123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- import numpy as np
- from scipy.constants import golden as phi
- def icosahedral(cls):
- g1 = tetrahedral(cls).as_quat()
- a = 0.5
- b = 0.5 / phi
- c = phi / 2
- g2 = np.array([[+a, +b, +c, 0],
- [+a, +b, -c, 0],
- [+a, +c, 0, +b],
- [+a, +c, 0, -b],
- [+a, -b, +c, 0],
- [+a, -b, -c, 0],
- [+a, -c, 0, +b],
- [+a, -c, 0, -b],
- [+a, 0, +b, +c],
- [+a, 0, +b, -c],
- [+a, 0, -b, +c],
- [+a, 0, -b, -c],
- [+b, +a, 0, +c],
- [+b, +a, 0, -c],
- [+b, +c, +a, 0],
- [+b, +c, -a, 0],
- [+b, -a, 0, +c],
- [+b, -a, 0, -c],
- [+b, -c, +a, 0],
- [+b, -c, -a, 0],
- [+b, 0, +c, +a],
- [+b, 0, +c, -a],
- [+b, 0, -c, +a],
- [+b, 0, -c, -a],
- [+c, +a, +b, 0],
- [+c, +a, -b, 0],
- [+c, +b, 0, +a],
- [+c, +b, 0, -a],
- [+c, -a, +b, 0],
- [+c, -a, -b, 0],
- [+c, -b, 0, +a],
- [+c, -b, 0, -a],
- [+c, 0, +a, +b],
- [+c, 0, +a, -b],
- [+c, 0, -a, +b],
- [+c, 0, -a, -b],
- [0, +a, +c, +b],
- [0, +a, +c, -b],
- [0, +a, -c, +b],
- [0, +a, -c, -b],
- [0, +b, +a, +c],
- [0, +b, +a, -c],
- [0, +b, -a, +c],
- [0, +b, -a, -c],
- [0, +c, +b, +a],
- [0, +c, +b, -a],
- [0, +c, -b, +a],
- [0, +c, -b, -a]])
- return cls.from_quat(np.concatenate((g1, g2)))
- def octahedral(cls):
- g1 = tetrahedral(cls).as_quat()
- c = np.sqrt(2) / 2
- g2 = np.array([[+c, 0, 0, +c],
- [0, +c, 0, +c],
- [0, 0, +c, +c],
- [0, 0, -c, +c],
- [0, -c, 0, +c],
- [-c, 0, 0, +c],
- [0, +c, +c, 0],
- [0, -c, +c, 0],
- [+c, 0, +c, 0],
- [-c, 0, +c, 0],
- [+c, +c, 0, 0],
- [-c, +c, 0, 0]])
- return cls.from_quat(np.concatenate((g1, g2)))
- def tetrahedral(cls):
- g1 = np.eye(4)
- c = 0.5
- g2 = np.array([[c, -c, -c, +c],
- [c, -c, +c, +c],
- [c, +c, -c, +c],
- [c, +c, +c, +c],
- [c, -c, -c, -c],
- [c, -c, +c, -c],
- [c, +c, -c, -c],
- [c, +c, +c, -c]])
- return cls.from_quat(np.concatenate((g1, g2)))
- def dicyclic(cls, n, axis=2):
- g1 = cyclic(cls, n, axis).as_rotvec()
- thetas = np.linspace(0, np.pi, n, endpoint=False)
- rv = np.pi * np.vstack([np.zeros(n), np.cos(thetas), np.sin(thetas)]).T
- g2 = np.roll(rv, axis, axis=1)
- return cls.from_rotvec(np.concatenate((g1, g2)))
- def cyclic(cls, n, axis=2):
- thetas = np.linspace(0, 2 * np.pi, n, endpoint=False)
- rv = np.vstack([thetas, np.zeros(n), np.zeros(n)]).T
- return cls.from_rotvec(np.roll(rv, axis, axis=1))
- def create_group(cls, group, axis='Z'):
- if not isinstance(group, str):
- raise ValueError("`group` argument must be a string")
- permitted_axes = ['x', 'y', 'z', 'X', 'Y', 'Z']
- if axis not in permitted_axes:
- raise ValueError("`axis` must be one of " + ", ".join(permitted_axes))
- if group in ['I', 'O', 'T']:
- symbol = group
- order = 1
- elif group[:1] in ['C', 'D'] and group[1:].isdigit():
- symbol = group[:1]
- order = int(group[1:])
- else:
- raise ValueError("`group` must be one of 'I', 'O', 'T', 'Dn', 'Cn'")
- if order < 1:
- raise ValueError("Group order must be positive")
- axis = 'xyz'.index(axis.lower())
- if symbol == 'I':
- return icosahedral(cls)
- elif symbol == 'O':
- return octahedral(cls)
- elif symbol == 'T':
- return tetrahedral(cls)
- elif symbol == 'D':
- return dicyclic(cls, order, axis=axis)
- elif symbol == 'C':
- return cyclic(cls, order, axis=axis)
- else:
- assert False
|