123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 |
- import numpy as np
- from numpy.testing import (assert_almost_equal, assert_equal, assert_allclose,
- assert_array_almost_equal, assert_)
- from scipy.special import logsumexp, softmax
- def test_logsumexp():
- # Test whether logsumexp() function correctly handles large inputs.
- a = np.arange(200)
- desired = np.log(np.sum(np.exp(a)))
- assert_almost_equal(logsumexp(a), desired)
- # Now test with large numbers
- b = [1000, 1000]
- desired = 1000.0 + np.log(2.0)
- assert_almost_equal(logsumexp(b), desired)
- n = 1000
- b = np.full(n, 10000, dtype='float64')
- desired = 10000.0 + np.log(n)
- assert_almost_equal(logsumexp(b), desired)
- x = np.array([1e-40] * 1000000)
- logx = np.log(x)
- X = np.vstack([x, x])
- logX = np.vstack([logx, logx])
- assert_array_almost_equal(np.exp(logsumexp(logX)), X.sum())
- assert_array_almost_equal(np.exp(logsumexp(logX, axis=0)), X.sum(axis=0))
- assert_array_almost_equal(np.exp(logsumexp(logX, axis=1)), X.sum(axis=1))
- # Handling special values properly
- assert_equal(logsumexp(np.inf), np.inf)
- assert_equal(logsumexp(-np.inf), -np.inf)
- assert_equal(logsumexp(np.nan), np.nan)
- assert_equal(logsumexp([-np.inf, -np.inf]), -np.inf)
- # Handling an array with different magnitudes on the axes
- assert_array_almost_equal(logsumexp([[1e10, 1e-10],
- [-1e10, -np.inf]], axis=-1),
- [1e10, -1e10])
- # Test keeping dimensions
- assert_array_almost_equal(logsumexp([[1e10, 1e-10],
- [-1e10, -np.inf]],
- axis=-1,
- keepdims=True),
- [[1e10], [-1e10]])
- # Test multiple axes
- assert_array_almost_equal(logsumexp([[1e10, 1e-10],
- [-1e10, -np.inf]],
- axis=(-1,-2)),
- 1e10)
- def test_logsumexp_b():
- a = np.arange(200)
- b = np.arange(200, 0, -1)
- desired = np.log(np.sum(b*np.exp(a)))
- assert_almost_equal(logsumexp(a, b=b), desired)
- a = [1000, 1000]
- b = [1.2, 1.2]
- desired = 1000 + np.log(2 * 1.2)
- assert_almost_equal(logsumexp(a, b=b), desired)
- x = np.array([1e-40] * 100000)
- b = np.linspace(1, 1000, 100000)
- logx = np.log(x)
- X = np.vstack((x, x))
- logX = np.vstack((logx, logx))
- B = np.vstack((b, b))
- assert_array_almost_equal(np.exp(logsumexp(logX, b=B)), (B * X).sum())
- assert_array_almost_equal(np.exp(logsumexp(logX, b=B, axis=0)),
- (B * X).sum(axis=0))
- assert_array_almost_equal(np.exp(logsumexp(logX, b=B, axis=1)),
- (B * X).sum(axis=1))
- def test_logsumexp_sign():
- a = [1,1,1]
- b = [1,-1,-1]
- r, s = logsumexp(a, b=b, return_sign=True)
- assert_almost_equal(r,1)
- assert_equal(s,-1)
- def test_logsumexp_sign_zero():
- a = [1,1]
- b = [1,-1]
- r, s = logsumexp(a, b=b, return_sign=True)
- assert_(not np.isfinite(r))
- assert_(not np.isnan(r))
- assert_(r < 0)
- assert_equal(s,0)
- def test_logsumexp_sign_shape():
- a = np.ones((1,2,3,4))
- b = np.ones_like(a)
- r, s = logsumexp(a, axis=2, b=b, return_sign=True)
- assert_equal(r.shape, s.shape)
- assert_equal(r.shape, (1,2,4))
- r, s = logsumexp(a, axis=(1,3), b=b, return_sign=True)
- assert_equal(r.shape, s.shape)
- assert_equal(r.shape, (1,3))
- def test_logsumexp_shape():
- a = np.ones((1, 2, 3, 4))
- b = np.ones_like(a)
- r = logsumexp(a, axis=2, b=b)
- assert_equal(r.shape, (1, 2, 4))
- r = logsumexp(a, axis=(1, 3), b=b)
- assert_equal(r.shape, (1, 3))
- def test_logsumexp_b_zero():
- a = [1,10000]
- b = [1,0]
- assert_almost_equal(logsumexp(a, b=b), 1)
- def test_logsumexp_b_shape():
- a = np.zeros((4,1,2,1))
- b = np.ones((3,1,5))
- logsumexp(a, b=b)
- def test_softmax_fixtures():
- assert_allclose(softmax([1000, 0, 0, 0]), np.array([1, 0, 0, 0]),
- rtol=1e-13)
- assert_allclose(softmax([1, 1]), np.array([.5, .5]), rtol=1e-13)
- assert_allclose(softmax([0, 1]), np.array([1, np.e])/(1 + np.e),
- rtol=1e-13)
- # Expected value computed using mpmath (with mpmath.mp.dps = 200) and then
- # converted to float.
- x = np.arange(4)
- expected = np.array([0.03205860328008499,
- 0.08714431874203256,
- 0.23688281808991013,
- 0.6439142598879722])
- assert_allclose(softmax(x), expected, rtol=1e-13)
- # Translation property. If all the values are changed by the same amount,
- # the softmax result does not change.
- assert_allclose(softmax(x + 100), expected, rtol=1e-13)
- # When axis=None, softmax operates on the entire array, and preserves
- # the shape.
- assert_allclose(softmax(x.reshape(2, 2)), expected.reshape(2, 2),
- rtol=1e-13)
- def test_softmax_multi_axes():
- assert_allclose(softmax([[1000, 0], [1000, 0]], axis=0),
- np.array([[.5, .5], [.5, .5]]), rtol=1e-13)
- assert_allclose(softmax([[1000, 0], [1000, 0]], axis=1),
- np.array([[1, 0], [1, 0]]), rtol=1e-13)
- # Expected value computed using mpmath (with mpmath.mp.dps = 200) and then
- # converted to float.
- x = np.array([[-25, 0, 25, 50],
- [1, 325, 749, 750]])
- expected = np.array([[2.678636961770877e-33,
- 1.9287498479371314e-22,
- 1.3887943864771144e-11,
- 0.999999999986112],
- [0.0,
- 1.9444526359919372e-185,
- 0.2689414213699951,
- 0.7310585786300048]])
- assert_allclose(softmax(x, axis=1), expected, rtol=1e-13)
- assert_allclose(softmax(x.T, axis=0), expected.T, rtol=1e-13)
- # 3-d input, with a tuple for the axis.
- x3d = x.reshape(2, 2, 2)
- assert_allclose(softmax(x3d, axis=(1, 2)), expected.reshape(2, 2, 2),
- rtol=1e-13)
|