) > 1e270:
- return np.inf
- return r
- def sc_gegenbauer(n, a, x):
- r = sc.eval_gegenbauer(int(n), a, x)
- # Differing overflow thresholds in scipy vs. mpmath
- if abs(r) > 1e270:
- return np.inf
- return r
- assert_mpmath_equal(sc_gegenbauer,
- exception_to_nan(gegenbauer),
- [IntArg(0, 100), Arg(-1e9, 1e9), Arg()],
- n=40000, dps=100,
- ignore_inf_sign=True, rtol=1e-6)
- # Check the small-x expansion
- assert_mpmath_equal(sc_gegenbauer,
- exception_to_nan(gegenbauer),
- [IntArg(0, 100), Arg(), FixedArg(np.logspace(-30, -4, 30))],
- dps=100,
- ignore_inf_sign=True)
- @pytest.mark.xfail(run=False)
- def test_gegenbauer_complex(self):
- assert_mpmath_equal(lambda n, a, x: sc.eval_gegenbauer(int(n), a.real, x),
- exception_to_nan(mpmath.gegenbauer),
- [IntArg(0, 100), Arg(), ComplexArg()])
- @nonfunctional_tooslow
- def test_gegenbauer_complex_general(self):
- assert_mpmath_equal(lambda n, a, x: sc.eval_gegenbauer(n.real, a.real, x),
- exception_to_nan(mpmath.gegenbauer),
- [Arg(-1e3, 1e3), Arg(), ComplexArg()])
- def test_hankel1(self):
- assert_mpmath_equal(sc.hankel1,
- exception_to_nan(lambda v, x: mpmath.hankel1(v, x,
- **HYPERKW)),
- [Arg(-1e20, 1e20), Arg()])
- def test_hankel2(self):
- assert_mpmath_equal(sc.hankel2,
- exception_to_nan(lambda v, x: mpmath.hankel2(v, x, **HYPERKW)),
- [Arg(-1e20, 1e20), Arg()])
- @pytest.mark.xfail(run=False, reason="issues at intermediately large orders")
- def test_hermite(self):
- assert_mpmath_equal(lambda n, x: sc.eval_hermite(int(n), x),
- exception_to_nan(mpmath.hermite),
- [IntArg(0, 10000), Arg()])
- # hurwitz: same as zeta
- def test_hyp0f1(self):
- # mpmath reports no convergence unless maxterms is large enough
- KW = dict(maxprec=400, maxterms=1500)
- # n=500 (non-xslow default) fails for one bad point
- assert_mpmath_equal(sc.hyp0f1,
- lambda a, x: mpmath.hyp0f1(a, x, **KW),
- [Arg(-1e7, 1e7), Arg(0, 1e5)],
- n=5000)
- # NB: The range of the second parameter ("z") is limited from below
- # because of an overflow in the intermediate calculations. The way
- # for fix it is to implement an asymptotic expansion for Bessel J
- # (similar to what is implemented for Bessel I here).
- def test_hyp0f1_complex(self):
- assert_mpmath_equal(lambda a, z: sc.hyp0f1(a.real, z),
- exception_to_nan(lambda a, x: mpmath.hyp0f1(a, x, **HYPERKW)),
- [Arg(-10, 10), ComplexArg(complex(-120, -120), complex(120, 120))])
- # NB: The range of the first parameter ("v") are limited by an overflow
- # in the intermediate calculations. Can be fixed by implementing an
- # asymptotic expansion for Bessel functions for large order.
- def test_hyp1f1(self):
- def mpmath_hyp1f1(a, b, x):
- try:
- return mpmath.hyp1f1(a, b, x)
- except ZeroDivisionError:
- return np.inf
- assert_mpmath_equal(
- sc.hyp1f1,
- mpmath_hyp1f1,
- [Arg(-50, 50), Arg(1, 50, inclusive_a=False), Arg(-50, 50)],
- n=500,
- nan_ok=False
- )
- @pytest.mark.xfail(run=False)
- def test_hyp1f1_complex(self):
- assert_mpmath_equal(inf_to_nan(lambda a, b, x: sc.hyp1f1(a.real, b.real, x)),
- exception_to_nan(lambda a, b, x: mpmath.hyp1f1(a, b, x, **HYPERKW)),
- [Arg(-1e3, 1e3), Arg(-1e3, 1e3), ComplexArg()],
- n=2000)
- @nonfunctional_tooslow
- def test_hyp2f1_complex(self):
- # SciPy's hyp2f1 seems to have performance and accuracy problems
- assert_mpmath_equal(lambda a, b, c, x: sc.hyp2f1(a.real, b.real, c.real, x),
- exception_to_nan(lambda a, b, c, x: mpmath.hyp2f1(a, b, c, x, **HYPERKW)),
- [Arg(-1e2, 1e2), Arg(-1e2, 1e2), Arg(-1e2, 1e2), ComplexArg()],
- n=10)
- @pytest.mark.xfail(run=False)
- def test_hyperu(self):
- assert_mpmath_equal(sc.hyperu,
- exception_to_nan(lambda a, b, x: mpmath.hyperu(a, b, x, **HYPERKW)),
- [Arg(), Arg(), Arg()])
- @pytest.mark.xfail_on_32bit("mpmath issue gh-342: unsupported operand mpz, long for pow")
- def test_igam_fac(self):
- def mp_igam_fac(a, x):
- return mpmath.power(x, a)*mpmath.exp(-x)/mpmath.gamma(a)
- assert_mpmath_equal(_igam_fac,
- mp_igam_fac,
- [Arg(0, 1e14, inclusive_a=False), Arg(0, 1e14)],
- rtol=1e-10)
- def test_j0(self):
- # The Bessel function at large arguments is j0(x) ~ cos(x + phi)/sqrt(x)
- # and at large arguments the phase of the cosine loses precision.
- #
- # This is numerically expected behavior, so we compare only up to
- # 1e8 = 1e15 * 1e-7
- assert_mpmath_equal(sc.j0,
- mpmath.j0,
- [Arg(-1e3, 1e3)])
- assert_mpmath_equal(sc.j0,
- mpmath.j0,
- [Arg(-1e8, 1e8)],
- rtol=1e-5)
- def test_j1(self):
- # See comment in test_j0
- assert_mpmath_equal(sc.j1,
- mpmath.j1,
- [Arg(-1e3, 1e3)])
- assert_mpmath_equal(sc.j1,
- mpmath.j1,
- [Arg(-1e8, 1e8)],
- rtol=1e-5)
- @pytest.mark.xfail(run=False)
- def test_jacobi(self):
- assert_mpmath_equal(sc.eval_jacobi,
- exception_to_nan(lambda a, b, c, x: mpmath.jacobi(a, b, c, x, **HYPERKW)),
- [Arg(), Arg(), Arg(), Arg()])
- assert_mpmath_equal(lambda n, b, c, x: sc.eval_jacobi(int(n), b, c, x),
- exception_to_nan(lambda a, b, c, x: mpmath.jacobi(a, b, c, x, **HYPERKW)),
- [IntArg(), Arg(), Arg(), Arg()])
- def test_jacobi_int(self):
- # Redefine functions to deal with numerical + mpmath issues
- def jacobi(n, a, b, x):
- # Mpmath does not handle n=0 case always correctly
- if n == 0:
- return 1.0
- return mpmath.jacobi(n, a, b, x)
- assert_mpmath_equal(lambda n, a, b, x: sc.eval_jacobi(int(n), a, b, x),
- lambda n, a, b, x: exception_to_nan(jacobi)(n, a, b, x, **HYPERKW),
- [IntArg(), Arg(), Arg(), Arg()],
- n=20000, dps=50)
- def test_kei(self):
- def kei(x):
- if x == 0:
- # work around mpmath issue at x=0
- return -pi/4
- return exception_to_nan(mpmath.kei)(0, x, **HYPERKW)
- assert_mpmath_equal(sc.kei,
- kei,
- [Arg(-1e30, 1e30)], n=1000)
- def test_ker(self):
- assert_mpmath_equal(sc.ker,
- exception_to_nan(lambda x: mpmath.ker(0, x, **HYPERKW)),
- [Arg(-1e30, 1e30)], n=1000)
- @nonfunctional_tooslow
- def test_laguerre(self):
- assert_mpmath_equal(trace_args(sc.eval_laguerre),
- lambda n, x: exception_to_nan(mpmath.laguerre)(n, x, **HYPERKW),
- [Arg(), Arg()])
- def test_laguerre_int(self):
- assert_mpmath_equal(lambda n, x: sc.eval_laguerre(int(n), x),
- lambda n, x: exception_to_nan(mpmath.laguerre)(n, x, **HYPERKW),
- [IntArg(), Arg()], n=20000)
- @pytest.mark.xfail_on_32bit("see gh-3551 for bad points")
- def test_lambertw_real(self):
- assert_mpmath_equal(lambda x, k: sc.lambertw(x, int(k.real)),
- lambda x, k: mpmath.lambertw(x, int(k.real)),
- [ComplexArg(-np.inf, np.inf), IntArg(0, 10)],
- rtol=1e-13, nan_ok=False)
- def test_lanczos_sum_expg_scaled(self):
- maxgamma = 171.624376956302725
- e = np.exp(1)
- g = 6.024680040776729583740234375
- def gamma(x):
- with np.errstate(over='ignore'):
- fac = ((x + g - 0.5)/e)**(x - 0.5)
- if fac != np.inf:
- res = fac*_lanczos_sum_expg_scaled(x)
- else:
- fac = ((x + g - 0.5)/e)**(0.5*(x - 0.5))
- res = fac*_lanczos_sum_expg_scaled(x)
- res *= fac
- return res
- assert_mpmath_equal(gamma,
- mpmath.gamma,
- [Arg(0, maxgamma, inclusive_a=False)],
- rtol=1e-13)
- @nonfunctional_tooslow
- def test_legendre(self):
- assert_mpmath_equal(sc.eval_legendre,
- mpmath.legendre,
- [Arg(), Arg()])
- def test_legendre_int(self):
- assert_mpmath_equal(lambda n, x: sc.eval_legendre(int(n), x),
- lambda n, x: exception_to_nan(mpmath.legendre)(n, x, **HYPERKW),
- [IntArg(), Arg()],
- n=20000)
- # Check the small-x expansion
- assert_mpmath_equal(lambda n, x: sc.eval_legendre(int(n), x),
- lambda n, x: exception_to_nan(mpmath.legendre)(n, x, **HYPERKW),
- [IntArg(), FixedArg(np.logspace(-30, -4, 20))])
- def test_legenp(self):
- def lpnm(n, m, z):
- try:
- v = sc.lpmn(m, n, z)[0][-1,-1]
- except ValueError:
- return np.nan
- if abs(v) > 1e306:
- # harmonize overflow to inf
- v = np.inf * np.sign(v.real)
- return v
- def lpnm_2(n, m, z):
- v = sc.lpmv(m, n, z)
- if abs(v) > 1e306:
- # harmonize overflow to inf
- v = np.inf * np.sign(v.real)
- return v
- def legenp(n, m, z):
- if (z == 1 or z == -1) and int(n) == n:
- # Special case (mpmath may give inf, we take the limit by
- # continuity)
- if m == 0:
- if n < 0:
- n = -n - 1
- return mpmath.power(mpmath.sign(z), n)
- else:
- return 0
- if abs(z) < 1e-15:
- # mpmath has bad performance here
- return np.nan
- typ = 2 if abs(z) < 1 else 3
- v = exception_to_nan(mpmath.legenp)(n, m, z, type=typ)
- if abs(v) > 1e306:
- # harmonize overflow to inf
- v = mpmath.inf * mpmath.sign(v.real)
- return v
- assert_mpmath_equal(lpnm,
- legenp,
- [IntArg(-100, 100), IntArg(-100, 100), Arg()])
- assert_mpmath_equal(lpnm_2,
- legenp,
- [IntArg(-100, 100), Arg(-100, 100), Arg(-1, 1)],
- atol=1e-10)
- def test_legenp_complex_2(self):
- def clpnm(n, m, z):
- try:
- return sc.clpmn(m.real, n.real, z, type=2)[0][-1,-1]
- except ValueError:
- return np.nan
- def legenp(n, m, z):
- if abs(z) < 1e-15:
- # mpmath has bad performance here
- return np.nan
- return exception_to_nan(mpmath.legenp)(int(n.real), int(m.real), z, type=2)
- # mpmath is quite slow here
- x = np.array([-2, -0.99, -0.5, 0, 1e-5, 0.5, 0.99, 20, 2e3])
- y = np.array([-1e3, -0.5, 0.5, 1.3])
- z = (x[:,None] + 1j*y[None,:]).ravel()
- assert_mpmath_equal(clpnm,
- legenp,
- [FixedArg([-2, -1, 0, 1, 2, 10]), FixedArg([-2, -1, 0, 1, 2, 10]), FixedArg(z)],
- rtol=1e-6,
- n=500)
- def test_legenp_complex_3(self):
- def clpnm(n, m, z):
- try:
- return sc.clpmn(m.real, n.real, z, type=3)[0][-1,-1]
- except ValueError:
- return np.nan
- def legenp(n, m, z):
- if abs(z) < 1e-15:
- # mpmath has bad performance here
- return np.nan
- return exception_to_nan(mpmath.legenp)(int(n.real), int(m.real), z, type=3)
- # mpmath is quite slow here
- x = np.array([-2, -0.99, -0.5, 0, 1e-5, 0.5, 0.99, 20, 2e3])
- y = np.array([-1e3, -0.5, 0.5, 1.3])
- z = (x[:,None] + 1j*y[None,:]).ravel()
- assert_mpmath_equal(clpnm,
- legenp,
- [FixedArg([-2, -1, 0, 1, 2, 10]), FixedArg([-2, -1, 0, 1, 2, 10]), FixedArg(z)],
- rtol=1e-6,
- n=500)
- @pytest.mark.xfail(run=False, reason="apparently picks wrong function at |z| > 1")
- def test_legenq(self):
- def lqnm(n, m, z):
- return sc.lqmn(m, n, z)[0][-1,-1]
- def legenq(n, m, z):
- if abs(z) < 1e-15:
- # mpmath has bad performance here
- return np.nan
- return exception_to_nan(mpmath.legenq)(n, m, z, type=2)
- assert_mpmath_equal(lqnm,
- legenq,
- [IntArg(0, 100), IntArg(0, 100), Arg()])
- @nonfunctional_tooslow
- def test_legenq_complex(self):
- def lqnm(n, m, z):
- return sc.lqmn(int(m.real), int(n.real), z)[0][-1,-1]
- def legenq(n, m, z):
- if abs(z) < 1e-15:
- # mpmath has bad performance here
- return np.nan
- return exception_to_nan(mpmath.legenq)(int(n.real), int(m.real), z, type=2)
- assert_mpmath_equal(lqnm,
- legenq,
- [IntArg(0, 100), IntArg(0, 100), ComplexArg()],
- n=100)
- def test_lgam1p(self):
- def param_filter(x):
- # Filter the poles
- return np.where((np.floor(x) == x) & (x <= 0), False, True)
- def mp_lgam1p(z):
- # The real part of loggamma is log(|gamma(z)|)
- return mpmath.loggamma(1 + z).real
- assert_mpmath_equal(_lgam1p,
- mp_lgam1p,
- [Arg()], rtol=1e-13, dps=100,
- param_filter=param_filter)
- def test_loggamma(self):
- def mpmath_loggamma(z):
- try:
- res = mpmath.loggamma(z)
- except ValueError:
- res = complex(np.nan, np.nan)
- return res
- assert_mpmath_equal(sc.loggamma,
- mpmath_loggamma,
- [ComplexArg()], nan_ok=False,
- distinguish_nan_and_inf=False, rtol=5e-14)
- @pytest.mark.xfail(run=False)
- def test_pcfd(self):
- def pcfd(v, x):
- return sc.pbdv(v, x)[0]
- assert_mpmath_equal(pcfd,
- exception_to_nan(lambda v, x: mpmath.pcfd(v, x, **HYPERKW)),
- [Arg(), Arg()])
- @pytest.mark.xfail(run=False, reason="it's not the same as the mpmath function --- maybe different definition?")
- def test_pcfv(self):
- def pcfv(v, x):
- return sc.pbvv(v, x)[0]
- assert_mpmath_equal(pcfv,
- lambda v, x: time_limited()(exception_to_nan(mpmath.pcfv))(v, x, **HYPERKW),
- [Arg(), Arg()], n=1000)
- def test_pcfw(self):
- def pcfw(a, x):
- return sc.pbwa(a, x)[0]
- def dpcfw(a, x):
- return sc.pbwa(a, x)[1]
- def mpmath_dpcfw(a, x):
- return mpmath.diff(mpmath.pcfw, (a, x), (0, 1))
- # The Zhang and Jin implementation only uses Taylor series and
- # is thus accurate in only a very small range.
- assert_mpmath_equal(pcfw,
- mpmath.pcfw,
- [Arg(-5, 5), Arg(-5, 5)], rtol=2e-8, n=100)
- assert_mpmath_equal(dpcfw,
- mpmath_dpcfw,
- [Arg(-5, 5), Arg(-5, 5)], rtol=2e-9, n=100)
- @pytest.mark.xfail(run=False, reason="issues at large arguments (atol OK, rtol not) and <eps-close to z=0")
- def test_polygamma(self):
- assert_mpmath_equal(sc.polygamma,
- time_limited()(exception_to_nan(mpmath.polygamma)),
- [IntArg(0, 1000), Arg()])
- def test_rgamma(self):
- assert_mpmath_equal(
- sc.rgamma,
- mpmath.rgamma,
- [Arg(-8000, np.inf)],
- n=5000,
- nan_ok=False,
- ignore_inf_sign=True,
- )
- def test_rgamma_complex(self):
- assert_mpmath_equal(sc.rgamma,
- exception_to_nan(mpmath.rgamma),
- [ComplexArg()], rtol=5e-13)
- @pytest.mark.xfail(reason=("see gh-3551 for bad points on 32 bit "
- "systems and gh-8095 for another bad "
- "point"))
- def test_rf(self):
- if _pep440.parse(mpmath.__version__) >= _pep440.Version("1.0.0"):
- # no workarounds needed
- mppoch = mpmath.rf
- else:
- def mppoch(a, m):
- # deal with cases where the result in double precision
- # hits exactly a non-positive integer, but the
- # corresponding extended-precision mpf floats don't
- if float(a + m) == int(a + m) and float(a + m) <= 0:
- a = mpmath.mpf(a)
- m = int(a + m) - a
- return mpmath.rf(a, m)
- assert_mpmath_equal(sc.poch,
- mppoch,
- [Arg(), Arg()],
- dps=400)
- def test_sinpi(self):
- eps = np.finfo(float).eps
- assert_mpmath_equal(_sinpi, mpmath.sinpi,
- [Arg()], nan_ok=False, rtol=2*eps)
- def test_sinpi_complex(self):
- assert_mpmath_equal(_sinpi, mpmath.sinpi,
- [ComplexArg()], nan_ok=False, rtol=2e-14)
- def test_shi(self):
- def shi(x):
- return sc.shichi(x)[0]
- assert_mpmath_equal(shi, mpmath.shi, [Arg()])
- # check asymptotic series cross-over
- assert_mpmath_equal(shi, mpmath.shi, [FixedArg([88 - 1e-9, 88, 88 + 1e-9])])
- def test_shi_complex(self):
- def shi(z):
- return sc.shichi(z)[0]
- # shi oscillates as Im[z] -> +- inf, so limit range
- assert_mpmath_equal(shi,
- mpmath.shi,
- [ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))],
- rtol=1e-12)
- def test_si(self):
- def si(x):
- return sc.sici(x)[0]
- assert_mpmath_equal(si, mpmath.si, [Arg()])
- def test_si_complex(self):
- def si(z):
- return sc.sici(z)[0]
- # si oscillates as Re[z] -> +- inf, so limit range
- assert_mpmath_equal(si,
- mpmath.si,
- [ComplexArg(complex(-1e8, -np.inf), complex(1e8, np.inf))],
- rtol=1e-12)
- def test_spence(self):
- # mpmath uses a different convention for the dilogarithm
- def dilog(x):
- return mpmath.polylog(2, 1 - x)
- # Spence has a branch cut on the negative real axis
- assert_mpmath_equal(sc.spence,
- exception_to_nan(dilog),
- [Arg(0, np.inf)], rtol=1e-14)
- def test_spence_complex(self):
- def dilog(z):
- return mpmath.polylog(2, 1 - z)
- assert_mpmath_equal(sc.spence,
- exception_to_nan(dilog),
- [ComplexArg()], rtol=1e-14)
- def test_spherharm(self):
- def spherharm(l, m, theta, phi):
- if m > l:
- return np.nan
- return sc.sph_harm(m, l, phi, theta)
- assert_mpmath_equal(spherharm,
- mpmath.spherharm,
- [IntArg(0, 100), IntArg(0, 100),
- Arg(a=0, b=pi), Arg(a=0, b=2*pi)],
- atol=1e-8, n=6000,
- dps=150)
- def test_struveh(self):
- assert_mpmath_equal(sc.struve,
- exception_to_nan(mpmath.struveh),
- [Arg(-1e4, 1e4), Arg(0, 1e4)],
- rtol=5e-10)
- def test_struvel(self):
- def mp_struvel(v, z):
- if v < 0 and z < -v and abs(v) > 1000:
- # larger DPS needed for correct results
- old_dps = mpmath.mp.dps
- try:
- mpmath.mp.dps = 300
- return mpmath.struvel(v, z)
- finally:
- mpmath.mp.dps = old_dps
- return mpmath.struvel(v, z)
- assert_mpmath_equal(sc.modstruve,
- exception_to_nan(mp_struvel),
- [Arg(-1e4, 1e4), Arg(0, 1e4)],
- rtol=5e-10,
- ignore_inf_sign=True)
- def test_wrightomega_real(self):
- def mpmath_wrightomega_real(x):
- return mpmath.lambertw(mpmath.exp(x), mpmath.mpf('-0.5'))
- # For x < -1000 the Wright Omega function is just 0 to double
- # precision, and for x > 1e21 it is just x to double
- # precision.
- assert_mpmath_equal(
- sc.wrightomega,
- mpmath_wrightomega_real,
- [Arg(-1000, 1e21)],
- rtol=5e-15,
- atol=0,
- nan_ok=False,
- )
- def test_wrightomega(self):
- assert_mpmath_equal(sc.wrightomega,
- lambda z: _mpmath_wrightomega(z, 25),
- [ComplexArg()], rtol=1e-14, nan_ok=False)
- def test_hurwitz_zeta(self):
- assert_mpmath_equal(sc.zeta,
- exception_to_nan(mpmath.zeta),
- [Arg(a=1, b=1e10, inclusive_a=False),
- Arg(a=0, inclusive_a=False)])
- def test_riemann_zeta(self):
- assert_mpmath_equal(
- sc.zeta,
- lambda x: mpmath.zeta(x) if x != 1 else mpmath.inf,
- [Arg(-100, 100)],
- nan_ok=False,
- rtol=5e-13,
- )
- def test_zetac(self):
- assert_mpmath_equal(sc.zetac,
- lambda x: (mpmath.zeta(x) - 1
- if x != 1 else mpmath.inf),
- [Arg(-100, 100)],
- nan_ok=False, dps=45, rtol=5e-13)
- def test_boxcox(self):
- def mp_boxcox(x, lmbda):
- x = mpmath.mp.mpf(x)
- lmbda = mpmath.mp.mpf(lmbda)
- if lmbda == 0:
- return mpmath.mp.log(x)
- else:
- return mpmath.mp.powm1(x, lmbda) / lmbda
- assert_mpmath_equal(sc.boxcox,
- exception_to_nan(mp_boxcox),
- [Arg(a=0, inclusive_a=False), Arg()],
- n=200,
- dps=60,
- rtol=1e-13)
- def test_boxcox1p(self):
- def mp_boxcox1p(x, lmbda):
- x = mpmath.mp.mpf(x)
- lmbda = mpmath.mp.mpf(lmbda)
- one = mpmath.mp.mpf(1)
- if lmbda == 0:
- return mpmath.mp.log(one + x)
- else:
- return mpmath.mp.powm1(one + x, lmbda) / lmbda
- assert_mpmath_equal(sc.boxcox1p,
- exception_to_nan(mp_boxcox1p),
- [Arg(a=-1, inclusive_a=False), Arg()],
- n=200,
- dps=60,
- rtol=1e-13)
- def test_spherical_jn(self):
- def mp_spherical_jn(n, z):
- arg = mpmath.mpmathify(z)
- out = (mpmath.besselj(n + mpmath.mpf(1)/2, arg) /
- mpmath.sqrt(2*arg/mpmath.pi))
- if arg.imag == 0:
- return out.real
- else:
- return out
- assert_mpmath_equal(lambda n, z: sc.spherical_jn(int(n), z),
- exception_to_nan(mp_spherical_jn),
- [IntArg(0, 200), Arg(-1e8, 1e8)],
- dps=300)
- def test_spherical_jn_complex(self):
- def mp_spherical_jn(n, z):
- arg = mpmath.mpmathify(z)
- out = (mpmath.besselj(n + mpmath.mpf(1)/2, arg) /
- mpmath.sqrt(2*arg/mpmath.pi))
- if arg.imag == 0:
- return out.real
- else:
- return out
- assert_mpmath_equal(lambda n, z: sc.spherical_jn(int(n.real), z),
- exception_to_nan(mp_spherical_jn),
- [IntArg(0, 200), ComplexArg()])
- def test_spherical_yn(self):
- def mp_spherical_yn(n, z):
- arg = mpmath.mpmathify(z)
- out = (mpmath.bessely(n + mpmath.mpf(1)/2, arg) /
- mpmath.sqrt(2*arg/mpmath.pi))
- if arg.imag == 0:
- return out.real
- else:
- return out
- assert_mpmath_equal(lambda n, z: sc.spherical_yn(int(n), z),
- exception_to_nan(mp_spherical_yn),
- [IntArg(0, 200), Arg(-1e10, 1e10)],
- dps=100)
- def test_spherical_yn_complex(self):
- def mp_spherical_yn(n, z):
- arg = mpmath.mpmathify(z)
- out = (mpmath.bessely(n + mpmath.mpf(1)/2, arg) /
- mpmath.sqrt(2*arg/mpmath.pi))
- if arg.imag == 0:
- return out.real
- else:
- return out
- assert_mpmath_equal(lambda n, z: sc.spherical_yn(int(n.real), z),
- exception_to_nan(mp_spherical_yn),
- [IntArg(0, 200), ComplexArg()])
- def test_spherical_in(self):
- def mp_spherical_in(n, z):
- arg = mpmath.mpmathify(z)
- out = (mpmath.besseli(n + mpmath.mpf(1)/2, arg) /
- mpmath.sqrt(2*arg/mpmath.pi))
- if arg.imag == 0:
- return out.real
- else:
- return out
- assert_mpmath_equal(lambda n, z: sc.spherical_in(int(n), z),
- exception_to_nan(mp_spherical_in),
- [IntArg(0, 200), Arg()],
- dps=200, atol=10**(-278))
- def test_spherical_in_complex(self):
- def mp_spherical_in(n, z):
- arg = mpmath.mpmathify(z)
- out = (mpmath.besseli(n + mpmath.mpf(1)/2, arg) /
- mpmath.sqrt(2*arg/mpmath.pi))
- if arg.imag == 0:
- return out.real
- else:
- return out
- assert_mpmath_equal(lambda n, z: sc.spherical_in(int(n.real), z),
- exception_to_nan(mp_spherical_in),
- [IntArg(0, 200), ComplexArg()])
- def test_spherical_kn(self):
- def mp_spherical_kn(n, z):
- out = (mpmath.besselk(n + mpmath.mpf(1)/2, z) *
- mpmath.sqrt(mpmath.pi/(2*mpmath.mpmathify(z))))
- if mpmath.mpmathify(z).imag == 0:
- return out.real
- else:
- return out
- assert_mpmath_equal(lambda n, z: sc.spherical_kn(int(n), z),
- exception_to_nan(mp_spherical_kn),
- [IntArg(0, 150), Arg()],
- dps=100)
- @pytest.mark.xfail(run=False, reason="Accuracy issues near z = -1 inherited from kv.")
- def test_spherical_kn_complex(self):
- def mp_spherical_kn(n, z):
- arg = mpmath.mpmathify(z)
- out = (mpmath.besselk(n + mpmath.mpf(1)/2, arg) /
- mpmath.sqrt(2*arg/mpmath.pi))
- if arg.imag == 0:
- return out.real
- else:
- return out
- assert_mpmath_equal(lambda n, z: sc.spherical_kn(int(n.real), z),
- exception_to_nan(mp_spherical_kn),
- [IntArg(0, 200), ComplexArg()],
- dps=200)
|