test_kolmogorov.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412
  1. import itertools
  2. import sys
  3. import pytest
  4. import numpy as np
  5. from numpy.testing import assert_
  6. from scipy.special._testutils import FuncData
  7. from scipy.special import kolmogorov, kolmogi, smirnov, smirnovi
  8. from scipy.special._ufuncs import (_kolmogc, _kolmogci, _kolmogp,
  9. _smirnovc, _smirnovci, _smirnovp)
  10. _rtol = 1e-10
  11. class TestSmirnov:
  12. def test_nan(self):
  13. assert_(np.isnan(smirnov(1, np.nan)))
  14. def test_basic(self):
  15. dataset = [(1, 0.1, 0.9),
  16. (1, 0.875, 0.125),
  17. (2, 0.875, 0.125 * 0.125),
  18. (3, 0.875, 0.125 * 0.125 * 0.125)]
  19. dataset = np.asarray(dataset)
  20. FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  21. dataset[:, -1] = 1 - dataset[:, -1]
  22. FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  23. def test_x_equals_0(self):
  24. dataset = [(n, 0, 1) for n in itertools.chain(range(2, 20), range(1010, 1020))]
  25. dataset = np.asarray(dataset)
  26. FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  27. dataset[:, -1] = 1 - dataset[:, -1]
  28. FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  29. def test_x_equals_1(self):
  30. dataset = [(n, 1, 0) for n in itertools.chain(range(2, 20), range(1010, 1020))]
  31. dataset = np.asarray(dataset)
  32. FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  33. dataset[:, -1] = 1 - dataset[:, -1]
  34. FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  35. def test_x_equals_0point5(self):
  36. dataset = [(1, 0.5, 0.5),
  37. (2, 0.5, 0.25),
  38. (3, 0.5, 0.166666666667),
  39. (4, 0.5, 0.09375),
  40. (5, 0.5, 0.056),
  41. (6, 0.5, 0.0327932098765),
  42. (7, 0.5, 0.0191958707681),
  43. (8, 0.5, 0.0112953186035),
  44. (9, 0.5, 0.00661933257355),
  45. (10, 0.5, 0.003888705)]
  46. dataset = np.asarray(dataset)
  47. FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  48. dataset[:, -1] = 1 - dataset[:, -1]
  49. FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  50. def test_n_equals_1(self):
  51. x = np.linspace(0, 1, 101, endpoint=True)
  52. dataset = np.column_stack([[1]*len(x), x, 1-x])
  53. FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  54. dataset[:, -1] = 1 - dataset[:, -1]
  55. FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  56. def test_n_equals_2(self):
  57. x = np.linspace(0.5, 1, 101, endpoint=True)
  58. p = np.power(1-x, 2)
  59. n = np.array([2] * len(x))
  60. dataset = np.column_stack([n, x, p])
  61. FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  62. dataset[:, -1] = 1 - dataset[:, -1]
  63. FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  64. def test_n_equals_3(self):
  65. x = np.linspace(0.7, 1, 31, endpoint=True)
  66. p = np.power(1-x, 3)
  67. n = np.array([3] * len(x))
  68. dataset = np.column_stack([n, x, p])
  69. FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  70. dataset[:, -1] = 1 - dataset[:, -1]
  71. FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  72. def test_n_large(self):
  73. # test for large values of n
  74. # Probabilities should go down as n goes up
  75. x = 0.4
  76. pvals = np.array([smirnov(n, x) for n in range(400, 1100, 20)])
  77. dfs = np.diff(pvals)
  78. assert_(np.all(dfs <= 0), msg='Not all diffs negative %s' % dfs)
  79. class TestSmirnovi:
  80. def test_nan(self):
  81. assert_(np.isnan(smirnovi(1, np.nan)))
  82. def test_basic(self):
  83. dataset = [(1, 0.4, 0.6),
  84. (1, 0.6, 0.4),
  85. (1, 0.99, 0.01),
  86. (1, 0.01, 0.99),
  87. (2, 0.125 * 0.125, 0.875),
  88. (3, 0.125 * 0.125 * 0.125, 0.875),
  89. (10, 1.0 / 16 ** 10, 1 - 1.0 / 16)]
  90. dataset = np.asarray(dataset)
  91. FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  92. dataset[:, 1] = 1 - dataset[:, 1]
  93. FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  94. def test_x_equals_0(self):
  95. dataset = [(n, 0, 1) for n in itertools.chain(range(2, 20), range(1010, 1020))]
  96. dataset = np.asarray(dataset)
  97. FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  98. dataset[:, 1] = 1 - dataset[:, 1]
  99. FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  100. def test_x_equals_1(self):
  101. dataset = [(n, 1, 0) for n in itertools.chain(range(2, 20), range(1010, 1020))]
  102. dataset = np.asarray(dataset)
  103. FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  104. dataset[:, 1] = 1 - dataset[:, 1]
  105. FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  106. def test_n_equals_1(self):
  107. pp = np.linspace(0, 1, 101, endpoint=True)
  108. # dataset = np.array([(1, p, 1-p) for p in pp])
  109. dataset = np.column_stack([[1]*len(pp), pp, 1-pp])
  110. FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  111. dataset[:, 1] = 1 - dataset[:, 1]
  112. FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  113. def test_n_equals_2(self):
  114. x = np.linspace(0.5, 1, 101, endpoint=True)
  115. p = np.power(1-x, 2)
  116. n = np.array([2] * len(x))
  117. dataset = np.column_stack([n, p, x])
  118. FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  119. dataset[:, 1] = 1 - dataset[:, 1]
  120. FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  121. def test_n_equals_3(self):
  122. x = np.linspace(0.7, 1, 31, endpoint=True)
  123. p = np.power(1-x, 3)
  124. n = np.array([3] * len(x))
  125. dataset = np.column_stack([n, p, x])
  126. FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  127. dataset[:, 1] = 1 - dataset[:, 1]
  128. FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  129. def test_round_trip(self):
  130. def _sm_smi(n, p):
  131. return smirnov(n, smirnovi(n, p))
  132. def _smc_smci(n, p):
  133. return _smirnovc(n, _smirnovci(n, p))
  134. dataset = [(1, 0.4, 0.4),
  135. (1, 0.6, 0.6),
  136. (2, 0.875, 0.875),
  137. (3, 0.875, 0.875),
  138. (3, 0.125, 0.125),
  139. (10, 0.999, 0.999),
  140. (10, 0.0001, 0.0001)]
  141. dataset = np.asarray(dataset)
  142. FuncData(_sm_smi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  143. FuncData(_smc_smci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  144. def test_x_equals_0point5(self):
  145. dataset = [(1, 0.5, 0.5),
  146. (2, 0.5, 0.366025403784),
  147. (2, 0.25, 0.5),
  148. (3, 0.5, 0.297156508177),
  149. (4, 0.5, 0.255520481121),
  150. (5, 0.5, 0.234559536069),
  151. (6, 0.5, 0.21715965898),
  152. (7, 0.5, 0.202722580034),
  153. (8, 0.5, 0.190621765256),
  154. (9, 0.5, 0.180363501362),
  155. (10, 0.5, 0.17157867006)]
  156. dataset = np.asarray(dataset)
  157. FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  158. dataset[:, 1] = 1 - dataset[:, 1]
  159. FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  160. class TestSmirnovp:
  161. def test_nan(self):
  162. assert_(np.isnan(_smirnovp(1, np.nan)))
  163. def test_basic(self):
  164. # Check derivative at endpoints
  165. n1_10 = np.arange(1, 10)
  166. dataset0 = np.column_stack([n1_10, np.full_like(n1_10, 0), np.full_like(n1_10, -1)])
  167. FuncData(_smirnovp, dataset0, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  168. n2_10 = np.arange(2, 10)
  169. dataset1 = np.column_stack([n2_10, np.full_like(n2_10, 1.0), np.full_like(n2_10, 0)])
  170. FuncData(_smirnovp, dataset1, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  171. def test_oneminusoneovern(self):
  172. # Check derivative at x=1-1/n
  173. n = np.arange(1, 20)
  174. x = 1.0/n
  175. xm1 = 1-1.0/n
  176. pp1 = -n * x**(n-1)
  177. pp1 -= (1-np.sign(n-2)**2) * 0.5 # n=2, x=0.5, 1-1/n = 0.5, need to adjust
  178. dataset1 = np.column_stack([n, xm1, pp1])
  179. FuncData(_smirnovp, dataset1, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  180. def test_oneovertwon(self):
  181. # Check derivative at x=1/2n (Discontinuous at x=1/n, so check at x=1/2n)
  182. n = np.arange(1, 20)
  183. x = 1.0/2/n
  184. pp = -(n*x+1) * (1+x)**(n-2)
  185. dataset0 = np.column_stack([n, x, pp])
  186. FuncData(_smirnovp, dataset0, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  187. def test_oneovern(self):
  188. # Check derivative at x=1/n (Discontinuous at x=1/n, hard to tell if x==1/n, only use n=power of 2)
  189. n = 2**np.arange(1, 10)
  190. x = 1.0/n
  191. pp = -(n*x+1) * (1+x)**(n-2) + 0.5
  192. dataset0 = np.column_stack([n, x, pp])
  193. FuncData(_smirnovp, dataset0, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  194. @pytest.mark.xfail(sys.maxsize <= 2**32,
  195. reason="requires 64-bit platform")
  196. def test_oneovernclose(self):
  197. # Check derivative at x=1/n (Discontinuous at x=1/n, test on either side: x=1/n +/- 2epsilon)
  198. n = np.arange(3, 20)
  199. x = 1.0/n - 2*np.finfo(float).eps
  200. pp = -(n*x+1) * (1+x)**(n-2)
  201. dataset0 = np.column_stack([n, x, pp])
  202. FuncData(_smirnovp, dataset0, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  203. x = 1.0/n + 2*np.finfo(float).eps
  204. pp = -(n*x+1) * (1+x)**(n-2) + 1
  205. dataset1 = np.column_stack([n, x, pp])
  206. FuncData(_smirnovp, dataset1, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  207. class TestKolmogorov:
  208. def test_nan(self):
  209. assert_(np.isnan(kolmogorov(np.nan)))
  210. def test_basic(self):
  211. dataset = [(0, 1.0),
  212. (0.5, 0.96394524366487511),
  213. (0.8275735551899077, 0.5000000000000000),
  214. (1, 0.26999967167735456),
  215. (2, 0.00067092525577969533)]
  216. dataset = np.asarray(dataset)
  217. FuncData(kolmogorov, dataset, (0,), 1, rtol=_rtol).check()
  218. def test_linspace(self):
  219. x = np.linspace(0, 2.0, 21)
  220. dataset = [1.0000000000000000, 1.0000000000000000, 0.9999999999994950,
  221. 0.9999906941986655, 0.9971923267772983, 0.9639452436648751,
  222. 0.8642827790506042, 0.7112351950296890, 0.5441424115741981,
  223. 0.3927307079406543, 0.2699996716773546, 0.1777181926064012,
  224. 0.1122496666707249, 0.0680922218447664, 0.0396818795381144,
  225. 0.0222179626165251, 0.0119520432391966, 0.0061774306344441,
  226. 0.0030676213475797, 0.0014636048371873, 0.0006709252557797]
  227. dataset_c = [0.0000000000000000, 6.609305242245699e-53, 5.050407338670114e-13,
  228. 9.305801334566668e-06, 0.0028076732227017, 0.0360547563351249,
  229. 0.1357172209493958, 0.2887648049703110, 0.4558575884258019,
  230. 0.6072692920593457, 0.7300003283226455, 0.8222818073935988,
  231. 0.8877503333292751, 0.9319077781552336, 0.9603181204618857,
  232. 0.9777820373834749, 0.9880479567608034, 0.9938225693655559,
  233. 0.9969323786524203, 0.9985363951628127, 0.9993290747442203]
  234. dataset = np.column_stack([x, dataset])
  235. FuncData(kolmogorov, dataset, (0,), 1, rtol=_rtol).check()
  236. dataset_c = np.column_stack([x, dataset_c])
  237. FuncData(_kolmogc, dataset_c, (0,), 1, rtol=_rtol).check()
  238. def test_linspacei(self):
  239. p = np.linspace(0, 1.0, 21, endpoint=True)
  240. dataset = [np.inf, 1.3580986393225507, 1.2238478702170823,
  241. 1.1379465424937751, 1.0727491749396481, 1.0191847202536859,
  242. 0.9730633753323726, 0.9320695842357622, 0.8947644549851197,
  243. 0.8601710725555463, 0.8275735551899077, 0.7964065373291559,
  244. 0.7661855555617682, 0.7364542888171910, 0.7067326523068980,
  245. 0.6764476915028201, 0.6448126061663567, 0.6105590999244391,
  246. 0.5711732651063401, 0.5196103791686224, 0.0000000000000000]
  247. dataset_c = [0.0000000000000000, 0.5196103791686225, 0.5711732651063401,
  248. 0.6105590999244391, 0.6448126061663567, 0.6764476915028201,
  249. 0.7067326523068980, 0.7364542888171910, 0.7661855555617682,
  250. 0.7964065373291559, 0.8275735551899077, 0.8601710725555463,
  251. 0.8947644549851196, 0.9320695842357622, 0.9730633753323727,
  252. 1.0191847202536859, 1.0727491749396481, 1.1379465424937754,
  253. 1.2238478702170825, 1.3580986393225509, np.inf]
  254. dataset = np.column_stack([p[1:], dataset[1:]])
  255. FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check()
  256. dataset_c = np.column_stack([p[:-1], dataset_c[:-1]])
  257. FuncData(_kolmogci, dataset_c, (0,), 1, rtol=_rtol).check()
  258. def test_smallx(self):
  259. epsilon = 0.1 ** np.arange(1, 14)
  260. x = np.array([0.571173265106, 0.441027698518, 0.374219690278, 0.331392659217,
  261. 0.300820537459, 0.277539353999, 0.259023494805, 0.243829561254,
  262. 0.231063086389, 0.220135543236, 0.210641372041, 0.202290283658,
  263. 0.19487060742])
  264. dataset = np.column_stack([x, 1-epsilon])
  265. FuncData(kolmogorov, dataset, (0,), 1, rtol=_rtol).check()
  266. def test_round_trip(self):
  267. def _ki_k(_x):
  268. return kolmogi(kolmogorov(_x))
  269. def _kci_kc(_x):
  270. return _kolmogci(_kolmogc(_x))
  271. x = np.linspace(0.0, 2.0, 21, endpoint=True)
  272. x02 = x[(x == 0) | (x > 0.21)] # Exclude 0.1, 0.2. 0.2 almost makes succeeds, but 0.1 has no chance.
  273. dataset02 = np.column_stack([x02, x02])
  274. FuncData(_ki_k, dataset02, (0,), 1, rtol=_rtol).check()
  275. dataset = np.column_stack([x, x])
  276. FuncData(_kci_kc, dataset, (0,), 1, rtol=_rtol).check()
  277. class TestKolmogi:
  278. def test_nan(self):
  279. assert_(np.isnan(kolmogi(np.nan)))
  280. def test_basic(self):
  281. dataset = [(1.0, 0),
  282. (0.96394524366487511, 0.5),
  283. (0.9, 0.571173265106),
  284. (0.5000000000000000, 0.8275735551899077),
  285. (0.26999967167735456, 1),
  286. (0.00067092525577969533, 2)]
  287. dataset = np.asarray(dataset)
  288. FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check()
  289. def test_smallpcdf(self):
  290. epsilon = 0.5 ** np.arange(1, 55, 3)
  291. # kolmogi(1-p) == _kolmogci(p) if 1-(1-p) == p, but not necessarily otherwise
  292. # Use epsilon s.t. 1-(1-epsilon)) == epsilon, so can use same x-array for both results
  293. x = np.array([0.8275735551899077, 0.5345255069097583, 0.4320114038786941,
  294. 0.3736868442620478, 0.3345161714909591, 0.3057833329315859,
  295. 0.2835052890528936, 0.2655578150208676, 0.2506869966107999,
  296. 0.2380971058736669, 0.2272549289962079, 0.2177876361600040,
  297. 0.2094254686862041, 0.2019676748836232, 0.1952612948137504,
  298. 0.1891874239646641, 0.1836520225050326, 0.1785795904846466])
  299. dataset = np.column_stack([1-epsilon, x])
  300. FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check()
  301. dataset = np.column_stack([epsilon, x])
  302. FuncData(_kolmogci, dataset, (0,), 1, rtol=_rtol).check()
  303. def test_smallpsf(self):
  304. epsilon = 0.5 ** np.arange(1, 55, 3)
  305. # kolmogi(p) == _kolmogci(1-p) if 1-(1-p) == p, but not necessarily otherwise
  306. # Use epsilon s.t. 1-(1-epsilon)) == epsilon, so can use same x-array for both results
  307. x = np.array([0.8275735551899077, 1.3163786275161036, 1.6651092133663343,
  308. 1.9525136345289607, 2.2027324540033235, 2.4272929437460848,
  309. 2.6327688477341593, 2.8233300509220260, 3.0018183401530627,
  310. 3.1702735084088891, 3.3302184446307912, 3.4828258153113318,
  311. 3.6290214150152051, 3.7695513262825959, 3.9050272690877326,
  312. 4.0359582187082550, 4.1627730557884890, 4.2858371743264527])
  313. dataset = np.column_stack([epsilon, x])
  314. FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check()
  315. dataset = np.column_stack([1-epsilon, x])
  316. FuncData(_kolmogci, dataset, (0,), 1, rtol=_rtol).check()
  317. def test_round_trip(self):
  318. def _k_ki(_p):
  319. return kolmogorov(kolmogi(_p))
  320. p = np.linspace(0.1, 1.0, 10, endpoint=True)
  321. dataset = np.column_stack([p, p])
  322. FuncData(_k_ki, dataset, (0,), 1, rtol=_rtol).check()
  323. class TestKolmogp:
  324. def test_nan(self):
  325. assert_(np.isnan(_kolmogp(np.nan)))
  326. def test_basic(self):
  327. dataset = [(0.000000, -0.0),
  328. (0.200000, -1.532420541338916e-10),
  329. (0.400000, -0.1012254419260496),
  330. (0.600000, -1.324123244249925),
  331. (0.800000, -1.627024345636592),
  332. (1.000000, -1.071948558356941),
  333. (1.200000, -0.538512430720529),
  334. (1.400000, -0.2222133182429472),
  335. (1.600000, -0.07649302775520538),
  336. (1.800000, -0.02208687346347873),
  337. (2.000000, -0.005367402045629683)]
  338. dataset = np.asarray(dataset)
  339. FuncData(_kolmogp, dataset, (0,), 1, rtol=_rtol).check()