123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617 |
- import os
- import numpy as np
- from numpy.testing import suppress_warnings
- import pytest
- from scipy.special import (
- lpn, lpmn, lpmv, lqn, lqmn, sph_harm, eval_legendre, eval_hermite,
- eval_laguerre, eval_genlaguerre, binom, cbrt, expm1, log1p, zeta,
- jn, jv, jvp, yn, yv, yvp, iv, ivp, kn, kv, kvp,
- gamma, gammaln, gammainc, gammaincc, gammaincinv, gammainccinv, digamma,
- beta, betainc, betaincinv, poch,
- ellipe, ellipeinc, ellipk, ellipkm1, ellipkinc, ellipj,
- elliprc, elliprd, elliprf, elliprg, elliprj,
- erf, erfc, erfinv, erfcinv, exp1, expi, expn,
- bdtrik, btdtr, btdtri, btdtria, btdtrib, chndtr, gdtr, gdtrc, gdtrix, gdtrib,
- nbdtrik, pdtrik, owens_t,
- mathieu_a, mathieu_b, mathieu_cem, mathieu_sem, mathieu_modcem1,
- mathieu_modsem1, mathieu_modcem2, mathieu_modsem2,
- ellip_harm, ellip_harm_2, spherical_jn, spherical_yn, wright_bessel
- )
- from scipy.integrate import IntegrationWarning
- from scipy.special._testutils import FuncData
- DATASETS_BOOST = np.load(os.path.join(os.path.dirname(__file__),
- "data", "boost.npz"))
- DATASETS_GSL = np.load(os.path.join(os.path.dirname(__file__),
- "data", "gsl.npz"))
- DATASETS_LOCAL = np.load(os.path.join(os.path.dirname(__file__),
- "data", "local.npz"))
- def data(func, dataname, *a, **kw):
- kw.setdefault('dataname', dataname)
- return FuncData(func, DATASETS_BOOST[dataname], *a, **kw)
- def data_gsl(func, dataname, *a, **kw):
- kw.setdefault('dataname', dataname)
- return FuncData(func, DATASETS_GSL[dataname], *a, **kw)
- def data_local(func, dataname, *a, **kw):
- kw.setdefault('dataname', dataname)
- return FuncData(func, DATASETS_LOCAL[dataname], *a, **kw)
- def ellipk_(k):
- return ellipk(k*k)
- def ellipkinc_(f, k):
- return ellipkinc(f, k*k)
- def ellipe_(k):
- return ellipe(k*k)
- def ellipeinc_(f, k):
- return ellipeinc(f, k*k)
- def ellipj_(k):
- return ellipj(k*k)
- def zeta_(x):
- return zeta(x, 1.)
- def assoc_legendre_p_boost_(nu, mu, x):
- # the boost test data is for integer orders only
- return lpmv(mu, nu.astype(int), x)
- def legendre_p_via_assoc_(nu, x):
- return lpmv(0, nu, x)
- def lpn_(n, x):
- return lpn(n.astype('l'), x)[0][-1]
- def lqn_(n, x):
- return lqn(n.astype('l'), x)[0][-1]
- def legendre_p_via_lpmn(n, x):
- return lpmn(0, n, x)[0][0,-1]
- def legendre_q_via_lqmn(n, x):
- return lqmn(0, n, x)[0][0,-1]
- def mathieu_ce_rad(m, q, x):
- return mathieu_cem(m, q, x*180/np.pi)[0]
- def mathieu_se_rad(m, q, x):
- return mathieu_sem(m, q, x*180/np.pi)[0]
- def mathieu_mc1_scaled(m, q, x):
- # GSL follows a different normalization.
- # We follow Abramowitz & Stegun, they apparently something else.
- return mathieu_modcem1(m, q, x)[0] * np.sqrt(np.pi/2)
- def mathieu_ms1_scaled(m, q, x):
- return mathieu_modsem1(m, q, x)[0] * np.sqrt(np.pi/2)
- def mathieu_mc2_scaled(m, q, x):
- return mathieu_modcem2(m, q, x)[0] * np.sqrt(np.pi/2)
- def mathieu_ms2_scaled(m, q, x):
- return mathieu_modsem2(m, q, x)[0] * np.sqrt(np.pi/2)
- def eval_legendre_ld(n, x):
- return eval_legendre(n.astype('l'), x)
- def eval_legendre_dd(n, x):
- return eval_legendre(n.astype('d'), x)
- def eval_hermite_ld(n, x):
- return eval_hermite(n.astype('l'), x)
- def eval_laguerre_ld(n, x):
- return eval_laguerre(n.astype('l'), x)
- def eval_laguerre_dd(n, x):
- return eval_laguerre(n.astype('d'), x)
- def eval_genlaguerre_ldd(n, a, x):
- return eval_genlaguerre(n.astype('l'), a, x)
- def eval_genlaguerre_ddd(n, a, x):
- return eval_genlaguerre(n.astype('d'), a, x)
- def bdtrik_comp(y, n, p):
- return bdtrik(1-y, n, p)
- def btdtri_comp(a, b, p):
- return btdtri(a, b, 1-p)
- def btdtria_comp(p, b, x):
- return btdtria(1-p, b, x)
- def btdtrib_comp(a, p, x):
- return btdtrib(a, 1-p, x)
- def gdtr_(p, x):
- return gdtr(1.0, p, x)
- def gdtrc_(p, x):
- return gdtrc(1.0, p, x)
- def gdtrix_(b, p):
- return gdtrix(1.0, b, p)
- def gdtrix_comp(b, p):
- return gdtrix(1.0, b, 1-p)
- def gdtrib_(p, x):
- return gdtrib(1.0, p, x)
- def gdtrib_comp(p, x):
- return gdtrib(1.0, 1-p, x)
- def nbdtrik_comp(y, n, p):
- return nbdtrik(1-y, n, p)
- def pdtrik_comp(p, m):
- return pdtrik(1-p, m)
- def poch_(z, m):
- return 1.0 / poch(z, m)
- def poch_minus(z, m):
- return 1.0 / poch(z, -m)
- def spherical_jn_(n, x):
- return spherical_jn(n.astype('l'), x)
- def spherical_yn_(n, x):
- return spherical_yn(n.astype('l'), x)
- def sph_harm_(m, n, theta, phi):
- y = sph_harm(m, n, theta, phi)
- return (y.real, y.imag)
- def cexpm1(x, y):
- z = expm1(x + 1j*y)
- return z.real, z.imag
- def clog1p(x, y):
- z = log1p(x + 1j*y)
- return z.real, z.imag
- BOOST_TESTS = [
- data(assoc_legendre_p_boost_, 'assoc_legendre_p_ipp-assoc_legendre_p', (0,1,2), 3, rtol=1e-11),
- data(legendre_p_via_assoc_, 'legendre_p_ipp-legendre_p', (0,1), 2, rtol=1e-11),
- data(legendre_p_via_assoc_, 'legendre_p_large_ipp-legendre_p_large', (0,1), 2, rtol=9.6e-14),
- data(legendre_p_via_lpmn, 'legendre_p_ipp-legendre_p', (0,1), 2, rtol=5e-14, vectorized=False),
- data(legendre_p_via_lpmn, 'legendre_p_large_ipp-legendre_p_large', (0,1), 2, rtol=9.6e-14, vectorized=False),
- data(lpn_, 'legendre_p_ipp-legendre_p', (0,1), 2, rtol=5e-14, vectorized=False),
- data(lpn_, 'legendre_p_large_ipp-legendre_p_large', (0,1), 2, rtol=3e-13, vectorized=False),
- data(eval_legendre_ld, 'legendre_p_ipp-legendre_p', (0,1), 2, rtol=6e-14),
- data(eval_legendre_ld, 'legendre_p_large_ipp-legendre_p_large', (0,1), 2, rtol=2e-13),
- data(eval_legendre_dd, 'legendre_p_ipp-legendre_p', (0,1), 2, rtol=2e-14),
- data(eval_legendre_dd, 'legendre_p_large_ipp-legendre_p_large', (0,1), 2, rtol=2e-13),
- data(lqn_, 'legendre_p_ipp-legendre_p', (0,1), 3, rtol=2e-14, vectorized=False),
- data(lqn_, 'legendre_p_large_ipp-legendre_p_large', (0,1), 3, rtol=2e-12, vectorized=False),
- data(legendre_q_via_lqmn, 'legendre_p_ipp-legendre_p', (0,1), 3, rtol=2e-14, vectorized=False),
- data(legendre_q_via_lqmn, 'legendre_p_large_ipp-legendre_p_large', (0,1), 3, rtol=2e-12, vectorized=False),
- data(beta, 'beta_exp_data_ipp-beta_exp_data', (0,1), 2, rtol=1e-13),
- data(beta, 'beta_exp_data_ipp-beta_exp_data', (0,1), 2, rtol=1e-13),
- data(beta, 'beta_med_data_ipp-beta_med_data', (0,1), 2, rtol=5e-13),
- data(betainc, 'ibeta_small_data_ipp-ibeta_small_data', (0,1,2), 5, rtol=6e-15),
- data(betainc, 'ibeta_data_ipp-ibeta_data', (0,1,2), 5, rtol=5e-13),
- data(betainc, 'ibeta_int_data_ipp-ibeta_int_data', (0,1,2), 5, rtol=2e-14),
- data(betainc, 'ibeta_large_data_ipp-ibeta_large_data', (0,1,2), 5, rtol=4e-10),
- data(betaincinv, 'ibeta_inv_data_ipp-ibeta_inv_data', (0,1,2), 3, rtol=1e-5),
- data(btdtr, 'ibeta_small_data_ipp-ibeta_small_data', (0,1,2), 5, rtol=6e-15),
- data(btdtr, 'ibeta_data_ipp-ibeta_data', (0,1,2), 5, rtol=4e-13),
- data(btdtr, 'ibeta_int_data_ipp-ibeta_int_data', (0,1,2), 5, rtol=2e-14),
- data(btdtr, 'ibeta_large_data_ipp-ibeta_large_data', (0,1,2), 5, rtol=4e-10),
- data(btdtri, 'ibeta_inv_data_ipp-ibeta_inv_data', (0,1,2), 3, rtol=1e-5),
- data(btdtri_comp, 'ibeta_inv_data_ipp-ibeta_inv_data', (0,1,2), 4, rtol=8e-7),
- data(btdtria, 'ibeta_inva_data_ipp-ibeta_inva_data', (2,0,1), 3, rtol=5e-9),
- data(btdtria_comp, 'ibeta_inva_data_ipp-ibeta_inva_data', (2,0,1), 4, rtol=5e-9),
- data(btdtrib, 'ibeta_inva_data_ipp-ibeta_inva_data', (0,2,1), 5, rtol=5e-9),
- data(btdtrib_comp, 'ibeta_inva_data_ipp-ibeta_inva_data', (0,2,1), 6, rtol=5e-9),
- data(binom, 'binomial_data_ipp-binomial_data', (0,1), 2, rtol=1e-13),
- data(binom, 'binomial_large_data_ipp-binomial_large_data', (0,1), 2, rtol=5e-13),
- data(bdtrik, 'binomial_quantile_ipp-binomial_quantile_data', (2,0,1), 3, rtol=5e-9),
- data(bdtrik_comp, 'binomial_quantile_ipp-binomial_quantile_data', (2,0,1), 4, rtol=5e-9),
- data(nbdtrik, 'negative_binomial_quantile_ipp-negative_binomial_quantile_data', (2,0,1), 3, rtol=4e-9),
- data(nbdtrik_comp, 'negative_binomial_quantile_ipp-negative_binomial_quantile_data', (2,0,1), 4, rtol=4e-9),
- data(pdtrik, 'poisson_quantile_ipp-poisson_quantile_data', (1,0), 2, rtol=3e-9),
- data(pdtrik_comp, 'poisson_quantile_ipp-poisson_quantile_data', (1,0), 3, rtol=4e-9),
- data(cbrt, 'cbrt_data_ipp-cbrt_data', 1, 0),
- data(digamma, 'digamma_data_ipp-digamma_data', 0, 1),
- data(digamma, 'digamma_data_ipp-digamma_data', 0j, 1),
- data(digamma, 'digamma_neg_data_ipp-digamma_neg_data', 0, 1, rtol=2e-13),
- data(digamma, 'digamma_neg_data_ipp-digamma_neg_data', 0j, 1, rtol=1e-13),
- data(digamma, 'digamma_root_data_ipp-digamma_root_data', 0, 1, rtol=1e-15),
- data(digamma, 'digamma_root_data_ipp-digamma_root_data', 0j, 1, rtol=1e-15),
- data(digamma, 'digamma_small_data_ipp-digamma_small_data', 0, 1, rtol=1e-15),
- data(digamma, 'digamma_small_data_ipp-digamma_small_data', 0j, 1, rtol=1e-14),
- data(ellipk_, 'ellint_k_data_ipp-ellint_k_data', 0, 1),
- data(ellipkinc_, 'ellint_f_data_ipp-ellint_f_data', (0,1), 2, rtol=1e-14),
- data(ellipe_, 'ellint_e_data_ipp-ellint_e_data', 0, 1),
- data(ellipeinc_, 'ellint_e2_data_ipp-ellint_e2_data', (0,1), 2, rtol=1e-14),
- data(erf, 'erf_data_ipp-erf_data', 0, 1),
- data(erf, 'erf_data_ipp-erf_data', 0j, 1, rtol=1e-13),
- data(erfc, 'erf_data_ipp-erf_data', 0, 2, rtol=6e-15),
- data(erf, 'erf_large_data_ipp-erf_large_data', 0, 1),
- data(erf, 'erf_large_data_ipp-erf_large_data', 0j, 1),
- data(erfc, 'erf_large_data_ipp-erf_large_data', 0, 2, rtol=4e-14),
- data(erf, 'erf_small_data_ipp-erf_small_data', 0, 1),
- data(erf, 'erf_small_data_ipp-erf_small_data', 0j, 1, rtol=1e-13),
- data(erfc, 'erf_small_data_ipp-erf_small_data', 0, 2),
- data(erfinv, 'erf_inv_data_ipp-erf_inv_data', 0, 1),
- data(erfcinv, 'erfc_inv_data_ipp-erfc_inv_data', 0, 1),
- data(erfcinv, 'erfc_inv_big_data_ipp-erfc_inv_big_data', 0, 1, param_filter=(lambda s: s > 0)),
- data(exp1, 'expint_1_data_ipp-expint_1_data', 1, 2, rtol=1e-13),
- data(exp1, 'expint_1_data_ipp-expint_1_data', 1j, 2, rtol=5e-9),
- data(expi, 'expinti_data_ipp-expinti_data', 0, 1, rtol=1e-13),
- data(expi, 'expinti_data_double_ipp-expinti_data_double', 0, 1, rtol=1e-13),
- data(expi, 'expinti_data_long_ipp-expinti_data_long', 0, 1),
- data(expn, 'expint_small_data_ipp-expint_small_data', (0,1), 2),
- data(expn, 'expint_data_ipp-expint_data', (0,1), 2, rtol=1e-14),
- data(gamma, 'test_gamma_data_ipp-near_0', 0, 1),
- data(gamma, 'test_gamma_data_ipp-near_1', 0, 1),
- data(gamma, 'test_gamma_data_ipp-near_2', 0, 1),
- data(gamma, 'test_gamma_data_ipp-near_m10', 0, 1),
- data(gamma, 'test_gamma_data_ipp-near_m55', 0, 1, rtol=7e-12),
- data(gamma, 'test_gamma_data_ipp-factorials', 0, 1, rtol=4e-14),
- data(gamma, 'test_gamma_data_ipp-near_0', 0j, 1, rtol=2e-9),
- data(gamma, 'test_gamma_data_ipp-near_1', 0j, 1, rtol=2e-9),
- data(gamma, 'test_gamma_data_ipp-near_2', 0j, 1, rtol=2e-9),
- data(gamma, 'test_gamma_data_ipp-near_m10', 0j, 1, rtol=2e-9),
- data(gamma, 'test_gamma_data_ipp-near_m55', 0j, 1, rtol=2e-9),
- data(gamma, 'test_gamma_data_ipp-factorials', 0j, 1, rtol=2e-13),
- data(gammaln, 'test_gamma_data_ipp-near_0', 0, 2, rtol=5e-11),
- data(gammaln, 'test_gamma_data_ipp-near_1', 0, 2, rtol=5e-11),
- data(gammaln, 'test_gamma_data_ipp-near_2', 0, 2, rtol=2e-10),
- data(gammaln, 'test_gamma_data_ipp-near_m10', 0, 2, rtol=5e-11),
- data(gammaln, 'test_gamma_data_ipp-near_m55', 0, 2, rtol=5e-11),
- data(gammaln, 'test_gamma_data_ipp-factorials', 0, 2),
- data(gammainc, 'igamma_small_data_ipp-igamma_small_data', (0,1), 5, rtol=5e-15),
- data(gammainc, 'igamma_med_data_ipp-igamma_med_data', (0,1), 5, rtol=2e-13),
- data(gammainc, 'igamma_int_data_ipp-igamma_int_data', (0,1), 5, rtol=2e-13),
- data(gammainc, 'igamma_big_data_ipp-igamma_big_data', (0,1), 5, rtol=1e-12),
- data(gdtr_, 'igamma_small_data_ipp-igamma_small_data', (0,1), 5, rtol=1e-13),
- data(gdtr_, 'igamma_med_data_ipp-igamma_med_data', (0,1), 5, rtol=2e-13),
- data(gdtr_, 'igamma_int_data_ipp-igamma_int_data', (0,1), 5, rtol=2e-13),
- data(gdtr_, 'igamma_big_data_ipp-igamma_big_data', (0,1), 5, rtol=2e-9),
- data(gammaincc, 'igamma_small_data_ipp-igamma_small_data', (0,1), 3, rtol=1e-13),
- data(gammaincc, 'igamma_med_data_ipp-igamma_med_data', (0,1), 3, rtol=2e-13),
- data(gammaincc, 'igamma_int_data_ipp-igamma_int_data', (0,1), 3, rtol=4e-14),
- data(gammaincc, 'igamma_big_data_ipp-igamma_big_data', (0,1), 3, rtol=1e-11),
- data(gdtrc_, 'igamma_small_data_ipp-igamma_small_data', (0,1), 3, rtol=1e-13),
- data(gdtrc_, 'igamma_med_data_ipp-igamma_med_data', (0,1), 3, rtol=2e-13),
- data(gdtrc_, 'igamma_int_data_ipp-igamma_int_data', (0,1), 3, rtol=4e-14),
- data(gdtrc_, 'igamma_big_data_ipp-igamma_big_data', (0,1), 3, rtol=1e-11),
- data(gdtrib_, 'igamma_inva_data_ipp-igamma_inva_data', (1,0), 2, rtol=5e-9),
- data(gdtrib_comp, 'igamma_inva_data_ipp-igamma_inva_data', (1,0), 3, rtol=5e-9),
- data(poch_, 'tgamma_delta_ratio_data_ipp-tgamma_delta_ratio_data', (0,1), 2, rtol=2e-13),
- data(poch_, 'tgamma_delta_ratio_int_ipp-tgamma_delta_ratio_int', (0,1), 2,),
- data(poch_, 'tgamma_delta_ratio_int2_ipp-tgamma_delta_ratio_int2', (0,1), 2,),
- data(poch_minus, 'tgamma_delta_ratio_data_ipp-tgamma_delta_ratio_data', (0,1), 3, rtol=2e-13),
- data(poch_minus, 'tgamma_delta_ratio_int_ipp-tgamma_delta_ratio_int', (0,1), 3),
- data(poch_minus, 'tgamma_delta_ratio_int2_ipp-tgamma_delta_ratio_int2', (0,1), 3),
- data(eval_hermite_ld, 'hermite_ipp-hermite', (0,1), 2, rtol=2e-14),
- data(eval_laguerre_ld, 'laguerre2_ipp-laguerre2', (0,1), 2, rtol=7e-12),
- data(eval_laguerre_dd, 'laguerre2_ipp-laguerre2', (0,1), 2, knownfailure='hyp2f1 insufficiently accurate.'),
- data(eval_genlaguerre_ldd, 'laguerre3_ipp-laguerre3', (0,1,2), 3, rtol=2e-13),
- data(eval_genlaguerre_ddd, 'laguerre3_ipp-laguerre3', (0,1,2), 3, knownfailure='hyp2f1 insufficiently accurate.'),
- data(log1p, 'log1p_expm1_data_ipp-log1p_expm1_data', 0, 1),
- data(expm1, 'log1p_expm1_data_ipp-log1p_expm1_data', 0, 2),
- data(iv, 'bessel_i_data_ipp-bessel_i_data', (0,1), 2, rtol=1e-12),
- data(iv, 'bessel_i_data_ipp-bessel_i_data', (0,1j), 2, rtol=2e-10, atol=1e-306),
- data(iv, 'bessel_i_int_data_ipp-bessel_i_int_data', (0,1), 2, rtol=1e-9),
- data(iv, 'bessel_i_int_data_ipp-bessel_i_int_data', (0,1j), 2, rtol=2e-10),
- data(ivp, 'bessel_i_prime_int_data_ipp-bessel_i_prime_int_data', (0,1), 2, rtol=1.2e-13),
- data(ivp, 'bessel_i_prime_int_data_ipp-bessel_i_prime_int_data', (0,1j), 2, rtol=1.2e-13, atol=1e-300),
- data(jn, 'bessel_j_int_data_ipp-bessel_j_int_data', (0,1), 2, rtol=1e-12),
- data(jn, 'bessel_j_int_data_ipp-bessel_j_int_data', (0,1j), 2, rtol=1e-12),
- data(jn, 'bessel_j_large_data_ipp-bessel_j_large_data', (0,1), 2, rtol=6e-11),
- data(jn, 'bessel_j_large_data_ipp-bessel_j_large_data', (0,1j), 2, rtol=6e-11),
- data(jv, 'bessel_j_int_data_ipp-bessel_j_int_data', (0,1), 2, rtol=1e-12),
- data(jv, 'bessel_j_int_data_ipp-bessel_j_int_data', (0,1j), 2, rtol=1e-12),
- data(jv, 'bessel_j_data_ipp-bessel_j_data', (0,1), 2, rtol=1e-12),
- data(jv, 'bessel_j_data_ipp-bessel_j_data', (0,1j), 2, rtol=1e-12),
- data(jvp, 'bessel_j_prime_int_data_ipp-bessel_j_prime_int_data', (0,1), 2, rtol=1e-13),
- data(jvp, 'bessel_j_prime_int_data_ipp-bessel_j_prime_int_data', (0,1j), 2, rtol=1e-13),
- data(jvp, 'bessel_j_prime_large_data_ipp-bessel_j_prime_large_data', (0,1), 2, rtol=1e-11),
- data(jvp, 'bessel_j_prime_large_data_ipp-bessel_j_prime_large_data', (0,1j), 2, rtol=1e-11),
- data(kn, 'bessel_k_int_data_ipp-bessel_k_int_data', (0,1), 2, rtol=1e-12),
- data(kv, 'bessel_k_int_data_ipp-bessel_k_int_data', (0,1), 2, rtol=1e-12),
- data(kv, 'bessel_k_int_data_ipp-bessel_k_int_data', (0,1j), 2, rtol=1e-12),
- data(kv, 'bessel_k_data_ipp-bessel_k_data', (0,1), 2, rtol=1e-12),
- data(kv, 'bessel_k_data_ipp-bessel_k_data', (0,1j), 2, rtol=1e-12),
- data(kvp, 'bessel_k_prime_int_data_ipp-bessel_k_prime_int_data', (0,1), 2, rtol=3e-14),
- data(kvp, 'bessel_k_prime_int_data_ipp-bessel_k_prime_int_data', (0,1j), 2, rtol=3e-14),
- data(kvp, 'bessel_k_prime_data_ipp-bessel_k_prime_data', (0,1), 2, rtol=7e-14),
- data(kvp, 'bessel_k_prime_data_ipp-bessel_k_prime_data', (0,1j), 2, rtol=7e-14),
- data(yn, 'bessel_y01_data_ipp-bessel_y01_data', (0,1), 2, rtol=1e-12),
- data(yn, 'bessel_yn_data_ipp-bessel_yn_data', (0,1), 2, rtol=1e-12),
- data(yv, 'bessel_yn_data_ipp-bessel_yn_data', (0,1), 2, rtol=1e-12),
- data(yv, 'bessel_yn_data_ipp-bessel_yn_data', (0,1j), 2, rtol=1e-12),
- data(yv, 'bessel_yv_data_ipp-bessel_yv_data', (0,1), 2, rtol=1e-10),
- data(yv, 'bessel_yv_data_ipp-bessel_yv_data', (0,1j), 2, rtol=1e-10),
- data(yvp, 'bessel_yv_prime_data_ipp-bessel_yv_prime_data', (0, 1), 2, rtol=4e-9),
- data(yvp, 'bessel_yv_prime_data_ipp-bessel_yv_prime_data', (0, 1j), 2, rtol=4e-9),
- data(zeta_, 'zeta_data_ipp-zeta_data', 0, 1, param_filter=(lambda s: s > 1)),
- data(zeta_, 'zeta_neg_data_ipp-zeta_neg_data', 0, 1, param_filter=(lambda s: s > 1)),
- data(zeta_, 'zeta_1_up_data_ipp-zeta_1_up_data', 0, 1, param_filter=(lambda s: s > 1)),
- data(zeta_, 'zeta_1_below_data_ipp-zeta_1_below_data', 0, 1, param_filter=(lambda s: s > 1)),
- data(gammaincinv, 'gamma_inv_small_data_ipp-gamma_inv_small_data', (0,1), 2, rtol=1e-11),
- data(gammaincinv, 'gamma_inv_data_ipp-gamma_inv_data', (0,1), 2, rtol=1e-14),
- data(gammaincinv, 'gamma_inv_big_data_ipp-gamma_inv_big_data', (0,1), 2, rtol=1e-11),
- data(gammainccinv, 'gamma_inv_small_data_ipp-gamma_inv_small_data', (0,1), 3, rtol=1e-12),
- data(gammainccinv, 'gamma_inv_data_ipp-gamma_inv_data', (0,1), 3, rtol=1e-14),
- data(gammainccinv, 'gamma_inv_big_data_ipp-gamma_inv_big_data', (0,1), 3, rtol=1e-14),
- data(gdtrix_, 'gamma_inv_small_data_ipp-gamma_inv_small_data', (0,1), 2, rtol=3e-13, knownfailure='gdtrix unflow some points'),
- data(gdtrix_, 'gamma_inv_data_ipp-gamma_inv_data', (0,1), 2, rtol=3e-15),
- data(gdtrix_, 'gamma_inv_big_data_ipp-gamma_inv_big_data', (0,1), 2),
- data(gdtrix_comp, 'gamma_inv_small_data_ipp-gamma_inv_small_data', (0,1), 2, knownfailure='gdtrix bad some points'),
- data(gdtrix_comp, 'gamma_inv_data_ipp-gamma_inv_data', (0,1), 3, rtol=6e-15),
- data(gdtrix_comp, 'gamma_inv_big_data_ipp-gamma_inv_big_data', (0,1), 3),
- data(chndtr, 'nccs_ipp-nccs', (2,0,1), 3, rtol=3e-5),
- data(chndtr, 'nccs_big_ipp-nccs_big', (2,0,1), 3, rtol=5e-4, knownfailure='chndtr inaccurate some points'),
- data(sph_harm_, 'spherical_harmonic_ipp-spherical_harmonic', (1,0,3,2), (4,5), rtol=5e-11,
- param_filter=(lambda p: np.ones(p.shape, '?'),
- lambda p: np.ones(p.shape, '?'),
- lambda p: np.logical_and(p < 2*np.pi, p >= 0),
- lambda p: np.logical_and(p < np.pi, p >= 0))),
- data(spherical_jn_, 'sph_bessel_data_ipp-sph_bessel_data', (0,1), 2, rtol=1e-13),
- data(spherical_yn_, 'sph_neumann_data_ipp-sph_neumann_data', (0,1), 2, rtol=8e-15),
- data(owens_t, 'owens_t_ipp-owens_t', (0, 1), 2, rtol=5e-14),
- data(owens_t, 'owens_t_large_data_ipp-owens_t_large_data', (0, 1), 2, rtol=8e-12),
- # -- test data exists in boost but is not used in scipy --
- # ibeta_derivative_data_ipp/ibeta_derivative_data.txt
- # ibeta_derivative_int_data_ipp/ibeta_derivative_int_data.txt
- # ibeta_derivative_large_data_ipp/ibeta_derivative_large_data.txt
- # ibeta_derivative_small_data_ipp/ibeta_derivative_small_data.txt
- # bessel_y01_prime_data_ipp/bessel_y01_prime_data.txt
- # bessel_yn_prime_data_ipp/bessel_yn_prime_data.txt
- # sph_bessel_prime_data_ipp/sph_bessel_prime_data.txt
- # sph_neumann_prime_data_ipp/sph_neumann_prime_data.txt
- # ellint_d2_data_ipp/ellint_d2_data.txt
- # ellint_d_data_ipp/ellint_d_data.txt
- # ellint_pi2_data_ipp/ellint_pi2_data.txt
- # ellint_pi3_data_ipp/ellint_pi3_data.txt
- # ellint_pi3_large_data_ipp/ellint_pi3_large_data.txt
- data(elliprc, 'ellint_rc_data_ipp-ellint_rc_data', (0, 1), 2,
- rtol=5e-16),
- data(elliprd, 'ellint_rd_data_ipp-ellint_rd_data', (0, 1, 2), 3,
- rtol=5e-16),
- data(elliprd, 'ellint_rd_0xy_ipp-ellint_rd_0xy', (0, 1, 2), 3,
- rtol=5e-16),
- data(elliprd, 'ellint_rd_0yy_ipp-ellint_rd_0yy', (0, 1, 2), 3,
- rtol=5e-16),
- data(elliprd, 'ellint_rd_xxx_ipp-ellint_rd_xxx', (0, 1, 2), 3,
- rtol=5e-16),
- # Some of the following rtol for elliprd may be larger than 5e-16 to
- # work around some hard cases in the Boost test where we get slightly
- # larger error than the ideal bound when the x (==y) input is close to
- # zero.
- # Also the accuracy on 32-bit buids with g++ may suffer from excess
- # loss of precision; see GCC bugzilla 323
- # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=323
- data(elliprd, 'ellint_rd_xxz_ipp-ellint_rd_xxz', (0, 1, 2), 3,
- rtol=6.5e-16),
- data(elliprd, 'ellint_rd_xyy_ipp-ellint_rd_xyy', (0, 1, 2), 3,
- rtol=6e-16),
- data(elliprf, 'ellint_rf_data_ipp-ellint_rf_data', (0, 1, 2), 3,
- rtol=5e-16),
- data(elliprf, 'ellint_rf_xxx_ipp-ellint_rf_xxx', (0, 1, 2), 3,
- rtol=5e-16),
- data(elliprf, 'ellint_rf_xyy_ipp-ellint_rf_xyy', (0, 1, 2), 3,
- rtol=5e-16),
- data(elliprf, 'ellint_rf_xy0_ipp-ellint_rf_xy0', (0, 1, 2), 3,
- rtol=5e-16),
- data(elliprf, 'ellint_rf_0yy_ipp-ellint_rf_0yy', (0, 1, 2), 3,
- rtol=5e-16),
- # The accuracy of R_G is primarily limited by R_D that is used
- # internally. It is generally worse than R_D. Notice that we increased
- # the rtol for R_G here. The cases with duplicate arguments are
- # slightly less likely to be unbalanced (at least two arguments are
- # already balanced) so the error bound is slightly better. Again,
- # precision with g++ 32-bit is even worse.
- data(elliprg, 'ellint_rg_ipp-ellint_rg', (0, 1, 2), 3,
- rtol=8.0e-16),
- data(elliprg, 'ellint_rg_xxx_ipp-ellint_rg_xxx', (0, 1, 2), 3,
- rtol=6e-16),
- data(elliprg, 'ellint_rg_xyy_ipp-ellint_rg_xyy', (0, 1, 2), 3,
- rtol=7.5e-16),
- data(elliprg, 'ellint_rg_xy0_ipp-ellint_rg_xy0', (0, 1, 2), 3,
- rtol=5e-16),
- data(elliprg, 'ellint_rg_00x_ipp-ellint_rg_00x', (0, 1, 2), 3,
- rtol=5e-16),
- data(elliprj, 'ellint_rj_data_ipp-ellint_rj_data', (0, 1, 2, 3), 4,
- rtol=5e-16, atol=1e-25,
- param_filter=(lambda s: s <= 5e-26,)),
- # ellint_rc_data_ipp/ellint_rc_data.txt
- # ellint_rd_0xy_ipp/ellint_rd_0xy.txt
- # ellint_rd_0yy_ipp/ellint_rd_0yy.txt
- # ellint_rd_data_ipp/ellint_rd_data.txt
- # ellint_rd_xxx_ipp/ellint_rd_xxx.txt
- # ellint_rd_xxz_ipp/ellint_rd_xxz.txt
- # ellint_rd_xyy_ipp/ellint_rd_xyy.txt
- # ellint_rf_0yy_ipp/ellint_rf_0yy.txt
- # ellint_rf_data_ipp/ellint_rf_data.txt
- # ellint_rf_xxx_ipp/ellint_rf_xxx.txt
- # ellint_rf_xy0_ipp/ellint_rf_xy0.txt
- # ellint_rf_xyy_ipp/ellint_rf_xyy.txt
- # ellint_rg_00x_ipp/ellint_rg_00x.txt
- # ellint_rg_ipp/ellint_rg.txt
- # ellint_rg_xxx_ipp/ellint_rg_xxx.txt
- # ellint_rg_xy0_ipp/ellint_rg_xy0.txt
- # ellint_rg_xyy_ipp/ellint_rg_xyy.txt
- # ellint_rj_data_ipp/ellint_rj_data.txt
- # ellint_rj_e2_ipp/ellint_rj_e2.txt
- # ellint_rj_e3_ipp/ellint_rj_e3.txt
- # ellint_rj_e4_ipp/ellint_rj_e4.txt
- # ellint_rj_zp_ipp/ellint_rj_zp.txt
- # jacobi_elliptic_ipp/jacobi_elliptic.txt
- # jacobi_elliptic_small_ipp/jacobi_elliptic_small.txt
- # jacobi_large_phi_ipp/jacobi_large_phi.txt
- # jacobi_near_1_ipp/jacobi_near_1.txt
- # jacobi_zeta_big_phi_ipp/jacobi_zeta_big_phi.txt
- # jacobi_zeta_data_ipp/jacobi_zeta_data.txt
- # heuman_lambda_data_ipp/heuman_lambda_data.txt
- # hypergeometric_0F2_ipp/hypergeometric_0F2.txt
- # hypergeometric_1F1_big_ipp/hypergeometric_1F1_big.txt
- # hypergeometric_1F1_ipp/hypergeometric_1F1.txt
- # hypergeometric_1F1_small_random_ipp/hypergeometric_1F1_small_random.txt
- # hypergeometric_1F2_ipp/hypergeometric_1F2.txt
- # hypergeometric_1f1_large_regularized_ipp/hypergeometric_1f1_large_regularized.txt
- # hypergeometric_1f1_log_large_unsolved_ipp/hypergeometric_1f1_log_large_unsolved.txt
- # hypergeometric_2F0_half_ipp/hypergeometric_2F0_half.txt
- # hypergeometric_2F0_integer_a2_ipp/hypergeometric_2F0_integer_a2.txt
- # hypergeometric_2F0_ipp/hypergeometric_2F0.txt
- # hypergeometric_2F0_large_z_ipp/hypergeometric_2F0_large_z.txt
- # hypergeometric_2F1_ipp/hypergeometric_2F1.txt
- # hypergeometric_2F2_ipp/hypergeometric_2F2.txt
- # ncbeta_big_ipp/ncbeta_big.txt
- # nct_small_delta_ipp/nct_small_delta.txt
- # nct_asym_ipp/nct_asym.txt
- # ncbeta_ipp/ncbeta.txt
- # powm1_data_ipp/powm1_big_data.txt
- # powm1_sqrtp1m1_test_hpp/sqrtp1m1_data.txt
- # sinc_data_ipp/sinc_data.txt
- # test_gamma_data_ipp/gammap1m1_data.txt
- # tgamma_ratio_data_ipp/tgamma_ratio_data.txt
- # trig_data_ipp/trig_data.txt
- # trig_data2_ipp/trig_data2.txt
- ]
- @pytest.mark.parametrize('test', BOOST_TESTS, ids=repr)
- def test_boost(test):
- _test_factory(test)
- GSL_TESTS = [
- data_gsl(mathieu_a, 'mathieu_ab', (0, 1), 2, rtol=1e-13, atol=1e-13),
- data_gsl(mathieu_b, 'mathieu_ab', (0, 1), 3, rtol=1e-13, atol=1e-13),
- # Also the GSL output has limited accuracy...
- data_gsl(mathieu_ce_rad, 'mathieu_ce_se', (0, 1, 2), 3, rtol=1e-7, atol=1e-13),
- data_gsl(mathieu_se_rad, 'mathieu_ce_se', (0, 1, 2), 4, rtol=1e-7, atol=1e-13),
- data_gsl(mathieu_mc1_scaled, 'mathieu_mc_ms', (0, 1, 2), 3, rtol=1e-7, atol=1e-13),
- data_gsl(mathieu_ms1_scaled, 'mathieu_mc_ms', (0, 1, 2), 4, rtol=1e-7, atol=1e-13),
- data_gsl(mathieu_mc2_scaled, 'mathieu_mc_ms', (0, 1, 2), 5, rtol=1e-7, atol=1e-13),
- data_gsl(mathieu_ms2_scaled, 'mathieu_mc_ms', (0, 1, 2), 6, rtol=1e-7, atol=1e-13),
- ]
- @pytest.mark.parametrize('test', GSL_TESTS, ids=repr)
- def test_gsl(test):
- _test_factory(test)
- LOCAL_TESTS = [
- data_local(ellipkinc, 'ellipkinc_neg_m', (0, 1), 2),
- data_local(ellipkm1, 'ellipkm1', 0, 1),
- data_local(ellipeinc, 'ellipeinc_neg_m', (0, 1), 2),
- data_local(clog1p, 'log1p_expm1_complex', (0,1), (2,3), rtol=1e-14),
- data_local(cexpm1, 'log1p_expm1_complex', (0,1), (4,5), rtol=1e-14),
- data_local(gammainc, 'gammainc', (0, 1), 2, rtol=1e-12),
- data_local(gammaincc, 'gammaincc', (0, 1), 2, rtol=1e-11),
- data_local(ellip_harm_2, 'ellip',(0, 1, 2, 3, 4), 6, rtol=1e-10, atol=1e-13),
- data_local(ellip_harm, 'ellip',(0, 1, 2, 3, 4), 5, rtol=1e-10, atol=1e-13),
- data_local(wright_bessel, 'wright_bessel', (0, 1, 2), 3, rtol=1e-11),
- ]
- @pytest.mark.parametrize('test', LOCAL_TESTS, ids=repr)
- def test_local(test):
- _test_factory(test)
- def _test_factory(test, dtype=np.double):
- """Boost test"""
- with suppress_warnings() as sup:
- sup.filter(IntegrationWarning, "The occurrence of roundoff error is detected")
- with np.errstate(all='ignore'):
- test.check(dtype=dtype)
|